
Robust Optimisation of Coordinated Collision Avoidance Manoeuvres in
Large Constellations

Massimiliano Vasile∗Luis Sanchez†

This paper presents some preliminary results on the coordinated planning of collision avoidance manoeuvres
in two different cases: two or more satellites belonging to the same constellation manoeuvering to avoid the
collision with an inert object and two or more satellites belonging to different constellations manoeuvering
to avoid a collision. In both cases we consider an uncertainty in the correct calculation of the probability
of collision and we plan robust manoeuvres that account for both aleatory and epistemic uncertainty. A
Multi-Criteria Decision Making process is then used to select the optimal strategy in both cases
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1. Introduction

The paper explores the case in which multiple satel-
lites in a constellation need to plan and execute a col-
lision avoidance manoeuvre (CAM) in the same time
window. The normal approach for a single CAM ex-
ecution is to avoid a single collision and then imple-
ment a minimum number of manoeuvres to recover
the orbital position and the overall figure of merit of
the constellation (or global performance index).

When multiple satellites need to manoeuvre one
can envisage the occurrence of more complicated sce-
narios: the CAM executed by each satellite needs
to avoid more than one collision and avoid collisions
with other satellites in the constellation; the uncer-
tainties associated to each of the conjunctions inter-
sect (or satellites need to avoid a cloud of debris);
if a number of satellites needs to manoeuvre, a new
configuration of the whole constellation, that corre-
sponds to a different value of the performance index,
might be more cost effective; members of different
constellations need to manoeuvre to avoid a collision
and a number of subsequent conjunctions.

In all these scenarios the planning and execution of
collision avoidance manoeuvres across the constella-
tions need a level of coordination. More so, if the
CAMs are generated autonomously on board each
satellite, there is the need to account for post-CAM
conjunctions and recovery manoeuvres.

The paper builds upon previous work by the au-
thors on the robust optimisation of CAMs for a sin-
gle satellite both in the case of single and multiple-
encounters.8,9, 12 This body of work led to the devel-
opment of the CASSANDRA (Computational Agent
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for Space Situational Awareness aNd Debris Reme-
diation Automation) framework. Within CASSAN-
DRA an Intelligent Decision Support System (IDSS)
is coupled with a Robust Bayesian State Estimation3

and a CAM optimisation modules to make robust
decisions on the planing and execution of collision
avoidance manoeuvres.8 The state estimation mod-
ule computes both the probability of a collision and
an associated confidence measure that depends on the
uncertainty in the quality of the measurements. The
IDSS then makes decision accounting for both the
probability of collision and the associated confidence
level. If a CAM is scheduled, an optimal solution is
computed by solving a robust optimisation problem.

In this paper we propose an extension of this frame-
work under the assumption that some satellites in the
constellation need to individually plan and execute
and optimal manoeuvre but all the manoeuvres need
to be coordinated and need to be optimal in some
sense.

The current implementation of CASSANDRA as-
sesses the risk of multiple subsequent conjunctions
and the associated confidence interval by merging in
a single quantification of uncertainty the uncertainty
associated to all the encounters with the same object
or with different objects.8 Either an impulsive or a
low-thrust manoeuvre is then planned by solving a
min-max problem that reduces the maximum risk of
a collision. If it is not possible to reduce this risk
below an acceptable level with a single manoeuvre,
multiple manoeuvres are implemented, one per con-
junction. In this scenario a single satellite is expected
to plan all the manoeuvres and all other objects are
assumed to be inactive.

In this paper we consider the case in which the
two or more satellites need to plan a manoeuvre but
the decision has to be coordinated either in the case
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the satellites belong to the same constellation (col-
laborative scenario) or belong to different constella-
tions (competitive scenario). In the former case the
assumption is that the cost of the execution of a ma-
noeuvre affects a global performance index for the
whole constellation. This scenario can be formulated
as a classic Multi-Criteria Decision Making (MCDM)
problem where each manoeuvre is the solution of a
min-max problem.13 On the other hand, if the mem-
bers of two constellations need to manoeuvre then
the problem becomes a game theoretic one in which
each satellite needs to minimise its cost and risk with-
out knowing what the other satellites is going to do.
This second scenario extends the standard MCDM to
incorporate multiple decision makers with conflicting
goals.

2. Robust CAM Optimisation

This section presents the approach to calculate an
optimal CAM and decide on its execution. The ap-
proach was developed in9 and is based on a linear
model proposed in18 to compute the impulsive ma-
noeuvre to achieve the desired variation of the rel-
ative position between satellite (chaser) and debris
(target), which experience a close encounter (Fig. 1a).

Given a manoeuvre δv, at time tm, expressed in
a spacecraft centred tangential, normal, out-of-plane
reference frame, <T,N,H>(Fig. 1c), the correspond-
ing variation of position δxb at time tc on the impact
plane (or b-plane) of a piece of debris, <ξ, η, ζ>, is:

δxb = [δξ δη δζ]T = Tδv = BA(tm, tc)Gδv [1]

where matrix T is the product of three matrices: i) G
relating the instantaneous change in orbital parame-
ters due to the change in velocity at the time of exe-
cution of the manoeuvre, ii) A(tm, tc) being the tran-
sition matrix between the variation of the Keplerian
elements at manoeuvre, tm, and the variation of the
relative position at the time of expected collision, tc,
expressed in a radial, transversal, out-of-plane refer-
ence frame, <R,T,H>, iii) and B the rotation matrix
between <R,T,H> and the impact plane reference
frames. More details can be found in9 and.17

The direction of the impulse can be defined by the
two angles ϕ ∈ [−π, π] and ψ ∈ [−π/2, π/2] (see
Fig. 1c). The relation between [ϕ, ψ] and the com-
ponents on the <T,N,H > is:

ϕ = arctan ((v1 × δv) · u1h,v1 · δv)
ψ = tan−1

[
(δv·u1h)∥δv×u1h∥
δv2−(δv·u1h)2

]
, [2]

with u1h the normal to the primary object’s orbital
plane.

Note that the model in Eq. (1) assumes Keple-
rian motion. The orbital parameters and positions
included in the expressions of the matrices refer to
the manoeuvrable satellite (the chaser) while the im-

pact plane reference frame <ξ̂, η̂, ζ̂> is centred at the
secondary object (the target), and is defined as:

η̂ =
v1 − v2

∥v1 − v2∥
, ξ̂ =

v2 × η

∥v2 × η∥
, ζ̂ = ξ̂ × η̂ [3]

where v1 is the velocity vector of the chaser and v2

the velocity vector of the target (see Fig. 1b).
Taking re0 = [ξ0, 0, ζ0]

T , the initial unmodified rel-
ative position between both objects projected on the
impact plane defined above, with combined covari-
ance matrixΣ, the optimal CAM can be computed so
that the Probability of Collision (PoC) is minimised.
The combined covariance matrix is the sum of both
object’s position covariance matrices projected on the
impact plane of the target: Σ = Σ1Bp

+Σ2Bp
.

