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Exploring the role of stromal osmoregulation in
cancer and disease using executable modelling
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Osmotic regulation is a vital homoeostatic process in all cells and tissues. Cells initially

respond to osmotic stresses by activating transmembrane transport proteins to move

osmotically active ions. Disruption of ion and water transport is frequently observed in

cellular transformations such as cancer. We report that genes involved in membrane

transport are significantly deregulated in many cancers, and that their expression can dis-

tinguish cancer cells from normal cells with a high degree of accuracy. We present an

executable model of osmotic regulation and membrane transport in mammalian cells, pro-

viding a mechanistic explanation for phenotype change in varied disease states, and accu-

rately predicting behaviour from single cell expression data. We also predict key proteins

involved in cellular transformation, SLC4A3 (AE3), and SLC9A1 (NHE1). Furthermore, we

predict and verify a synergistic drug combination in vitro, of sodium and chloride channel

inhibitors, which target the osmoregulatory network to reduce cancer-associated phenotypes

in fibroblasts.
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Osmotic regulation is necessary for the maintenance of cell
integrity under a wide range of conditions. Through the
conservation of a robust equilibrium cells can avoid the

bursting and destruction of cell membranes caused by extreme,
rapid shrinking and swelling1. Cells can respond to hypertonically
induced shrinking or hypotonically induced swelling by altering
the balance of channels and transporters in the extracellular and
organellular membranes to manipulate water and solute flow,
whilst maintaining cell size2. Changes in ion and osmolyte flow
result in osmotic pressure, which leads to rapid entry or exit of
water through pores such as aquaporins3.

To combat osmotically induced swelling or shrinking, cells
initially activate or alter the expression of pumps, channels, or
transport proteins associated with ion flux4 before stabilising ion
concentrations with organic osmolyte transport. This enables a
cell to maintain size and reduce osmotic pressure by extruding or
importing ions, whilst preserving electrochemical gradients2,4–6.
Osmotic regulation is highly conserved in mammals and involves
a relatively small number of proteins that respond directly to
osmotic pressure7. Whilst the signalling mechanisms of osmor-
egulation are highly complex, key ions and proteins involved in
the primary response are recognised to be sodium, potassium,
chloride, and to a lesser extent, calcium2,8–11. Disruption to such
tight regulation due to aberrant transporter expression is asso-
ciated with pathologies such as cancer12–15 and generally results
in changes in cellular morphology, particularly because the
principal channels involved in osmotic regulation influence cel-
lular behaviour in ways separate from purely maintaining cell
size.

Computational network modelling is a technique for studying
the interconnected networks of genes and proteins involved in
cellular decision making that is distinct from traditional mathe-
matical modelling16,17. In computational (also called executable)
modelling, nodes representing genes, proteins, chemical compo-
nents, or abstract concepts (such as the pressure felt by a cell)
have a finite set of discrete values (for example, integers from 0 to
5) representing their activity, concentration, or expression. A key
advantage of this methodology is the ability to model in the
absence of precise kinetic data, and the ability to exclude missing
links, where intermediates are unknown. Additionally, executable
modelling allows the use of model checking techniques18, initially
developed for software engineering, that allows analysis of the
complete behaviour of the system (e.g., State X can never occur,
condition Y always leads to state Z), even in systems with millions
of states.

Whilst ion channels have previously been studied from a
network modelling perspective, these have generally been limited
to highly specialised models of single channel activity19, or
models of current changes in specific tissue subtypes20–22.
Moreover, extensive previous work on modelling osmoregulation
has been performed in yeast cells, but this has focused on the
protein signalling cascades behind glycerol synthesis23–25, rather
than the primary ionic response.

Here, we show, firstly, that ion channels and osmoregulatory
transport proteins are a marker of cancer phenotype though a
machine learning classification approach. Using publicly available
data on the expression of membrane protein transporters and
channels in cancer, we show that membrane transport proteins
are a good descriptor of whether a cell is from a cancer associated
sample or not, and when we extract weightings describing which
proteins contribute significantly to this classification, top con-
tributors to this classification are transporters involved in osmotic
regulation. We then present an executable model of the integrated
network of ion channels involved in osmotic regulation and other
interlinked channel-dependent processes, including calcium sig-
nalling, pH maintenance, and metabolic transport. The network

