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LEVERAGING THE GROUND-TRACK RESONANCE CAPTURE
AND ESCAPE FOR PRECISE AND EFFICIENT ORBITAL

TRANSFERS

Wail Boumchita* and Jinglang Feng†

Vesta, the second largest celestial object in the main asteroid belt, was visited
and studied by the Dawn mission in 2011. The spacecraft employed solar-electric
propulsion, which generated continuous low-thrust. During the slow descent from
high altitude mission orbit (HAMO) to low altitude mission orbit (LAMO), the
spacecraft encountered the 1:1 ground-track resonance, with the potential of being
captured and trapped in it. The objective of this paper is to present a workflow
for designing orbit transfers from HAMO to LAMO by leveraging the effects of
the 1:1 ground-track resonance, achieved only by adjusting the thrust magnitude
value throughout the descent. Firstly, the dynamics are modeled by considering
the irregular gravitational field up to the fourth order and degree, while the thrust
remains constant in magnitude and opposes the velocity direction of the spacecraft.
Subsequently, a reference case of capture into the 1:1 ground-track resonance is
considered, and the effects of the resonance on the trajectory of the spacecraft
are described. Following that, the workflow adopted for designing orbit transfers
during Dawn’s approach phase is presented, and a case study is conducted to apply
the workflow. This paper contributes to raising awareness regarding the risk of
resonance capture and highlights strategies for escaping such resonances, thereby
facilitating the design of future space missions to asteroids.

INTRODUCTION

Resonance is a widespread concept in dynamical systems, occurring when a system is driven at
its natural frequency, leading to pronounced oscillations. Its manifestations cut across various fields,
from plasma physics1 to celestial mechanics2 and astrodynamics3 . Within the context of celestial
mechanics and astrodynamics, numerous types of orbital resonances can be observed. These include
mean motion resonances4 , where the orbital periods of two bodies have a simple integer ratio;
secular resonances5 , which affect the long-term evolution of orbits; secondary resonances6 , which
are combinations of simpler resonances; spin-orbit resonances,7 where a body’s rotational period
and orbital period are linked; and ground-track resonances (GTRs),3 where the gravitational effects
of bodies influence each other’s orbits. For GTRs to occur, the period of revolution of the spacecraft
has to be commensurable to the period of rotation of the asteroid around its axis. For example, in the
1:1 GTR the revolution period of the spacecraft is equal to the rotation period of the Earth around
its spin axis8 , as in the case of spacecraft in GEO.
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In 2011, the spacecraft Dawn successfully approached the asteroid Vesta.9 The Dawn mission
was one of the first missions to use low-thrust propulsion during both the cruise phase and the ap-
proach phase to an asteroid. It demonstrates the possibility of relying on low-thrust propulsion for
the majority of the mission duration10,11 . As the spacecraft slowly approaches the asteroid, there
is a possibility that it is captured by the 1:1 GTR and permanently trapped in it.3 The spacecraft
at each revolution encounters the same gravitational configuration, the effect of which accumulates
over the revolutions and change noticeably the orbit eccentricity and inclination. Small variations in
the initial state of the spacecraft can make a difference in whether the spacecraft manages to cross
the resonance and reach lower altitudes if the spacecraft remains trapped in the resonance despite
the continuous thrusting. Tricarico and Sykes3 and Delsate12 studied in depth the phenomenon of
capture into 1:1 GTR. The awareness that the mission was potentially in danger due to the 1:1 GTR
was brought by the former, which estimated the probability of capture. The latter further refined the
previous study by updating the estimate of the probability of capture into the 1:1 GTR, thereby offer-
ing additional information on the phenomenon and presenting a general methodology for searching
and analytically locating the main resonances. Delsate concluded his study by considering the pos-
sibility of escaping from the resonance and highlighting the dependence of this possibility on the
phase of the resonance angle.