We assume that the manoeuvre introduces a neg-
ligible uncertainty and that it only translates rigidly
the uncertain ellipse on the impact plane, defined by
the combined covariance matrices, not modifying its
shape, size or orientation. This means that the rel-
ative position of the modified orbit will present the
same covariance matrix Σ, with miss distance equal
to re = re0 + δxb, and δxb given by Eq. (1). Further-
more, we introduce the short-encounter assumptions
defined in:10 i) rectilinear relative trajectories, ii) no
uncertainty in the velocity vector, iii) the uncertainty
in the position of the two objects is Gaussian and
uncorrelated, iv) and the shape of the two objects is
spherical. Under these conditions, the PoC compu-
tation can be approximated as the 2D integral:

PC =
1

2π
√

∥Σ∥

∫
B((0,0),R)

e
− 1

2

(
(b−re)

TΣ
−1

(b−re)
)
dξdζ

[4]
where b = [ξ, ζ]T , the two component vector re is
equal to the first and third components of re, and Σ
is a 2×2 matrix equal to the first and third elements
of the first and third rows of Σ:

Σ =

[
σ2
ξ σξζ
σξζ σ2

ζ

]
,

Then, in order to minimise the PoC, one needs to
solve the following maximisation problem:

maxδv
(
δvTT δv + 2re0Σ

−1QTδv
)

s.t.
||δv|| ≤ δvmax

, [5]
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(a) (b)

(c)

Fig. 1: (a) General configuration of the encounter. Blue: nominal primary satellite orbit, green: nominal
secondary satellite orbit, purple: manoeuvre and nominal primary orbit after CAM. Red: encounter
position. The encounter and manoeuvre positions are detailed on the subsequent figures. (b) Encounter
configuration. Blue: primary satellite (trajectory and orbital velocity, v1), green: secondary satellite
(trajectory and orbital velocity, v2), black: miss distance (re), orange: relative velocity, purple: impact

plane and its reference frame < ξ̂, η̂, ζ̂ >. (c) Manoeuvre position. Blue: primary orbit (trajectory and
orbital velocity, v1), orange: impulsive manoeuvre (∆v), red: angles between orbital velocity and impulse
(ϕ in plane, ψ out of plane), black: primary object’s <T,N,H> reference frame.

where T = QTTΣ−1TQ and

Q =

 1 0 0
0 0 0
0 0 1


In the following, however, we first fix the magni-

tude of the manoeuvre δv0 and solve the simplified

3
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problem:
maxδv

(
δvTT δv

)
s.t.
re ·Tδv > 0

, [6]

whose solution δvopt is the vector parallel to the eigen-
vector, s1, conjugate to the maximum eigenvalue of
the matrix T with magnitude δv0:

δvopt = δv0s1 [7]

2.1 Computation of the Probability of Collision under
Epistemic Uncertainty

When the covariance matrix Σ or the miss dis-
tance are not precisely known the PoC is computed
with a degree of uncertainty. This epistemic uncer-
tainty in the covariance and miss distance can be
due to multiple sources of information providing dif-
ferent values of the covariance or can come from a
poor knowledge of the measurements or propagation
model. As presented in12 this epistemic uncertainty
can be modelled with Dempster-Shafer theory of ev-
idence (DSt).11

The idea proposed in,12 is to use DSt to com-
pute the level of confidence in the correctness of the
value of the PoC, given the available evidence on the
sources of information. Each component of the co-
variance, [σ2

ξ , σ
2
ζ , σξζ ], is modelled with one or more

intervals and so is the mean value of the relative posi-
tion [µξ, µζ ]. A basic probability assumption (bpa) is
associated to each interval. Intervals and associated
(bpa) can be derived, for example, from a time series
of Conjunction Data Messages (CDMs) or directly
from the raw observations.

Given the intervals and associated (bpa), we com-
pute the cross product of all the intervals, under the
assumption of epistemic independence. Each prod-
uct of intervals is a Focal Element (FE), and the
associated (bpa) is the product of the bpas of the
individual intervals. With the focal elements we can
compute the Belief (lower probability) and Plausi-
bility (upper probability) that the PoC associated to
a given conjunction event is correct. In the follow-
ing we call the uncertainty space, U, and the uncer-
tain parameter vector, u = [µξ, µζ , σ

2
ξ , σ

2
ζ , σξζ ]

T . We
then want to compute the Belief and Plausibility of
Φ = {PC |PC ≥ PC0} where PC0 is a desirable value.
For more information please refer to.12

2.2 The Min-Max CAM Optimisation Problem

When epistemic uncertainty is considered, the PoC
is not defined by a single ellipsoid but by families of
ellipsoids corresponding to families of covariances and
mean values. Thus, instead of having a single uncer-
tain ellipse on the impact plane one has to consider

families of uncertain ellipses each of which has to be
displaced by a manoeuvre. This means that an op-
timal and robust manoeuvre has to displace all the
ellipses at once.

Fig. 2 presents this situation where two families of
uncertain ellipses (red and green) are shown on the
impact plane, against a single ellipse (blue) obtained
by combining the information from both sources and
considering solely aleatory uncertainty.

Fig. 2: Encounter geometry accounting for epistemic
uncertainty under DSt. Two sources of informa-
tion are considered. Aleatory and epistemic un-
certainty is included. Source 1 (red) is nine times
more reliable than Source 2 (green). The maxi-
mum and minimum PoC associated to each family
of ellipses is: [0.3356, 0.3615] for Source 1 and [0.0,
0.0] for Source 2. The Hard Body Radius (HBR),
is shown in black, and equal to 5m. The uncertain
ellipse combining information form both sources is
shown in blue, with PC = 0.00158.

The presence of families of ellipses means that the
optimal CAM has to be able to minimised the PoC
corresponding to the worst-case ellipse, which is the
uncertain ellipse leading to the highest value of the
PoC. Thus one has to solve the the following min-max
problem:

minδv maxu∈Ωu PC

s.t.
re · δv > 0

, [8]

which has to be solved over the whole set of FEs.
Similarly to what proposed in Filippi1 for the so-

lution of general min-max optimisation problems, we
propose the following iterative process.

First we compute for each FE the value of the un-
certainty vector that gives the highest PoC. We then
build the matrix S = Σ−1

1 +Σ−1
2 + ... given by the

sum of all the worst-case ellipses for all FEs. From S
we compute T and then use Eq. (7) to compute the
manoeuvre.