model predicts cellular behaviour from single-cell expression
data, and is a scaffold for developing a greater understanding of
drug effects on emergent cellular behaviour, predicting drug/
protein targets, predicting measurable changes in detectable
substances (e.g., metabolites), and generating limited mechanistic
understandings of cellular behaviour. The resultant network
predicts cellular phenotype changes from single cell gene
expression data, and specific predictions on the effects of channel
knock-outs are validated in vitro. Additionally, synergistic drug
combinations that target SLC9A1 (NHE1), and SLC4A3 (AE3),
are discovered by the model and validated in vitro. We applied
our model to single-cell gene expression data from two systems of
interest: first lymph node stromal cells under two highly distinct
physiological conditions a) exposure to tumour-derived fluid, and
b) exposure to the bacterial infection stimulus LPS, and second to
mouse embryonic fibroblasts (MEFs) exhibiting heterozygous or
homozygous mutations in the Kras gene.

Results
Membrane transport is altered in cancer. We identified the
membrane transport regulatory network for study due to its
ubiquity, and the proposed impact ion transport has on many of
the cell phenotypes involved in cancer and disease such as cellular
proliferation and migration12,13,26,27. Genes were selected for
study from the genenames database (www.genenames.org),
selecting for genes involved in membrane transport. A resultant
gene list of 380 genes was curated (Supplementary Data 1), and all
the publicly available RNA seq read counts were downloaded and
processed from TCGA (The Cancer Genome Atlas) as described
in the methods. The resultant dataset contains 11,574 gene
expression profiles, from 37 separate projects, divided between
15 subtypes of cancer. We initially clustered the dataset with use
of t-Distributed Stochastic Neighbour Embedding (t-SNE)
(Fig. 1a). Individual samples are coloured by germ layer origin
(mesoderm, ectoderm, endoderm, mesoderm/ectoderm, or
unknown). For visualisation purposes, we applied k-means clus-
tering to the t-SNE distribution, and calculated the Voronoi
surface based on the k-means centres. The resultant plot contains
significant clusters that are broadly of the same germ layer origin.
Additionally, most Voronoi cells contain mainly samples of a
similar or related cancer origin (for full origins of each cell within
the plot see (Supplementary Fig. 1A)). Highlighting samples
labelled as non-cancerous within the dataset results in clustered
regions of non-cancer samples together.

Due to the ability of ion channel expression data to
discriminate between both organ/tissue types, and cancer/non-
cancer cells, we chose to further explore the data with the use of
binary classification, specifically gradient boosted decision trees.
We selected the algorithm XGBoost, due its usability, ability to
handle imbalanced datasets, high performance in Kaggle
competitions, and interpretability. We found that we were able
to classify cells labelled as cancer/non-cancer with very high
accuracy—98.92% were correctly classified, with a Matthews
Correlation Coefficient (MCC) of 0.91 (Table 1). A comparative
sized set of random genes that exclude channels (Supplementary
Data 2) generated an MCC score of only 0.81 due to a
significantly higher false negative rate. We also applied binary
classification techniques to subsets of the data based on cellular
germ layer origin, and found similar classification accuracy on
subsets of the data (Table 1).

Additionally, exploring the feature weights for the model
allows easily human-interpretable rankings of genes deemed most
important for the classification. Feature weights reveal genes that
were used the most to discriminate between cancer and non-
cancer samples (Fig. 1b). Feature weights are shown for the cells
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of mesoderm layer origin, for other origins see Supplementary
Fig. 1B. Highly featured proteins include numerous proteins
involved in osmoregulation or water transport (indicated by a star
—10 out of the top 25 weighted features for mesoderm germ
origin samples), and many known to be involved in cancers, such
as SLC12A528,29, and numerous aquaporins30. Additionally,
heatmaps generated from random subsets samples of the datasets