For this research, the previous investigation is extended to advance the knowledge of resonance
escape by analyzing the possibility of escaping from the 1:1 GTR around Vesta solely through an in-
crease in the thrust magnitude. Orbital transfers can be achieved in two ways: impulsive maneuvers
or continuous low-thrust maneuvers. Given that Dawn was equipped with a low-thrust propulsion
system, the approach was performed using continuous low-thrust. In previous studies13 , the descent
was analyzed by leveraging GTRs and controlling the thrust through the activation and deactivation
of its magnitude and direction. In the course of satellite mission planning and operation, the implica-
tions of frequent spacecraft maneuvers warrant careful consideration, given the cumulative negative
effects such actions often yield. One significant drawback is the inherent uncertainty introduced
with each maneuver, which can potentially compound over time, thereby augmenting trajectory de-
viation and instigating a cascade of subsequent course corrections. This can lead to a recursive cycle
of corrections and uncertainties, ultimately creating a more complex operational scenario. From a
hardware perspective, the persistent utilization of thrusters intensifies their wear and tear, thereby
reducing their overall lifespan and potentially compromising their performance. On the other hand,
in this work, the number of times the thrust magnitude value is changed throughout the descent is
limited, and the thrust is kept constantly aligned with the direction of the spacecraft’s velocity.

This work is structured as follows: the equations of motion and the Hamiltonian dynamical model
are defined. The phase-space of the model is obtained, providing important insights into the phe-
nomenon of resonance. Then, the analysis focuses on the effects of the 1:1 GTR on the descent
trajectory of Dawn, specifically on how the accumulation of gravitational perturbation affects the
evolution of the semimajor axis, inclination (i), and longitude of the ascending node (Ω). Subse-
quently, the rationale and the workflow for designing the transfer orbits are presented. The workflow
is then applied to a case study, wherein an orbit transfer from HAMO to LAMO is designed, lever-
aging the 1:1 GTR. Finally, the study concludes with the final section.

DYNAMICAL MODELING

In this section, the dynamical environment surrounding Vesta is investigated to identify perturba-
tions that need to be considered for the modeling of the dynamics. Subsequently, Vesta’s physical

2

Leveraging the ground-track resonance capture and escape for precise and efficient orbital transfers



and gravitational characteristics and the equations of motion for the spacecraft are presented. The
Hamiltonian function of the system is then defined and the dynamics of the Dawn mission phase-
space are investigated.

Main perturbations

In 2011, the Dawn spacecraft successfully arrived at the asteroid Vesta. During the approach
phase, the spacecraft descended from a high-altitude mission orbit (HAMO) to a low-altitude mis-
sion orbit (LAMO) utilizing low-thrust propulsion. The orbital radii of the HAMO and LAMO are
1000 km and 460 km, respectively.3 However, the use of low-thrust propulsion during the descent
phase posed a risk of capturing the spacecraft into GTRs around Vesta. The physical parameters of
Vesta are listed in Table 1, and it is assumed to rotate uniformly around a constant direction in the
inertial frame. The unnormalized Stokes coefficients of Vesta are given in Feng14 .

Table 1: Vesta’s physical parameters3

.
Gravitational constant µ 17.5 km3/s2

Reference radius Re 300 km
Angular velocity ω 3.2671× 10−4 rad/s

The spacecraft is subject to the following perturbations:15

• Vesta’s irregular gravitational perturbations

anm = (n+ 1)
µ

r2
Rn

e

rn
Jnm

where Jnm =
√

C2
nm + S2

nm;

• Sun’s gravitational perturbation

aSun =
2µSun

d3Sun
r

• solar radiation pressure perturbation

aSRP = Cr
A

m
P⊙

where r represents the distance from the spacecraft to Vesta, Cnm and Snm are the unnormalized
Stokes coefficients, n and m are the degree and order of the spherical harmonic expansion consid-
ered, µ⊙ represents the gravitational constant of the Sun, d⊙ is the distance of the spacecraft from
the Sun, Cr = 0.25 is the reflectivity coefficient of the spacecraft, A/m = 0.04 is the area-to-mass
ratio of the spacecraft, and P⊙ is the solar radiation pressure at a distance d⊙ from the Sun. The
magnitudes of the main perturbations at different orbital radii are illustrated in Figure 1. A thor-
ough analysis of the figure reveals that at the orbital radius corresponding to the 1:1 GTR, i.e. 550
km, Vesta’s gravitational perturbations are an order of magnitude stronger than the perturbations
from the Sun’s gravitational attraction, and the solar radiation pressure. This highlights the impor-
tance of accurately accounting for Vesta’s gravitational influence in the dynamic modeling of the
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Figure 1: Order of magnitude of the various perturbations to which the Dawn spacecraft is subject
at different orbital radii. The location of the 1:1 and 2:3 GTRs are highlighted for reference.