Since the implementation of a manoeuvre displaces
all the ellipses, the process has to be repeated until
there is no variation of the PoC.
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Up to this point, the optimisation of the manoeu-
vre assumed a constant magnitude, δv0. However,
this can lead to situations where the correction of
the orbit is overestimated, with a reduction of the
PoC several orders of magnitude below the minimum
safety threshold. In such situation, a smaller impulse
could reduce the risk to acceptable levels without an
excessive cost of the manoeuvre.

Assuming the maximum capacity of the thruster
is defined by δ vmax, t he optimum value o f t he mag-
nitude will be the minimum one that allows reduc-
ing the worst-case scenario PoC below the selected
threshold, PC0:

min ∥δv∥
s.t. PC < PC0 ,

[9]

Once the optimal direction is computed with Eq. (7),
the minimum δv can be simply derived from the so-
lution of problem (9). However, since the magni-
tude of the impulse affects the deflection of the orbit
and, subsequently, the worst-case scenario, the op-
timal magnitude computation has to be integrated
within the min-max optimisation algorithm.

In summary: an outer loop computes the manoeu-
vre direction at constant magnitude, after comput-
ing the optimal direction, dopt with Eq. (7), the new
wort-case ellipse is computed, if PC < PC0 an inner
loop reduces the magnitude of the impulse, with a
simple bisection method, till PC = PC0, recalculat-
ing the worst-case ellipse at each iteration of the inner
loop.

2.3 Multi-encounter CAM Optimisation

A multiple encounter is a series of successive close
conjunctions between one satellite and one or more
space objects, whether operational satellites or pieces
of space debris. In CASSANDRA we considered the
case in which a given CAM has to ensure the reduc-
tion of the risk of collision at all conjunctions in a
given sequence.

In this case a single manoeuvre is optimised by
solving problem Eq. (8) but with Ωu the space of
the epistemic parameters of all the encounters and
PC,max = maxi PC,i the maximum probability of col-
lision among all the encounters. Thus the worst case
PC is optimised over all the families of covariance of
all the encounters in a single min-max optimisation
loop.

3. MCDM Methodology

In the previous section we presented a methodol-
ogy to compute robust CAM in the case of single or

multiple-encounters. The outcome of this methodol-
ogy is a number of possible alternative CAMs. Once
multiple alternative CAMs are available a decision is
required to execute the best CAM with respect to
existing operational constraint and other optimally
criteria on top of cost and risk. The decision depends
on the number of players, or agents, that are respon-
sible to make that decision.

When all agents involved in a decision-making pro-
cess are known to collaborate, that is, will agree on
the decision to be taken to achieve a common goal,
the problem can be addressed with Multi-Criteria
Decision-Making (MCDM) methods. This is the case
when two or more satellites belonging to the same
constellation have to manoeuvre within the same time
frame maintaining the figure of merit of the constel-
lation.

MCDM is a branch of decision making which pro-
vides a compromise solution (in the form of a sorted
list) of alternatives evaluated across a set of, usually
contradictory, criteria.15 Hence, there are three type
of parameters that should be defined in order to ap-
ply the different MCDM methods: the alternatives,
the criteria and the weight of the criteria:

• Alternatives are all possibles responses to a given
problem built by combining the different an-
swers of all agents.

• Criteria, are quantities used to evaluate the suit-
ability of the alternatives to optimise different
aspects related with the problem: risk, cost...
They can be beneficial, if they want to be max-
imised, or non-beneficial, when they want to be
minimised.

• Weights, are associated to criteria and are used
to assign more importance to certain criteria
than others, enabling to address the problem
from different perspectives. From a multi-objective
point of view weights are used to scalarise the
vector of decision criteria and allow a partial
ranking of the alternatives.

In this paper, we proposed a method to priori-
tise the avoidance manoeuvre strategy alternatives
for satellites belonging to the same constellation ac-
cording to a number of criteria.

The different alternatives are defined by the fol-
lowing parameters: the CAM execution position for
each satellite, θmi, and the strategy followed after the
CAM after the encounter, si: not performing any fur-
ther action and remaining in the new orbit (strategy
0), execute one manoeuvre to return to the original
orbit (strategy 1), or execute two manoeuvres to re-
turn to the original position within the original orbit,
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keeping the relative phase with the other satellites in
the same orbital plane.

Once the alternatives are defined, the next step is
to define the criteria to evaluate the alternatives. We
propose 4 criteria with information of all satellites
involved in all events, and other 2 criteria per each
encounter. Thus, in the event of two encounters, it is
a total of 8 criteria. They are detailed below:

• Total number of manoeuvres, including all satel-
lites. This quantifies the inherent risk of exe-
cuting a manoeuvring, assuming that the higher
the number of manoeuvres, the higher the risk.

• Total cost of the manoeuvre, measured as the
sum of all δv, both in the CAM and in the
restoring strategy:

δvq = Σi(δvi +Σkδv
−1
ik ), [10]

where k the recovery strategy, i the encounter,
and q the alternative. Note, if Low-Thrust is
considering, the manoeuvre cost is measured as
the equivalent δv.13

• The total manoeuvre cost of each individual
satellite: δvqi = δvi + Σkδv

−1
ik . This criteria

will appear as many times as satellites in the
constellation executing at least one manoeuvre.
This criteria is included to quantify possible op-
erational constrains as it can be the limitation
of manoeuvres in a single satellite due to fuel
shortage (i.e at the end of life). It can be tuned
according to the necessities by the appropriate
weight.

• Total time of the operation, measured as the
time between the first manoeuvres executed by
any satellite and the last manoeuvre executed
by any satellite. This criterion quantifies the
cost of the operation, assuming it is directly
proportional to the time of operation: the longer
the time, the longer the operators have to put
specific resources to the operation.

• For each encounter, the reduction of probability
of collision due to the CAM, quantified as:8

if PCi ≥ P ∗
Ci RPCqi = 0,

if PCi ≤ PC0 RPCqi = 1,

else RPCqi =
(

log(PCi)−log(P∗
Ci)

log(PC0)−log(P∗
Ci)

)16

,

[11]
where P ∗

Ci is the probability of collision for en-
counter i if no CAM is executed, and PC0 is the
constellation probability of collision threshold.