confirm that there are significant differences between non-cancer
and cancer expression of membrane transport genes (Fig. 1c, and
Supplementary Fig. 1c). Due to the demonstrated importance of
membrane transport, and in particular osmoregulation in human
tissue data, we chose to study the network of osmoregulatory and
membrane transport proteins in general with the use of an
executable model.
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Fig. 1 Analysis of TCGA gene expression data. a Using the t-SNE dimension reduction technique applied to ion channels/membrane protein gene
expression alone we show that samples cluster into subgroups classified by their cellular origin (blue—mesoderm, orange—endoderm, red—ectoderm,
purple—ectoderm/mesoderm, grey—unknown), and whether they are from a sample determined to be cancer or non-cancer (dark vs. light colours). We
overlay the plot with a Voronoi surface calculated from k-means centres. Within each Voronoi tile is a number, relating to the legend, which denotes the
majority tissue/organ of origin of each sample in that tile. Applying a binary classification machine learning method to classify cancer vs. non-cancer
sample types results in high classification accuracy. Feature weights are then extracted from the model. b Shown are the top 25 weighted features for
subsamples of mesoderm origin, in particular, there are a large number of genes encoding proteins involved in movement of water—aquaporins, or involved
in the osmotic response such as SLC12A1, encoding the sodium-potassium-chloride symporter NKCC2 (starred). c Taking 25 randomly selected samples of
non-cancer and cancer subtypes we plot the expression of the 25 top weighted features described previously, and show that even within a small random
subset of the data, differences can be discerned in the expression of these genes between non-cancer and cancer cells
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A model of cellular osmotic response. We identified the osmotic
regulatory network for further study based on the high prevalence
of osmotically involved transporters in the analysis of publicly
available gene expression data. Based on the literature we gen-
erated a formal specification (Table 2) that describes the expected
behaviour of a model based on the reported primary mammalian
cell osmotic response1,5,6. A qualitative network model (QN) was
generated by manual curation of the literature and represents the
canonical set of eight genes and proteins involved in the mam-
malian primary osmotic regulation. Specifically, we focused on
modelling channels as activators or inhibitors of the ion or
molecule that they transport.

The resultant model contains 20 nodes representing proteins or
cellular components (schematically shown in Fig. 2a, shown in
the BioModelAnalyzer (BMA) interface in Supplementary Fig. 2).
We include abstracted variables for Osmotic Pressure, represent-
ing the pressure exerted on the cell due to the imbalance in
external and internal ions, a node for External Ions with a range
of 0–2 (0—low, 1—normal, and 2—high), signifying a change or
alteration in the osmolarity of the solute surrounding a cell, and a
node for cell size that responds to the osmotic pressure within the
cell, representing the flow of water entering or exiting the cell.

In this model, functionally assigned nodes were considered to
have a range of 0–4, representing minimal activity/concentration
(0), lowered activity/concentration (1), normal activity/concen-
tration (2), elevated activity/concentration (3), and maximal
activity/concentration (4). Biologically, proteins involved in ionic
transport are activated through various cascade mechanisms, and
in some cases are manufactured in response to osmotic stress,
meaning that they cannot respond instantly to changes in osmotic
pressure31,32, and there is a small lag time before differences in
osmotic pressure are rectified. Timing differences in the system
were explicitly considered (See Supplementary Note 1).

Homoeostasis was confirmed with the use of stability analysis.
Stability indicates that there is a single, global, fixed point the

model returns to regardless of perturbations or initial state. The
model re-establishes a stable state at a normal cell size after an
initial period of swelling or shrinking when external osmotically
active ion concentrations are perturbed. When the cell is exposed
to high external ion concentrations, it initially shrinks as water is
pulled out of the cell, before returning to normal size after
rectifying the difference, conversely, low external ion concentra-
tions result in an influx of water and subsequent swelling of the
cell before it returns to a normal size. (Fig. 2b). The model with
each external ion concentration was confirmed to be stable. A
model is stable when all possible starting states of the system
return to a single, self-perpetuating point. For systems where the
tonicity value is high or low, stability indicates that biologically
the cell has rectified the differences in osmotic pressure inside and
outside, and reached homoeostasis without a permanent swelling
or shrinking (which could be damaging or fatal), as the osmolyte
concentrations are altered to compensate for the change in
extracellular environment. An example proof progression show-
ing stability for the network in a hypertonic, and hypotonic state
is shown in Supplementary Fig. 3.

Having shown the network functions in a biologically reason-
able manner, we went on to study the model in the context of cell
lines that can be validated, and for which gene expression data
was available. We chose to study how cellular phenotypes
pertaining to size, contractility, migration/membrane dynamics,
attachment ability, and viability, are controlled and altered by
membrane transport proteins and the solutes they
transport.

QN of membrane transport predicts stromal stimuli response.
Lymph nodes (LNs) are key immune hubs. Surveillance of lymph
fluid by LNs for pathogens, and subsequent activation of a pri-
mary immune response is a key component of a functioning
immune system. Tumour-derived fluid is generally collected

Table 2 Formal specification for base osmotic regulation model

Environmental responses Expected change Reasoning Model expected results

Cell in non-stimulating
environment

Network stability Cell maintains constant size under
homestatic conditions (McManus et al.72,
Ho4)

Network is stable with external
ionic concentration of 2

Cell response to low
osmotic environment

Increase in activation state of efflux
channels, network stability

McManus et al.72, Ho4 Low extracellular ions activates
efflux channels. Network
stabliity

Cell response to high
osmotic environment

Increase in activation state of influx
channels, network stability

McManus et al.72, Ho4 High extracellular ions activates
influx channels. Network
stability

Cell response to varied
osmotic environments

Cell remains the same size despite
changes in osmotic environment, any
change in cell size is transient

Cell maintains constant size after being
subjected to reasonable osmotic
fluctuations (McManus et al.72, Ho4).