spacecraft’s trajectory. Furthermore, it is worth noting that the relative magnitudes of these pertur-
bations can vary significantly depending on the orbital radius of the spacecraft. Given the dominant
effect of Vesta’s irregular gravitational perturbations at the 1:1 GTR and the potential impact on
the spacecraft’s trajectory, in this paper, only these perturbations are considered in the dynamical
modeling.

Equations of motion

The model considered is the perturbed two-body problem with perturbations from the irregular
gravitational field of Vesta and the low-thrust to which the spacecraft is subject. Tricarico3 has
proved that with a spherical harmonic expansion up to the 8th order, the dynamics is dominated
by the 3rd and 4th order terms. Therefore, the gravitational field truncated to the fourth order and
degree is used. The low-thrust is constant in magnitude and it always in the opposite direction of
Dawn’s velocity.

Kaula16 defined the gravitational potential of a central body as a function of the spherical har-
monics. The characteristics of the asteroid including the shape and volume density variations are
taken into account through the Stokes coefficient. The gravitational field V of degree n and order
m in spherical harmonics expansion is given in spherical coordinated (r,δ,ϕ) as

V =
µ

r
+

∞∑
n=2

n∑
m=0

µ

r

(
Re

r

)n

Pnm(sinϕ)(Cnm cosmδ + Snm sinmδ) (1)

where δ and ϕ are the colatitude and the longitude respectively. Previous studies have shown that the
dynamics around Vesta are primarily influenced by the spherical harmonics expansion up to the 4th
order and degree.3 This is also the truncation order adopted in our current study. Our simulations
focus on the perturbed two-body problem,13 where the spacecraft is subject to perturbations from
Vesta’s irregular gravitational field and a constant low-thrust force in the opposite direction of the
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Figure 2: Sample of a trajectory captured into resonance with Vesta. The black line represents the
first part of the descent, the red line represents the trajectory after the capture occurs.

spacecraft’s velocity. The equations of motion in cartesian coordinates and in the asteroid’s centered
inertial frame are {

ẍ = ∇V − T
m(t) v̂

ṁ = − T
Ispg0

(2)

where x = [x, y, z] is the position vector in cartesian coordinates, ẍ = [ax, ay, az] is the acceleration
vector, V represents the potential in spherical harmonics in Equation 1, T is the thrust magnitude,
m is the spacecraft’s mass and v̂ is the spacecraft’s velocity unit vector. Finally, the second equation
describes the rate of change of the spacecraft’s mass over time as a function of Isp and g0 which rep-
resent the specific impulse and Earth’s gravitational constant respectively. The equation of motion
are propagated using the MATLAB built-in function ode113 which is a variable-step, variable-
order Adams-Bashforth-Moulton solver of orders 1 to 13,17 with a relative and absolute tolerance
set at 10−12. Figure 2 shows a sample of a trajectory captured into resonance in the asteroid’s
centered inertial frame.

The Hamiltonian formalism is an effective method for analyzing resonance dynamics. The grav-
itational field, as defined in Equation 1, can be represented as a function of orbital elements, as16

V =
µ

r
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µRn
e

an+1
Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θ) (3)

where Fnmp(i) and Gnpq(e) are functions of the inclination i and eccentricity e, respectively, ω rep-
resents the argument of periapsis, M is the mean anomaly, Ω denotes the longitude of the ascending
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node, θ represents the sidereal time, and n,m, p, q are integers and

Snmpq =

{
Cnm cosΨnmpq + Snm sinΨnmpq, if n−m is even
−Snm cosΨnmpq + Cnm sinΨnmpq, if n−m is odd

where Ψnmpq is the Kaula’s phase angle that is defined as

Ψnmpq = (n− 2p)ω + (n− 2p+ q)M +m(Ω− θ). (4)

GTRs occur when the rate of change of Kaula’s phase angle Ψ̇nmpq is close to zero or when the
phase angle of the system remains relatively constant over time.