• Constellation’s figure of merit. In this paper,
this quantity has been modeled based on the to-
tal area covered by the constellation assuming
sensors mounted on each satellite and pointing
to Nadir. The figure of merit is defined as the
integral over the considered period of time of
the deviation of the total area covered by the
constellation with respect the nominal configu-
ration:

CFMq =

∫ tf

t0

∥Aq(t)−A0(t)∥ dt, [12]

where Aq(t) is the area covered at instant t by
the constellation in alternative q, and A0(t) the
area covered by the constellation at the same
time if no manoeuvres are executed. Note that
the area is made dimensionless by normalising
with respect to the Earth’s surface. Fig. 3 in-
cludes ∥Aq(t) − A0(t)∥ for two examples: one
where all satellites return to the original posi-
tion and another where none does.

Having defined the alternatives and criteria, it is
possible to build the Alternative-Criteria matrix:

T =


t11 t12 ... t1N
t21 t22 ... t2N
... ... ... ...
tM1 tM2 ... tMN

 , [13]

where tij is the value of alternative i under criteria j.
However, most of the MCDM methods require this

matrix to be normalised column-wise and assign all
criteria to same categories: beneficial or non-beneficial.
There are different normalisation techniques that al-
lows to build a Normalised Alternative-Criteria ma-
trix with all criteria beneficial or non-beneficial. In
this paper, we have implemented two of them:16

• Linear normalisation, which scales values be-
tween 1 and 0, assigning always 1 to the best
alternative within each criteria and scaling the
rest alternatives accordingly.{

if Beneficial tij = tij/maxi(tij)
if No beneficial tij = 1− tij/maxi(tij)

[14]

• Vector normalisation, which also scales values
between 1 and 0, but uses the magnitude of the
”vector” of alternative under each criteria: if Beneficial tij = tij/

√
ΣM

i=1t
2
ij

if No beneficial tij = 1− tij/
√
ΣM

i=1t
2
ij

[15]
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(a) (b)

Fig. 3: Absolute difference, as a function of time, of area covered by constellation in alternative one and
constellation with no manoeuvres: ∥Aq(t)−A0(t)∥. a) No returning manoeuvre for any satellite, b) both
satellites returning to position.

Note that different normalisations may lead to differ-
ent rankings of the alternatives.

The weights are the final parameters to be defined
in a MCDM problem. The distribution of weights
completely depends on the problem and the specific
situation. Then only constraint on the distribution is
that the sum of all the weights has to be 1. In the
problem treated in this paper, it would be the oper-
ator who decides this distribution, assigning a higher
relative weight to those criteria that are desired to be
more relevant, i.e. if the impact of loosing a satellite
is high (small number of satellites in a constellation,
little number of back up satellites or huge impact of
fragment in orbit), the criterion measuring the en-
counter risk may be assigned a higher weight; or if
one of the satellites has little remaining propellant,
the criteria measuring the cost of the manoeuvre can
be assigned a higher weight. More about weight selec-
tion will be presented in Section 4. Note that chang-
ing weights means converging to potentially alterna-
tive Pareto optimal solutions. A linear combination
of criteria implicitly implies convexity of the Pareto
front, and assumption that is not always satisfied.

With all the MCDM parameters defined (normalised
Alternative-Criteria matrix and weight distribution),
it is possible to obtain a raking of the alternatives.
Different methods allows one to rank alternatives.4

In this paper we have implemented four methods:
weighted summethod (WSM),6 a modifiedWSM (MWSM),4

weighted product method (WPM),14 and TOPSIS
(Technique for the Order of Preference by Similar-
ity to the Ideal Solution).2

Each combination of normalisation and MCDM
methods may lead to a different ranking of the al-
ternatives, which mean, we can have up to 8 different
best alternatives. We propose also a method to com-
bine the information provided by each combination.

An aspect that is taken into account is the fact that
an alternative appearing among the top 3 in all rank-
ings may be a better alternative than one that ap-
pears first in one ranking and does not appear again
in the top positions in the other rankings. Thus, we
count how many times each alternative appears in the
gtop top values of all the rankings, being the alterna-
tives sorted according to the number of appearances.
Note that the number gtop, may influence the final
combined ranking.

3.1 Game Theoretic MCDM

When the agents are not expected to collaborate,
but rather they are competitors, the outcome of the
decision may not be the optimal one for every agent.
This is the case, for example, when the encounter
involves to satellites operated by different operators.

In this situation, the method proposed before would
not be adequate to find an optimal strategy for each
of the operators. Thus, the problem has to be refor-
mulated as a game theoretic one where each satellite
has to optimise their own criteria without necessar-
ily know the action taken by the other satellite. The
problem of two manoeuvrable satellites avoiding the
same encounter can be formulated as a Multi-Criteria
Multi-Decision Makers (MCMDM) problem, where
several agents can choose among different alternatives
conditional the alternatives of the other agents.5

While in the collaborative case, optimal decisions
were derived from the Alternative-Criteria matrix, in
a game theoretic problem, decision are derived from
the Game Matrix. From the game matrix one can
assess which are the best outcomes of a given strategy.
This Matrix quantifies the value of an alternative for
one agent, given the alternatives chosen by the other
agents. In the following, we summarise the method
to obtain this matrix.
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As before, the first step is to obtain the alter-
natives and define the criteria for each agent. For
the rest of the paper, without loss of generality, we
are going to assume only two agents, that is, two
satellites involved in the encounter. For each of the
agents, the alternatives are obtained by changing the
CAM execution position (and associated magnitude):
θm1 ∈ Θm1 and θm2 ∈ Θm2, with Θm1 ̸= Θm2 in gen-
eral.

Each agent can define its own criteria. For the
scope of this paper, but without loosing generality,
both agents will consider the same two criteria: risk
reduction and cost of the manoeuvre, defined as be-
fore. Although the criteria may be the same, the pa-
rameters defining the manoeuvres (magnitude of the
impulse) or the risk (PoC threshold) can be different
for each agent.

Thus, an Alternative-Criteria matrix as a function
of the other agent’s answer can be defined for each
agent:

A =


a111 ... a1C1 a112 ... a1C2 ...
a211 ... a2C1 a212 ... a2C2 ...
... ... ... ...
aA11 ... aAC1 aA12 ... aAC2 ...

 ,
[16]

where aijk is the value of alternative i of decision-
maker A under criteria j, given decision-maker B
chooses its alternative k. A similar matrix, B, is
build for the other decision-maker.