Network is stable with external
ionic concentration of 0 or 4

Shown is the expected cellular behaviour under numerous conditions, the reasoning, and the expected results from the model

Table 1 Results from binary classification analysis of 11,574 samples from the TCGA dataset

Data subset Accuracy Accuracy (%) False positives False negatives MCC score

All samples 2290 of 2315 98.92 2 of 2159 23 of 156 0.91
EC origin cells 558 of 564 98.94 0 of 535 6 of 29 0.89
EN origin cells 849 of 857 99.07 1 of 790 7 of 67 0.93
M origin cells 1015 of 1030 98.54 3 of 944 12 of 86 0.9
Random non-channel subset 2221 of 2315 95.94 13 of 2006 81 of 309 0.81

Data are classified using only expression data of ion channels, and shows a high accuracy when compared to a set of random non-channel genes from the same dataset (Matthews Correlation Coefficient
of 0.91 vs. 0.81). Included are the false positive numbers and false negative numbers
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within the lymphatic system and drains to nearby LNs. The
lymphatic system is exploited by many tumours during the
process of metastasis, and the presence of tumour cells within the
LN is a poor prognostic marker33,34. We have shown previously35

that structural cells (fibroblastic reticular cells, (FRCs)), exposed
to tumour-derived fluid, containing currently unknown tumour
factors (TFs), but prior to metastasis to the LN, undergo

morphological and transcriptional changes, which are different in
Early Tumour Draining (ETDLN) and late tumour draining
(LTDLN) conditions. Among key changes to FRC function were
genes associated with channel or transporter regulation. We used
this dataset to guide an initial application of our model.

A specification describing changes in FRC morphology and
phenotype in response to different experimental conditions was
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derived, focusing on cell viability, membrane dynamics/movement,
attachment ability, contractility, and cell size (Table 3). The
literature was also reviewed for the effects changes in ionic
concentrations and membrane protein expression has on these
phenotypes (Supplementary Data 3). Additionally, potentially
influential, and significantly differently expressed proteins were
collated from expression data (microarrays), and through verifying
their importance in cell behaviour through the literature.

The initial model was then expanded to include these
phenotypes, and the effects of ions and ion dependent signalling
on them. A schematic of the expanded model is shown in Fig. 3a.

(The model in the BioModelAnalyzer interface is shown in
Supplementary Fig. 4) We included domains for calcium
signalling, pH maintenance, cellular metabolism/lactate transport,
and the previously defined osmotic regulation network, though
there is significant overlap between each. Additionally, nodes
were added representing cellular phenotypes described in the
specification, and linked to the model via the activity of ions, and
ion dependent signalling cascades derived previously. Executable
modelling also allows us to explicitly model complex phenomena,
such as protein modification, lipid interactions, and cytoskeletal
effects through altering the mathematical relationship between

Fig. 2 Qualitative network model of osmotic regulation. a Schematic of qualitative network that responds to osmotic pressure. An abstract node for
external ions is included, and changes within this node lead to pressure felt by the cell via the osmotic pressure sensor node. Channels involved in the
appropriate osmotic response (influx of ions under high osmotic pressure, efflux under low osmotic pressure) are activated or upregulated resulting in an
appropriate response to return pressure to normal. The model includes the core osmotic machinery, appropriate ions (sodium, potassium, chloride, and
calcium), and abstract nodes for the overall control of external ions, pressure felt by the cell, and cell size. The total model contains 20 nodes. b Simulations
of the network reveal the cell response to altered osmotic pressure. Simulations are allowed to stabilise, before osmotic pressure is perturbed through
increasing or decreasing the external ions node. This leads to a cascade of events in which the osmotic pressure sensor node recognises the difference
between external and internal ion concentrations, leading to a decrease (top) or increase (bottom) of cell size in response to hypertonicity (top) or
hypotonicity (bottom), before channels are activated in order to rectify pressure changes, and the cell returns to a normal size

Table 3 Phenotype expression specification generated from gene arrays from FRCs

Cellular
property

Expected change Reasoning Model expected results

Viability
ETDLN Increase Experiments show increasing number of cells initially (Riedel et al.35).