By defining the quantity L =
√
µa as the conjugate momentum to λ = M + Ω + ω, the Hamil-

tonian that describes the motion of the spacecraft around an asteroid with an irregular gravitational
field can be defined as

H = − µ2

2L2
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

Rn
e

µn+2

L2n+2
Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θ) + θ̇Λ (5)

where Λ is the conjugated momentum to the sidereal time θ and the term θ̇Λ accounts for the
asteroid’s rotation. The dynamics of the system close to the 1:1 GTR are primarily affected by the
gravitational term up to the second degree and order.18 In light of this, the Hamiltonian used in the
analysis is limited to the second order and degree. The harmonic contributions incorporated in the
potential V are selected based on the resonance under consideration. In the case of the 1:1 GTR,
the harmonics that contribute to this resonance are listed in Table 2.

Table 2: Spherical harmonics terms related to the 1:1 GTR up to 2nd order and degree (e = 0)16

n m p q Ψnmpq Fnmp Gnpq

2 0 1 0 0 3/4 sin2 i - 1/2 1
2 2 0 0 2λ− 2θ 3(1 + cos i)2/4 1

For a polar circular orbit, the Hamiltonian is

H1:1 = − µ2

2L2
+

1

4
R2

e

µ4

L6
C20 +

3

4
R2

e

µ4

L6

√
C2
22 + S2

22 cos

[
Ψ2200 + arctan

(
−S22

C22

)]
+ θ̇Λ (6)

where the first argument of the cosine is

Ψ2200 = 2(ω +M +Ω)− 2θ = 2(λ− θ). (7)

The resonance angle σ in the case of 1:1 GTR is

σ = λ− θ (8)

However, in order to preserve a set of canonical variables, it is necessary to perform a canonical
transformation. These transformations are important in Hamiltonian mechanics as they allow for
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Table 3: Dawn’s nominal initial conditions at HAMO3

.

Mass m 1000 kg
Thrust magnitude T 20 mN
Specific impulse Isp 3000 s
semimajor axis a0 1000 km

Eccentricity e0 0
Inclination i0 90◦

Longitude of the ascending node Ω0 0◦

Argument of periapsis ω0 0◦

True anomaly θ0 72◦

the definition of new variables that can simplify the analysis of the Hamiltonian function. In this
particular case, the canonical transformation proposed by Valk19 is adopted. The new set of variables
is

σ , L′ = L , θ′ = θ , Λ′ = Λ+ L.

As a result of this transformation, the new Hamiltonian is

H̃1:1 = − µ2

2L2
− 1

4
R2

e

µ4

L6
C20 −

3

4
R2

e

µ4

L6

√
C2
22 + S2

22 cos

[
2σ + arctan

(
−S22

C22

)]
− θ̇L (9)

in which the prime signs are dropped for simplicity and the constant θ̇Λ′ term is not included since
the expression is no more explicitly dependent on θ. For Vesta, S22 = 0, so the Hamiltonian is
simplified as

H̃1:1 = − µ2

2L2
− 1

4
R2

e

µ4

L6
C20 −

3

4
R2

e

µ4

L6
C22 cos 2σ − θ̇L. (10)

CAPTURE INTO 1:1 GTR

The 1:1 GTR is one of the major resonances that Dawn goes through during its slow descent from
HAMO to LAMO. In particular, it is the resonance with greater amplitude.12 The location of the 1:1
GTR depends on the initial inclination and eccentricity of the descent trajectory and the condition
to locate it is

∂H̃1:1

∂L
=

∂H̃1:1

∂σ
= 0 (11)

from which the following solutions are obtained

σst = 0 , σst = π , σun = π/2 , σun = 3/2π. (12)

These equilibrium points are the locations in the phase-space where the spacecraft’s motion is sta-
tionary in the body-fixed frame.20 Figure 3 shows the phase-space of the 1:1 GTR from Equation
10, where the stable and unstable equilibrium points are indicated with a triangle and a cross, re-
spectively. The region of interest, also known as the resonance region, is confined between the two
red curves, called separatrices. The regions above and below the resonance region are referred to as
the upper and lower circulation region, respectively. The initial conditions are reported in Table 3.