In order to build the Game matrix, it is neces-
sary to integrate the criteria of the alternatives, given
the other agent’s answer.19 We extend the approach
propose in the previous section: each ”submatrix”
(given the other’s agent alternative) is an Alternative-
Criteria matrix exactly as the one obtained in the
collaborative case. Thus, for each submatrix of each
agent, we can apply the method explained in the
collaborative case to either evaluate each alternative
considering all the criteria or to rank the alternatives
(if we want to build the ordinal Game matrix5):

C =


c11 c12 ... c1N
c21 c22 ... c2N
... ... ... ...
cM1 cM2 ... cMN

 , [17]

where cij is either the preferred order or the value
(weather building or not the ordinal matrix) of the
ith alternative of agent A, having integrated all its
criteria, with B choosing its alternative j. Similarly,
a matrix D can be obtained for the other decision-
makers. Combining the both integrated Alternative-
Criteria matrices, C and D, the Game matrix can be

easily obtained:

Z =


z11 z12 ... z1N
z21 z22 ... z2N
... ... ... ...
zM1 zM2 ... zMN

 , [18]

where zij = (cij , dij)
From this matrix, it is possible to apply different

stability definitions to find those outcomes (combi-
nation of alternatives of each agent) that are optimal
for both agents. In this paper, we have implemented
the Nash Stability.7 According to this method, the
equilibrium points in the matrix, if any, are those
where, given the other agent’s alternatives, moving
to another alternative implies a loss:

zij ≡ equilibrium point ⇐⇒
{
cnm = maxi(cim)
dnm = maxj(dnj)

.

Since different rankings can be obtained by dif-
ferent combinations of normalisation techniques (lin-
ear or vector normalisation) and MCDM methods
(WSM, MWSM, WPM, TOPSIS), the Nash Stability
is computed for each of them, with the preferred out-
come being the one that appears as an equilibrium
point more frequently. The final result is presented
with a matrix NE:

NE =


n11 n12 ... n1N

n21 n22 ... n2N

... ... ... ...
nM1 nM2 ... nMN

 , [19]

where nij indicates the total number of times the
outcome conformed by the ith alternative A and the
jth alternative B has been identified as an equilib-
rium point after combining criteria with the different
combinations normalisation techniques and MCDM
methods.

4. Case Studies

In this section, we present two examples to show
the decision-making process in the collaborative and
in the competitive case.

4.1 Collaborative CAM Planning

This example shows the case where two satellites
belonging to the same constellation faces an encounter
with an external object in the same time interval.
The satellite are part of a Walker constellations: 60:18/3/1,
with semimajor axis (SMA) of 7100 km and circular
orbit. In order to compute the constellation metric,
each satellite is assumed to be equipped with a 60 deg
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aperture Nadir-pointing sensor. The piece of debris’
orbital parameters at the initial time, t0 = 0s are:

kep2(t0) = [6944.26, 0.031016, 141.04, 335.27, 116.15, 47.03],
[20]

in km and deg. Keplerian motion is assumed for
all objects. The time interval of analysis is 1 day
(tf = 86400s). The first e ncounter t akes p lace at
t1 = 43200s after the initial time, and the second
encounter, involving a satellite in a different orbital
plane, at t2 = 64800s after t0.

The satellites of the constellation are assumed to
be perfectly known. The state vector of the external
object is affected by a leatory u ncertainty, expressed
in the object’s <R,T,H>reference frame at t0:

Σ2,rth(t0) =

0.1042 0 0
0 0.5562 0
0 0 0.1392

 km2.

Assuming two sources (a and b) provides information
about the object, there are two components of epis-
temic uncertainty. It is quantified through an epis-
temic parameter, given as intervals for the miss dis-
tance and covariance, that scale up and down the
value of the aleatory uncertainty,3 meaning the un-
certainty ellipse in the impact plane becomes a family
of ellipses per source of information. In this example,
only the position covariance is affected by epistemic
uncertainty:

λσ,a = [1, 4]

λσ,b = [1/5, 1/2]

Thus, the uncertain geometry of the encounters is
defined by the following two families of distribution,
defined by the intervals in Table 1.

The probability of collision is computed assuming
the short-term encounter hypothesis,10 using Eq. (4),
with an HBR = 10 m.

For each of the satellites involved in a close en-
counter, the robust optimal CAM is computed at 6
different positions. Including the alternative of not
executing a CAM by one of the satellites, the space
of CAM execution position (measured as distance to
the encounter) for both objects is Θm = {0, pπ} rads,
with p = 1, 3, .., 11. The magnitude of the impulse
has been set fixed an equal to dv = 10 cm/s and the
constellation PoC threshold is Pc0 = 10−6.

Three recover strategies has been considered: s0)
no execute any action after the encounter, dv−1 = 0,
s1) executing one manoeuvre half a revolution after
the encounter to return to the original orbit, and s2)
execute one manoeuvre half an orbit after the en-
counter to enter in a phasing orbit and another ma-
noeuvre after on period to recover the phase in the
initial orbital plane, dv−1 = dv−1

1 + dv−1
2 .

For each manoeuvre position, there are three re-
turning strategies, except for θm = 0 that accepts
only one strategy (s0), which makes 22 options per
satellite. Thus, for each first encounter alternative
there are 22 options for the second encounter, mak-
ing a total of 484 alternatives. Each alternative can
be identified according to Table 2 or with:

N = N1(M2 · S2 + 1) +N2

Ni =

{
if ni = 0 → Ni = 0

else Ni = (ni − 1)Si + sij + 1

, [21]

where Ni is the number of the alternative, ni is the
argument of θmi in Θmi for encounter ”i”, sij is the
jth returning strategy for encounter ”i”, Si is the to-
tal number of returning strategies considered for en-
counter ”i”, andMi is the number of CAM execution
positions in Θmi.

Fig. 4 shows the behaviour of the different param-
eters used in the criteria to evaluate the alternatives
as a function of the alternatives.

Eight different subscenarios has been studied. Each
of those scenarios gives more importance to one or
more criteria than the others, by assigning different
relative weights Table 4. For each subscenario, each
possible ranking has been obtained by combining the
results obtained by the combination of two normalisa-
tion techniques (linear and vector normalisation) and
four MCDM methods (WSM, MWSM, WPM, TOP-
SIS) with gtop = 5, as explained in Section 3. Table 3
includes the ranking of Subscenario 0 for each com-
bination of MCDM method and normalisation tech-
nique before and after combination with gtop = 5.
The final ranking with the 5 better alternatives for
each subscenario is presented in Table 5.

• Subscenario 0: Criteria equally weighted. Al-
ternative most similar to Subscenario 1, where
PoC is preferred, but with elements rank in the
top positions also belonging to other scenarios
where other criteria are prioritised. Basically,
it is an equilibrium of criteria, not giving as
much information as the rest of the subscenar-
ios. The preferred alternatives corresponds to
situations where the first satellite smanoevures
0.5 revolution before the encounter (θm1 = 0.5
rad) without returning, s1 = 0 and the second
satellite at θm2 = 6.5 rad, which the second
satellite no returning, s2 = 0 (alternative 42)
or returning also to the original orbit, s2 = 1
(alternative 43). Same alternatives, but with
first satellite returning to the original orbit are
also well ranked (alternatives 63 and 64).