Gene array results also suggest proliferation pathways are
upregulated

Viability increase from 2 to 3 or 4 in the
presence of early stage TFs

LTDLN No change/
Increase

Experiments show cell number increase plateus at later stage. Gene
array results show proliferation pathways different to ETDLN. (Riedel
et al.35)

Viability value of 2, or increase to 3 or 4
for late stage TFs

LPS Increase Proliferation helps swell the LN under immune conditions due to
increasing number of FRCs. (Fletcher et al.39)

Viability increase from 2 to 3 or 4 in the
presence of LPS

Membrane dynamics/movement
ETDLN Increase Deregulation of membrane remodelling pathways in the gene array.

(Riedel et al.35)
Migration increase from 2 to 3 or 4 in
the presence of early stage TFs

LTDLN Increase Deregulation of membrane remodelling, as well as migration
pathways in the gene array. (Riedel et al.35)

Migration increase from 2 to 3 or 4 in
the presence of late stage TFs

LPS Increase Deregulation of movement/migration pathways, including MMPs in
the gene array. (Malhotra et al.36)

Migration increase from 2 to 3 or 4 in
the presence of LPS

Attachment
ETDLN Increase Deregulation of junction molecules in gene array. (Riedel et al.35). Cell

adhesive properties changed in attachment assay
Attachment increase from 2 to 3 or 4 in
the presence of early stage TFs

LTDLN Increase Deregulation of junction molecules in gene array. (Riedel et al.35). Cell
adhesive properties changed in attachment assay

Attachment increase from 2 to 3 or 4 in
the presence of late stage TFs

LPS Unknown – –
Contractility
ETDLN No change Contractility assay shows increase only in LTDLN, microarray shows

collagen and associated contraction genes deregulated at LTDLN only
(Riedel et al.35)

Contractility remains at value of 2, in the
presence of early stage TFs

LTDLN Increase Cell contractility assays show increase in ability to contract collagen
gel. (Riedel et al.35)

Contractility increases from 2 to 3 or 4
in the presence of late stage TFs

LPS Decrease Contractility shown to be decreased under immune activation on LN.
(Fletcher et al.39, Astarita et al.38)

Contractility decreases from 2 to 1 or 0
in the presence of LPS

Cell size
ETDLN No change Light scattering experiments show no change in cell size. (Riedel

et al.35)
Cell size value of 1 in the presence of
early stage TFs

LTDLN No change Light scattering experiments show no change in cell size. (Riedel
et al.35)

Cell size value of 1 in the presence of late
stage TFs

LPS Increase Light scattering experiments show increase in cell size. (Acton
et al.39)

Cell size value of 2 in the presence of
LPS

Shown is the expected cellular behaviour under numerous conditions, the reasoning and proof, and the expected results from the model under different conditions (ETDLN, LTDLN, LPS)
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nodes, and adding nodes to account for different subregions or
interactions in proteins. For example, Na-K-ATPase, which
involves multiple subunits with different interactions with various
regions of the protein. This represents an interface with structural
biology where regions of the protein with structurally and
functionally distinct differences are separated (Fig. 3b).

To explicitly adapt the model to tumour draining lymph node
conditions, we focused on significantly deregulated probes within
the previously published microarray that corresponded to ion
channels or membrane transport, and had significant literature
justification for impacting cellular phenotype (Supplementary
Data). These genes were also built into the model. A node (named
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Tumour Factors) was added to the model to represent TDLN
FRC conditions. Changes in the value of this node influence the
respective probes from ETDLN or LTLDN to be upregulated or
downregulated depending on their measured state in each
condition.

When systemic tonicity was set to a value indicating no large
difference to normal conditions (1), and tumour factors set to
represent ETDLN conditions, stability analysis revealed nodes
representing cell phenotypes stabilised at a global fixed-point
matching the specification for ETDLN (Fig. 4b, i). In particular,
we observed a coordinated change in ion channels that altered the
activation state of many other nodes in the system. An example of
coordinated changes caused by activation of a single channel is
shown in Supplementary Fig. 5. As a result, cellular behaviours
were activated or inhibited by the emergent behaviour of the
model. Adjusting the Tumour Factors node to LTDLN condi-
tions, revealed that cellular phenotype adapts again within the
model due to the knock-on effects of changing the activity of a
small number of ion channels. These results indicate that our
model is able to explain the morphological changes in FRC cells
exposed to TDLN, solely by taking into account expression
changes of ion channels (Fig. 4b, ii).