From Equation 11, it can also be determined that the location of the 1:1 GTR is approximately
550 km. Therefore, in case the spacecraft is captured into 1:1 GTR around Vesta the radial distance
oscillates around the resonance location as in Figure 4.
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Figure 3: Phase-space configuration of the 1:1 GTR around Vesta. The black curves are the different
energy levels, while the red lines are the separatrices that enclose the two resonance regions. The
stable and unstable equilibrium points are indicated with a triangle and a cross, respectively.
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Figure 4: The radial distance evolution with respect to time in the case of the spacecraft being
captured into 1:1 GTR with Vesta. The vertical line indicates the time epoch of the resonance
capture.
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Figure 5: The inclination (on the left) and the Ω (on the right) evolution with respect to time in the
case of the spacecraft being captured into 1:1 GTR with Vesta. The vertical line indicates the 2:3
and 1:1 GTR crossing and the red lines indicate the evolution of the parameters inside the 1:1 GTR.

The resonance amplifies the gravitational perturbations on the motion of the spacecraft and acts on
the orbital parameters of the trajectory. The consequences of such an accumulation of perturbations
cause the excessive need for corrective maneuvers or, in the worst case, deviate the spacecraft from
its nominal trajectory, causing it to impact the surface of the asteroid. In particular, the inclination
oscillates and the average value of the oscillations decreases linearly. In 13 days within the 1:1
GTR, the inclination decreases by approximately 7◦ as in the left plot of Figure 5. The Ω evolution
follows qualitatively the same trend as its average value remains constant over time and, as the
spacecraft crosses the 1:1 GTR, it value begins to decrease without the large oscillations to which
the inclination was subject to as shown in the right plot of Figure 5.

ESCAPE FROM 1:1 GTR

The accumulation of perturbations from the GTRs could lead the spacecraft into an unstable or-
bit, resulting in the impact of the surface of the central body or redirection into a trajectory beyond
the gravitational influence of the central body. If there is no interest in leveraging the effect of
the GTRs, it is recommended to escape from the resonance as soon as possible and to adjust the
trajectory after crossing it through correction maneuvers. It has been shown by Boumchita and
Feng21 that after escaping the GTR, the average value of inclination remains constant with slight
oscillations, indicating the potential to exploit GTRs for efficient and precise plane change maneu-
vers, resulting in propellant savings. The dependence of resonance escape on the phase angle of the
escape maneuver is emphasized by Delsate,12 and Boumchita and Feng21 conducted a sensitivity
analysis on the escape maneuvers required to escape from the 1:1 GTR using only thrust magnitude
change maneuvers. It is found that the escape is more effective when the maneuvers are performed
near the lower separatrix.

During the escape maneuver, it is interesting to analyze the change in the inclination value be-
tween the value at escape and the final value at LAMO. Figure 8 illustrates the absolute difference
between the initial and final inclination values, where the initial conditions are obtained when the
escape maneuver from the 1:1 GTR is executed, and the final value is taken once the trajectory
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reaches a semimajor axis value of 400 km. A smaller difference indicates a more precise maneuver.
The range of thrust magnitude values extends from 20 mN (no increase in thrust magnitude from the
initial descent) to 49 mN. Nevertheless, this analysis is performed considering a maximum thrust
magnitude of 60 mN. The successful escape maneuvers are represented by the red points, while
the failed escape maneuvers are represented by the blue points in the figure. It is observed that the
first successful escape cases commence by increasing the thrust magnitude to 22 mN as soon as the
spacecraft is captured into resonance, and as the thrust magnitude is further increased, the number of
successful cases also rises. If the capture continues for a longer time interval, a higher thrust magni-
tude is required to escape the resonance. Additionally, in all cases where the spacecraft successfully
escapes from the resonance, the absolute difference between the initial and final inclination values
is small. Conversely, for the cases in which the spacecraft fails to escape from the resonance, the
inclination values continue to evolve, resulting in a large ∆i.