• Subscenario 1: Importance given to PoC. The
preferred options are a combination of late ma-
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Table 1: Uncertain encounter geometry for both encounters with 2 sources providing information. Upper
and lower bound of the components of miss distance and covariance matrix in the impact plane.

Encounter 1 Encounter 2
Component Source 1 Source 2 Source 1 Source 2

µξ (km) [0.02855,0.08342] [1.263·10−3,0.01529] [-0.1065,5.970·10−3] [-7.415·10−3,8.664·10−3]
µζ (km) [-0.6327,0.7230] [-0.2317,0.2542] [-0.7490,0.6741] [-0.2729,0.2292]
σ2
ξ (km2) [0.1208,0.4353] [0.02530,0.05332] [0.4547,1.2045] [0.07724,0.1487]

σ2
ζ (km2) [140.265,505.054] [29.311,61.202] [154.274,560.924] [32.537,68.346]

σξζ (km2) [-14.586,-4.0744] [-1.8012,-0.8572] [3.0797,10.613] [0.6213,1.3313]

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Value of variables used to compute the MCDM criteria as a function of the alternative. a) Probably
of collision of first encounter, b) probability of collision of second encounter, c) Total δv of the alternative,
d) total time of the operation, e) total number of manoeuvres, including CAM and returning manoeuvres
for both encounters, e) constellation metric.
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Table 2: Alternatives in the collaborative case, as
function of CAM execution position (θmi) mea-
sured as distance in rad to the encounter, and the
returning strategy (sij ).

# Alter. θm1 Str. 1 θm2[rad] Str. 2

0 0 s10 0 s20
1 0 s10 0.5 s20
2 0 s10 0.5 s21
3 0 s10 0.5 s22
... ... ... ... ...
21 0 s10 6.5 s22

22 0.5 s10 0 s20
23 0.5 s10 0.5 s20
24 0.5 s10 0.5 s21
25 0.5 s10 0.5 s22
... ... ... ... ...
43 0.5 s10 6.5 s22

44 0.5 s11 0 s20
45 0.5 s11 0.5 s20
46 0.5 s11 0.5 s21
47 0.5 s11 0.5 s22
... ... ... ... ...
65 0.5 s11 6.5 s22

... ... ... ... ...
483 6.5 s12 6.5 s22

noeuvres in the first encounter and early ma-
noeuvres in the second one: second satellite
performing the manoeuvre at θm2 = 6.5 rad,
without returning manoeuvre, s2 = 0 or return-
ing to the original orbit, s2 = 1, with satellite
A maneuvering late, θm1 = 0.5 rad, without
difference among the returning criteria: s1 = 0
first (alternatives 41 and 42), s1 = 1 later (al-
ternatives 63 and 64) and s2 = 2 afterwards
(alternatives 85). This combination of CAM
execution position provides the smallest PoC
for both encounters, minimising other criteria
as time of operation, the number of manoeu-
vres or the total δv required.

• Subscenario 2: Importance given to manoeuvre
cost. This is the only subscenario presenting a
more challenging result to be interpreted. For
the first encounter, in general, the CAM of the
top alternatives presents a lower δv, which is
not the case for the second encounter. Overall,
the alternative are within the lower range of to-
tal δv (see Fig. 4), but they are not the lowest.
This could be due to the (small) influence of
other criteria: if some of the other criteria, al-

though with small weight, commonly preferred
an alternative with a slightly higher δv, it can
explain why not just the alternatives with the
lowest total impulse magnitude are selected. In
any case, the preferred alternative is no satellite
manoeuvring (alternative 0) or only the second
one, the closest to the TCA, θm1 = 0.5 rad,
without returning strategy, s1 = 0 (alternative
1). The other strategies (41, 42, 64) are asso-
ciated with alternatives with the first satellite
manoeuvring late (θm1 = 0.5 rad) and the other
performing the CAM early (θm2 = 6.5 rad).

• Subscenario 3: Importance given to constella-
tion configuration. The preferred alternatives
are those with: either no manoeuvre by any
satellite: alternative 0 (obviously, since there
is no disruption of the constellation) or where
there is only a CAM in one encounter, with
the CAM executed close to the encounter (less
disruption of the constellation configuration),
with both situations: returning to the original
position (no further disruption of constellation)
or not returning to the original orbit (but, due
to the late CAM, the disruption after the en-
counter is small): alternatives 2 and 3 when ma-
noeuvres the satellite in the second encounter
and alternatives 44 and 66 when the CAM is
only performed in the second encounter.

• Subscenario 4: Importance given to time of op-
eration. The preferred alternative is not ma-
noeuvring (alternative 0) and, otherwise, only
maneuvering for one encounter (the first one),
as close to the TCA as possible. For the top
alternatives, the time of the operation is re-
stricted form half period (alternatives 22, 44,
66) to a period and a half (alternative 88), es-
sentially. The alternatives where only the exe-
cuting the CAM for the other encounter are not
ranking as high, probably due to a less reduc-
tion of probability, bearing in mind this crite-
rion is equally weighed for both encounters, and
taking into account that the other parameters
remains similar for both approaches.

• Subscenario 5: Importance given to constella-
tion configuration and time of operation. The
preferred options are those shared by subce-
nario 3 and 4: only Constellation preference
and only time preference, respectively. The ma-
noeuvre is executed only for one encounter (again,
the first one), or even for none of the encounter
(alternative 0). The CAM is executed close to
the encounter (θm1 = 0.5 rad for alternatives
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Table 3: Top 5 alternatives in Subscenario 0 for the 8 combinations of normalisation methods and MCDM
techniques before combining them into a single ranking with gtop = 5.

WSM MWSM WPM TOPSIS Combined
Linear Vector Linear Vector Linear Vector Linear Vector

0 22 22 41 41 41 414 65 41
22 41 41 42 42 42 417 87 42
44 42 42 63 63 63 477 351 63
88 63 44 64 64 64 480 417 64
110 64 63 85 85 85 483 483 22

Table 4: Weight distribution through criteria for the different subscenarios.

Subscenario # man. δv δv1 δv2 Op. time RPC1 RPC2 Const.

0 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1 0.1/6 0.1/6 0.1/6 0.1/6 0.1/6 0.45 0.45 0.1/6
2 0.1/7 0.9 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7
3 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.1/7 0.9
4 0.1/7 0.1/7 0.1/7 0.1/7 0.9 0.1/7 0.1/7 0.1/7
5 0.1/6 0.1/6 0.1/6 0.1/6 0.45 0.1/6 0.1/6 0.45
6 0.1/5 0.1/5 0.1/5 0.1/5 0.1/5 0.3 0.3 0.3

Table 5: Top 5 alternatives in each subscenario.