To expand the model further, we chose to include data from
previously reported studies of FRCs under immune activation.
During an acute infection, LNs are the primary site of an initial
immune response, during which they swell (caused by a loss of
contraction of FRCs), but return to a resting state once
the infection is resolved. This is contrary to tumours, in
which the stimulus and phenotype changes on FRCs persists.
Lipopolysaccharide (LPS) is a component of the outer membrane
of gram-negative bacteria and is commonly used to induce an
inflammatory response. We tested the predictive power of the
model with the use of previously reported gene expression data
for LN FRCs exposure to LPS36.

We assessed the microarray for significantly deregulated
membrane proteins and ion channels that had literature
justification for an effect on cell phenotype (Fig. 4a, Supplemen-
tary Data 3). The changes in gene expression were then added
to the model. We found that alteration of the six
channels resulted in a stable state of the model in which
viability, and movement/membrane dynamics increased,
whereas contractility decreased. The full specification can be
seen in Table 3. Interestingly, the model also predicts an
increase in cell size, a phenotype confirmed by Acton et al.37,
and a phenotype that was not observed in FRCs exposed to TFs35.
In particular, one study found that FRCs under immune
stimuli reduce contractile capacity38—an inverse morphological
change compared to TDLN FRCs. We found that the literature
supported the phenotypes described in our model36,39 (Fig. 4b,
iii), without major refinement of the model parameters
(minor refinement of the weights ascribed to each node was
required).

It is suggested that a loss of contractility within FRCs during
early immune challenge is a precursor to proliferative conduit
expansion by FRCs38,39, additionally both contractility assays and
studies of the rigidity of TDLN suggest that the FRCs in TDLN
are more contractile than their LPS counterparts40. Whilst
CLEC2 driven activation of PDPN is known to be the driver of
contractility changes in immune infection38, the specific mechan-
ism is unknown, the model suggests that alterations in calcium
signalling, along with changes in regulation of cytoskeleton-
associated channel domains can explain some of this difference.

To validate the causal links between ion channel expression
and the phenotype of FRCs in vitro, we selected individual genes
for knock-down experiments using siRNAs. Specifically, we
investigated the effects of disrupting ATP2A3 (SERCA3), SLC9A1
(NHE1) and FXYD5 (dysadherin) individually in FRCs, first
confirming the knock-down efficiency by qRT-PCR (Supplemen-
tary Fig. 6A). We chose to focus on nodes that have a large effect
on the phenotypes in the model, and involve sub-networks that
are significantly changed upon addition of stimuli. The model
must accurately predict not only the effect of the knockdown, but
also the compensatory response of the network (upregulation of
other proteins to counter ion imbalances, changes in pH
maintenance performance etc) to be accurate. The model
predicted that loss of ATP2A3 would result in a reduction in
attachment capacity, mainly through changes in calcium homo-
eostasis, and this was experimentally confirmed in vitro, where
knockdown of ATP2A3 reduced attachment as predicted (Fig. 4c).
An example of the mechanistic prediction of cellular behaviour
shift on knockdown of ATP2A3 (SERCA3) is shown in Fig. 4d. In
the QN, loss of ATP2A3 leads to changes in the internal calcium
compartmentalisation within the cell, and activation of calcium
dependent channels. Resultant changes in focal adhesion and
osmotic pressure leads to a reduction in cellular attachment
ability. The model also predicted the involvement of SLC9A1
(NHE1) in cell viability, and upregulation of this protein in
LTDLN being a key reason for the subsequent increase in
viability, due to changes in intracellular pH and potassium
concentration. Knock-down of SLC9A1 (NHE1) significantly
reduced cell viability (Fig. 4e). We additionally performed a
proliferation assay to explore the relationship between viability
and proliferation (for discussion see Supplementary Note 2), and
found that SLC9A1 knockdown did not reduce the proliferation
rate of FRCs, despite reducing their viability (Supplementary
Fig. 6B)—a result that has been reported in the literature
previously in breast cancer cells41, and which confirms that our
model is generally reproducing a viability phenotype. Finally, the
model suggested that a reduction of FXYD5 (dysadherin) would
decrease cellular viability and increase attachment ability.
Decreased FXYD5 mRNA expression showed an increase in
attachment properties and a small but significant reduction in cell
viability (Fig. 4f), FXYD5 knockdown also elicited a decrease in
cellular proliferation rate (Supplementary Fig. 6C). Knockdown