WORKFLOW

The semimajor axis, inclination, and Ω are primarily perturbed by the 1:1 GTR. Upon being
captured into 1:1 GTR with Vesta, the semimajor axis undergoes oscillations around the resonance
location. Throughout the descent, the average value of the inclination remains constant, and upon
capture into resonance, its value begins to oscillate while decreasing almost linearly over time.
Similarly, the Ω value remains constant before the capture but decreases when the capture occurs.

The inputs required for designing the orbit transfer are the final orbit geometry, specified in terms
of semimajor axis, inclination, and Ω, as well as the magnitude of thrust change necessary to escape
from the resonance. The output is the orbit transfer within the 1:1 GTR, utilizing the gravitational
perturbations from Vesta to effect the changes in inclination and Ω. After achieving the desired
geometry, the thrust is increased from 20 mN to the magnitude of thrust required for escaping from
the resonance.

The workflow used in this paper is schematized in Figure 7.

Figure 7: Overall pipeline of the framework.

Once the final geometry and the available thrust magnitude are defined, the given constraints are
used to extract all the solutions from a database of all possible solutions, which is generated a priori.
The database is generated by considering the same initial condition from the descent (specify initial
conditions). After selecting the solutions, their orbital parameter evolution over time is propagated
and plotted. Subsequently, one variable to be optimized, either ∆v, i, or Ω, is defined. Finally, the
selected solution is propagated and displayed.

The database of possible solutions is created by propagating trajectories, with initial conditions
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Figure 6: The difference between the initial and final values of the inclination. The cases in which
the spacecraft escapes from the resonance and the cases in which it fails are highlighted in red and
blue respectively.
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Figure 8: Maps of the acceptable solutions distribution. The upper plot show the distribution in
terms of final inclination and Ω respectively. The lower plots show the distribution as a function of
the thrust magnitude values (on the left) and as a function of final inclination and Ω (on the right).

inside the 1:1 GTR. For each initial condition, the minimum thrust magnitude change is identified,
and the final values of the orbital elements are saved. We consider 1000 different initial conditions
after the spacecraft has been captured inside the resonance for 30 days, and the thrust magnitude
range extends from 21 to 92 mN.

The use of maps provides a visual representation of all possible solutions, providing insights into
the distribution of feasible solutions over the time interval. It also reveals the number of solutions
and their distribution for each value of thrust magnitude, as well as the conditions that impose greater
strictness. Moreover, an analysis is conducted to determine if these conditions can be relaxed or not.
Additionally, these maps can be utilized to optimize the tolerances of the desired final solutions.

CASE STUDY

In this section, an orbital transfer from HAMO to LAMO is achieved using the workflow de-
scribed in the previous section. The initial conditions at HAMO are listed in the first column of
Table3. The spacecraft is directed toward the resonance with the intention of being captured in it.
The desired final conditions are also set a priori in terms of semimajor axis, inclination, and Ω and,
in this case, are set to a = 400km, if = 85◦±2◦ and Ωf = 300◦±5◦. The thrust magnitude values
considered are included in the interval [30, 60] mN. The thrust magnitude interval chosen for this
case study is arbitrary. The workflow can be expanded by considering a range of thrust magnitudes
up to the maximum value available. Since the aim of this paper is to design orbit transfers that
optimize fuel consumption, the restricted interval [30, 60] mN is considered.