Subscen. 0 Subscen. 1 Subscen. 2 Subscen. 3 Subscen. 4 Subscen. 5 Subscen. 6

41 85 0 44 0 22 63
42 41 1 66 22 44 64
63 42 41 0 44 66 85
64 63 42 2 88 0 86
22 64 64 3 66 110 65

22. 44, 66 and θm1 = 1.5 rad for alternative
110): less operation time and less disruption of
the constellation configuration, and following a
returning strategy to the original position.

• Subscenario 6: Importance given to constella-
tion configuration and PoC. It is similar to the
subscenario 2, where PoC was prioritised, which
makes sense, since overall, the PoC criteria still
have a bigger relative weight in this subsce-
nario. The preferred alternatives are situations
with CAM executing late for first encounter and
early for the second one, where the minimum
values of PoC are found, as in subscenario 2 (al-
ternatives 63, 64, 85). However, there is a pref-
erence to execute a returning manoeuvre to the
original orbit (alternatives 86) or to the origi-
nal position (alternatives 65), due to the higher
weight on the constellation criteria.

4.2 Competitive CAM Planning

In this example, two manoeuvrable satellites from
different constellations are involved in the same en-
counter to illustrate the competitive case. The initial
orbital elements can be found in Table 6. The en-
counter occurs at TCA = 43200s after t0.

Table 6: Initial orbital elements satellites involved in
the competitive case encounter. Units in km and
deg.

Sat. SMA ecc. inc RAAN AP TA

A 7100 0.0 60 0.0 0.0 252.57
B 6944.26 0.031 141.04 335.26 116.15 47.03

Satellite A is assumed to be perfectly known, while
satellite B is assumed to be affected by both aleatory
and epistemic uncertainty. Note that the choice of
which satellite is affected by uncertainty does not
change the methodology and the outcome of the de-
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cision because both constellations are assumed to be 
able to compute a single PoC, pre and post manoeu-
vre.In the case in which the computation of the PoC 
of one constellations is unknown to the other, the 
game become stochastic and the approach in this pa-
per has to be further extended.

The aleatory uncertainty is modelled by the co-
variance matrix at the initial position expressed in 
the <R,T,H>,

Σ2,rth(t0) =

0.1042 0 0
0 0.5562 0
0 0 0.1392

 km2,

while the epistemic uncertainty is modelled with the
epistemic parameters λ, one per each source of infor-
mation. In this example, two sources are assumed to
provide information, with

λσ,a = [1, 4]

λσ,b = [1/5, 1/2],

thus, the uncertain encounter geometry can be de-
fined as in Table 7

Table 7: Uncertain encounter geometry for both en-
counters with 2 sources providing information.
Upper and lower bound of the components of
miss distance and covariance matrix in the im-
pact plane.

Component Source 1 Source 2

µξ (km) [0.02855,0.08342] [1.263·10−3,0.01529]
µζ (km) [-0.6327,0.7230] [-0.2317,0.2542]
σ2
ξ (km2) [0.1208,0.4353] [0.02530,0.05332]

σ2
ζ (km2) [140.265,505.054] [29.311,61.202]

σξζ (km2) [-14.586,-4.0744] [-1.8012,-0.8572]

As in the previous example, we assumed anHBR =
10m, computing the PoC with Eq. (4).

The robust optimal CAM is computed at differ-
ent execution positions for each satellite: ΘmA =
{0, 9π, 17π} rad, ΘmB = {0, 7π, 11π, 15π} rad, mea-
sured as distance to the encounter. Two different
avoidance conditions have been studied by changing
the maximum impulse capacity of each satellite and
the PoC threshold of each operator. Table 8 includes
the CAM parameters for each case.

For simplicity of analysis no returning strategy is
consider. Including returning manoeuvres would only
introduce new alternatives and, possibly, new crite-
ria. Other than this, the method would remains the
same.

Table 8: PoC threshold and maximum capacity of
each satellite involved in the encounter for each
of the three Cases considered.

Case δv1,max PC0,1 δv2,max PC0,2

(km/s) (km/s)

1 2.5 · 10−4 10−6 2.5 · 10−4 10−6

2 5·10−4 10−5 5 · 10−4 10−5

The criteria for both satellites are the Reduction
of PoC, Eq. (10), and the cost of the manoeuvre,
Eq. (11). Thus, we have a MCMDM problem with
2 decision-makers with 2 criteria each of them, one
selecting among 4 alternatives and the other among
3. In Section 4.2 to Eq. (25), the Alternative-Criteria
matrices for each satellite are presented for each of
the three CAM approaches in Table 8:

• Case 1

A1,(:,1:4) =

 0 0 0.056 0
0.031 2.5 · 10−4 1 1.75 · 10−4

0.156 2.5 · 10−4 1 1.675 · 10−4

 ,

A1,(:,5:8) =

0.139 0 0.367 0
1 1.875 · 10−4 1 1.925 · 10−4

1 1.75 · 10−4 1 1.875 · 10−4

 ,
[22]

B1 =


0 0 0.031 0 0.156 0

0.056 2.5 · 10−4 1 1.875 · 10−4 1 1.925 · 10−4

0.139 2.5 · 10−4 1 1.75 · 10−4 1 1.875 · 10−4

0.367 2.5 · 10−4 1 1.675 · 10−4 1 1.75 · 10−4

 .
[23]

• Case 2

A2,(:,1:4) =

 0 0 1 0
0.918 1.6 · 10−4 1 9.1 · 10−5

0.982 1.7 · 10−4 1 8.2 · 10−5

 ,
A2,(:,5:8) =

0.952 0 0.971 0
1 9.4 · 10−5 1 9.6 · 10−5

1 8.3 · 10−5 1 8.5 · 10−5

 ,
[24]

B2 =


0 0 0.918 0 0.982 0
1 1.4 · 10−4 1 7.3 · 10−5 1 7.6 · 10−5

0.952 1.2 · 10−4 1 6.3 · 10−5 1 6.6 · 10−5

0.971 1.0 · 10−4 1 5.5 · 10−5 1 5.8 · 10−5

 .
[25]

Five different subscenarios have been presented:
i) criteria in both satellites equally weighted, ii) both
satellites giving more importance to PoC, iii) both
satellites giving more importance to manoeuvre cost,
iv) Sat A giving more importance to PoC and Sat
B to the cost, v) Sat A giving more importance to
cost and Sat B to PoC. For all the subscenarios, the
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criteria are integrated considering two normalisation:
linear and vector, and four MCDM methods: WSM,
MWSM, WPM, TOPSIS. An example of the ordi-
nal integrated criteria matrices, C and D, Case 1 -
Subscenario 0 using Linear normalisation and WPM
method to integrate criteria are:

C1,lin,WPM =

1 2 2 2
2 1 1 1
1 0 0 0

 , [26]

D1,lin,WPM =


1 2 1
1 0 0
2 1 2
3 3 3

 , [27]

and for Case 2 - Subscenario 0 using Linear normal-
isation and WPM method:

C2,lin,WPM =

1 2 2 2
2 1 1 1
1 0 0 0

 , [28]

D2,lin,WPM =


1 3 3
1 0 0
2 1 1
3 2 2

 , [29]

where the element cij indicates the preference of the
ith alternative of Sat. A, given the Sat. B chooses
alternative j, with the highest values for the most
preferred alternatives in each column; and the ele-
ment ckp the preference of the kth alternative of Sat.
B, given the Sat. A chooses alternative p

In the following, the analysis of each subsection is
shown, along with the matrices including the number
of time an outcome (combination of alternative A, in
the rows, and alternative B, in the columns) has been
an equilibrium points after computing the Nash Sta-
bility for each integration of criteria for the eight com-
binations of normalisation and MCDM techniques.
The best outcome in each subscenario is highlighted
in bold.

Case 1

• Subscenario i.

NEi =

4 0 0 2
0 0 0 2
0 0 0 0

 . [30]

This subscenario tries to optimise both cost and
risk for both satellites. The prefer outcome is,
surprisingly, that none of the satellite manoeu-
vres. The explanation can be in the fact that
options that minimises the PoC (RPC = 1) are
at a high cost, and alternatives where only one
manoeuvres, which has a zero cost for one of the
satellites, does not reduce the risk that much.

• Subscenario ii.

NEii =

0 0 0 0
0 0 0 8
0 0 0 0

 . [31]

If the PoC is to be minimised, the preferred
option, independently of the method, is an out-
come where both satellites manoeuvres, reduc-
ing the risk below the threshold (RPCA = RCPB =
1).

• Subscenario iii.

NEiii =

7 1 1 2
1 0 0 0
0 0 0 0

 . [32]

If the cost is prioritised, the preferred option
is, obviously, where no satellites manoeuvres
(δvA = δvB = 0), even if there is no reduction
of risk (RPCA = RCPB = 0).

• Subscenario iv.

NEiv =

4 0 0 0
3 0 0 1
0 0 0 0

 . [33]

When Sat. A prioritises the risk and Sat. B
the reduction of the cost, a curios situation is
obtained: the most common equilibrium points
appears for the outcome where no manoeuvre
is executed. The explanation can be that due
to the prioritisation of cost reduction of Sat.
B, it will prefer alternatives with no manoeu-
vres for it. However, the reduction of PoC for
Sat.A given this outcome is very small in any
case. Nevertheless, this is the expected out-
come. Other than this, the second alternative,
is an outcome where only Sat. A manoeuvres.

• Subscenario v.

NEv =

0 0 0 8
0 0 0 0
0 0 0 0

 . [34]

This scenario is the opposite of the previous
one: Sat. A search to minimise the cost, while
Sat. B to minimise the risk. The preferred op-
tion, independently of the method, is that one
where Sat. A does not manoeuvre (minimising
the cost) and Sat. B manoeuvres the earliest:
reducing the risk to the threshold (RPCB =
0.367).
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Case 2
This Case presents an important difference with

respect the previous one: if only one satellites ma-
noeuvres, the threshold is reached for both satellites,
so the outcome where only one manoeuvres will be a
more preferred option than in the previous Case.

• Subscenario i.

NEi =

2 0 0 6
3 0 0 0
1 0 0 0

 . [35]

The preferred options in this case is where only
one satellite manoeuvres, executing the CAM
at the cheapest position, since in this way, the
threshold is reached, and the cost is minimised:
one does not spend anything and the other the
minimum possible. For the outcome (0,3), be-
ing an equilibrium point 6 times, δvA = 0 cm/s
and δvB = 10 cm/s and RPCA = RPCB =
0.971.

• Subscenario ii.

NEii =

0 7 0 1
0 0 0 0
7 0 0 0

 . [36]

Similarly, the preferred outcome are those where
only one satellite manoeuvres. Since the thresh-
old is reached (or almost) when only satellite
manoeuvres, these options are preferred than
both satellites manoeuvring. The options is
always manoeuvring that reduces the risk the
most.

• Subscenario iii.

NEiii =

6 0 0 2
2 0 0 0
0 0 0 0

 . [37]

As in the previous case, if the cost is to be op-
timised by both satellites, the preferred option
is that no one manoeuvres.

• Subscenario iv.

NEiv =

0 0 0 2
1 0 0 0
7 0 0 0

 . [38]

If Sat. A prioritised the risk and Sat. B the
cost, the preferred option is that Sat. A ma-
noeuvres and Sat. B does not, with the op-
tion where Sat. A reduced the risk the most:
RPCA = 0.982.

• Subscenario v.

NEv =

0 7 0 1
0 0 0 0
0 0 0 0

 . [39]

If Sat. A prioritised the cost and Sat. A the
risk, the preferred option is that Sat. B ma-
noeuvres the erliest and Sat. A does not, with
the options where Sat. B reduced the risk the
most: RPCB = 1 .

5. Final Remarks

In this paper we have extended the CASSANDRA
framework to include coordinated decisions on the
planning and execution of collision avoidance ma-
noeuvres. We considered both the collaborative, where
satellites belong to the same constellation, and the
competitive case, where satellites belong to different
constellations. This later case led to an extension of
the classic Multi-Criteria Decision Making method-
ology to incorporate multiple decision makers with
conflicting goals.

In the scenarios presented in this paper we found
that in the collaborative case the optimal decision for
each satellites is always to minimise their individual
collision risk and then restore the performance index
of the whole constellation.

In the competitive case it was found that in a num-
ber of scenarios, game theoretic equilibria occur when
only one of the two constellations manoeuvre. This
is the case when each manoeuvre can always achieve
the minimum safety threshold. On the other hand
when operational constraints prevent both constella-
tions to reach the minimum threshold or each oper-
ator is putting more weight on manoeuvre cost then
equilibria exist where both constellation execute only
a partial manoeuvre. In the game defined in this
paper both players can compute the total risk of a
conjunction with the same approach and, therefore,
can predict the risk reduction due to the execution of
any manoeuvre. Although in this paper we already
considered the case in which the accepted risk dif-
fers between two players a more complex case occurs
when the risk computed by each player is uncertain.
In this case the game become stochastic and requires
a further extension of the decision making process.
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