Fig. 3 Qualitative Network Model of the wider ion channel regulatory network. a, b Schematic of the network of ion channels involved in the model (a).
Included are modules that involve osmotic regulation, calcium signalling, metabolism, and pH maintenance. Modules interact with each other heavily, and
in particular osmotic regulation proteins are involved in many other modules. The schematic includes general trends of interactions, and does not show all
nodes for completeness, but attempts to show the major protein types involved in each module, and the ionic behaviours considered. Individual nodes,
however, can be much more complex than represented in the schematic, one example is shown in (b) of the Na-K-ATPase. In this case the Na-K-ATPase is
split into two nodes, one representing the ion transport domain, and one representing the structural interactions of the domain. Both nodes interact with
each other as they are part of the same protein, but subunits that associate in the protein complex elicit different effects. FXYD6 influences the ion
transport domain only, whereas FXYD5 influences both the ion transport domain, and the structurally connected beta subunit domain, which interacts with
the cytoskeleton and cell matrix independently of transport function. This separation of functional subdomains of the protein can also be used to
incorporate phosphorylation states of the protein, where two nodes represent an unphosphorylated and phosphorylated state of the same protein
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Proteins are upregulated (red arrows), downregulated (blue arrows), or unchanged (grey) in response to TFs or LPS. b Phenotype change for FRCs upon
exposure to TFs for Early (ETDLN) and Late (LTDLN) stage. The Model output represents the physiological behaviour predicted by the model, and the
experimental output represents the behaviour observed or implied at the cellular level from experiments or the gene array, and is independent of the model
(see methods). Boxes containing two colours indicate phenotypes where there is contradictions/data is unclear. The model predicts an increase in viability,
and a sustained increase in attachment and movement/membrane dynamics. Specific protein activity loss predictions are verified with experiments.
c, d Knockdown of genes for (c) ATP2A3, and its effect on cellular attachment. The cascade predicted by the model to be underpinning this behaviour
change is seen in part (d). e, f Also shown are siRNA knockdowns for SLC9A1 and its effect on cell viability (e), and FXYD5 and its effect on viability and
attachment (f). Predicted mechanisms for these knockdowns are included in Supplementary Fig. 6. *P < 0.05, **P < 0.01, ***P < 0.001 using two-tailed
unpaired t-test. Error bars represent standard deviation. Shown are 11 replicates (c), and 9 replicates (e, f)
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cascades from the model for SLC9A1, and FXYD5 are also shown
in Supplementary Fig. 6D and E. Together, we confirm the
validity of the model by isolated knock-down experiments of
single components and measuring their predicted effects on
cellular behaviour.

Murine embryonic fibroblast QN predicts attachment beha-
viour. Due to the ubiquity of the regulatory networks involved in
osmotic regulation, we further tested the model on cells from a
different system. We employed Mouse Embryonic Fibroblasts
(MEFs) that have been previously characterised42. MEFs isolated
from p53−/−;KrasG12D embryos exhibit different phenotypes
depending on whether they are heterozygous (KrasG12D/+; here-
after termed HET) or homozygous (KrasG12D/G12D; HOM) for the
KrasG12D mutant allele. There is no observed proliferative dif-
ference, or cell size difference between the two genotypes, but
HOM MEFs exhibit a highly penetrant colonisation phenotype,
implying reduced attachment capabilities (Table 4).

We again searched for ion channels and membrane proteins
within the microarray42 that were significantly deregulated and
had significant literature justification for an effect on cell
phenotype (Fig. 5a, Supplementary Data 4). We then incorpo-
rated these changes into the QN and determined that our model
also supports the behavioural changes recorded in HET and
HOM MEFs42. Indeed, when the QN was adjusted to reflect the
gene expression from HOMMEFs compared to HET (Fig. 5b) the
model predicts that viability remained unchanged, attachment
was decreased, and cell size remains unchanged.

Channel specific inhibitors allow control of phenotype. By
exploring the consequences of knockouts on the model, we find
that upregulation of SLC4A3 (AE chloride/bicarbonate trans-
porter) is linked to viability, and impacts cellular attachment. We
applied the SLC4 selective inhibitor 4,4′-diisothiocyanatostilbene-
2,2′-disulfonic acid (DIDS) to HOM MEFs in vitro, to abolish
SLC4 activity, and measured resultant changes in cell viability.
We show that elimination of SLC4 activity in a DIDs dependent
manner leads to a marked reduction in cell viability (Fig. 5c, i).