The different maps that are used to design the escape trajectory are shown in Figure 8. After the
final conditions and their respective tolerances have been fixed, the initial conditions that satisfy
those conditions are plotted. The upper plots depict the distribution of the acceptable cases over
the escape time in terms of final inclination and Ω, respectively. The lower left plot illustrates the
distribution of those solutions across different values of thrust magnitude. Lastly, the lower right
plot displays the distributions of the solutions in terms of the final geometry, which is useful for
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Figure 9: Maps of the acceptable solutions distribution. The upper plot show the distribution in
terms of final inclination and Ω respectively. The lower plots show the distribution as a function of
the thrust magnitude values (on the left) and as a function of final inclination and Ω (on the right).
The solution which are obtained from the thrust interval [30,35] mN and [50,55] mN are highlighted
in red and green respectively.

selecting a subset of the acceptable solutions.

Two subsets of acceptable solutions are displayed in Figure 9 after fixing the value of thrust
values. The solutions for T = [30,35] mN and T = [50,55] mN are highlighted in red and green,
respectively. The final values of Ω are evenly distributed among the solutions with low thrust mag-
nitudes, and they are concentrated in the upper part of the final inclination interval. In contrast,
the solutions with high-thrust magnitudes are concentrated in the lower part of the final inclination
interval. The evolutions over time of the semimajor axis, eccentricity, inclination, and Ω for all
the acceptable solutions (in grey) are displayed in Figure 10. Among all the solutions, the optimal
solution can be chosen in terms of final inclination (in red) and optimal ∆v (in green). The desired
inclination and Ω values are represented by the black dashed line, and the tolerances on those values
are constrained by the red dashed lines in the lower plots.

The evolutions of the semimajor axis, inclination, and Ω from HAMO to LAMO are shown in
Figure 11. The descent is initiated from 1000 km, leading to a decrease in the semimajor axis
value, while the inclination and Ω remain approximately constant, except for small oscillations.
After 27 days, the spacecraft is captured into 1:1 GTR, and the semimajor axis oscillates around
the location of the resonance, i.e. 550km. Over time, the amplitude of inclination value oscillations
increases, and the average value linearly decreases. Additionally, the value of Ω decreases as time
progresses. After 38 days, the first maneuver is performed by increasing the value of the thrust
magnitude to 35 mN, enabling the trajectory to escape from the resonance. As the spacecraft departs
from the resonance, the semimajor axis value decreases until the 400 km mark value is reached.
The inclination value oscillates while maintaining an approximately constant average value, and
the Ω value continues to decrease. Once the semimajor axis reaches the altitude of LAMO, the
thrust is deactivated. Consequently, the average values of the semimajor axis and inclination remain
constant, while the average value of Ω continues to decrease over time.
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Figure 10: Propagation of the different solutions that satisfy the operational and geometrical con-
straints. In the upper left plot, the black points indicate the initial conditions. In all the plots the
back stars represent the final values of each parameter at the end of the descent. In the lower plots,
the desired final values of the inclination and Ω are represented by the black dashed lines and their
respective tolerances are indicated by the two red dashed lines.

CONCLUSION

In this paper, the previous research on escape from 1:1 GTR is extended. A workflow for design-
ing transfer orbits that utilize the gravitational perturbation from the 1:1 GTR during the approach
phase is presented. The semimajor axis, inclination, and Ω are primarily affected by this resonance.
Notably, the effect on the inclination can be systematically leveraged, as the inclination value re-
mains nearly constant after the escape maneuver. The workflow uses a database of all possible so-
lutions and a subset of it is chosen depending on the geometrical constraints, in terms of inclination
and Ω, and the operational one, in terms of thrust magnitude. A case study utilizing this workflow
is presented, and the final approach trajectory is obtained. In this trajectory, the optimization of the
final value of the inclination is chosen, aiming to make it as close as possible to the desired value.
Reducing maneuvers minimizes the inherent uncertainties associated with each course adjustment,
thereby ensuring more accurate predictions of spacecraft state and trajectory. Therefore, implement-
ing strategic mission planning, robust control mechanisms, and optimized flight paths that minimize
the need for constant corrections is a beneficial approach. This strategy not only enhances mission
reliability and success but also significantly contributes to the effective and efficient execution of
space exploration initiatives. The utilization of the resonance is shown to facilitate, especially plane
change maneuvers, resulting in cost savings for the mission.
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Figure 11: Orbital elements propagation of Dawn’s complete descent trajectory.
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