Going further, it is known that selective inhibition of SLC9
(NHE sodium/proton transporters) by amiloride related com-
pounds reduces cellular viability, particularly in cancer
systems43,44, consistent with our siRNA knockdown experiments
in LN FRCs. NHE transporters, primarily NHE1 mediate the
exchange of protons for sodium across the plasma membrane,
and are a key component of pH maintenance in mammalian cells.
NHE1 upregulation is suggested to be the key factor leading to
tumour metastasis in breast cancer41. Additionally, NHE1 is a
promising target for selective anti-cancer therapeutics, by
targeting the aberrant pH present in all cancer cells43,45,46.
Translation of SLC9 inhibitors to in vivo systems however, has

initially been unsuccessful47, in part because cells were still able to
metastasise to regions dense in extracellular matrix (ECM). Our
model predicts that by combining the effects of the SLC4 inhibitor
DIDs with SLC9 inhibitors such as amiloride should result in (i)
decreased viability due to the disruption of both intracellular
chloride and sodium concentrations, and of the pH maintenance
ability of the cells, and (ii) a significant reduction in cellular
attachment properties (we note that attachment is already low in
our model under HOM conditions, but loss of SLC4 and SLC9
leads to a further decrease).

We show experimentally that addition of SLC9 inhibitor 5-(N-
ethyl-N-isopropyl)amiloride (EIPA) to HOM MEFs in vitro also
leads to a reduction in cell viability (Fig. 5c, ii), an effect that is
retained when the drugs are applied in combination, though Bliss
Independence analysis indicates that this is likely a purely
additive effect. Additionally, applying DIDs and EIPA and
studying attachment ability of cells (Fig. 5d), reveals a potentially
synergistic reduction in attachment capability of MEFs. Biological
repeats are shown in Supplementary Fig. 7A, confirming initial
results, channel blocking was confirmed with the use of a chloride
specific dye MQAE (Supplementary Fig. 7B).

This is wholly consistent with mouse models of mastocitomas
where this pair of drugs were proposed to have reduced
metastasis48. Thus we suggest that administration of SLC9
specific inhibitors in concert with compounds that inhibit cellular
attachment such as DIDs could overcome past issues with the use
of anti-SLC9 drug regimes in some cancers.

Additionally, we chose to study the effect of the drug amiloride
in combination with DIDs. Amiloride is not a specific SLC9
inhibitor, but generally inhibits sodium channels. Amiloride is
already used to treat hypertension or hypokalemia, and thus
represents a more immediately clinically relevant SLC9 inhibitor.
We show that addition of amiloirde hydrochloride (AHCL) with
DIDs results in the same significant decrease in viability (Fig. 5e),
and synergistic decrease in attachment (Fig. 5f) that are observed
with EIPA and DIDs.

Discussion
The role of ion channels in cellular transformation in disease has
been discussed previously15,27,49. Many diverse cellular pheno-
types are known to rely heavily on the flux of ions and solutes,
which are controlled by the changes in activity of membrane
transporters50–52. We highlight the importance of ion channels in
cancer with a data science approach, using the large TCGA
database as a source for classifying cancers based on channel
expression only. We also highlight the use of classification feature
weights for focusing on particular genes and gene subtypes.
Aquaporins for example consistently appear in the analysis, and
are involved in the model in the later part of the paper, yet their
impact on cancer and greater regulatory control is not well

Table 4 Phenotype expression specification generated from gene arrays from MEFs

Cellular property Expected change Reasoning Model expected results

Viability
HOM vs. HET No change No incresase in proliferative ability or apoptosis observed

(Kerr et al.42)
Viability value of 2 under HOM conditions

Attachment
HOM vs. HET Decrease Increased colonisation phenotype, more invasive cells

(Kerr et al.42)
Attachment decrease from 2 to 1 or 0 under HOM
conditions

Cell size
HOM vs. HET Increase No observed change in cell size (Kerr et al.42) Cell size value of 1 under HOM conditions

Shown is the expected cellular behaviour under homozygous Kras mutant conditions when compared to heterozygous conditions, the reasoning, and the expected results from the model
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understood, and a more detailed executable model may in the
future lead to further insights.

Here, we describe the first computational model of an inter-
linked network of ion channels and transporters involved in
osmotic regulation, and show that dysregulation of the membrane
transport network may explain and impact the behaviour of cells
in disease such as cancer. Whilst many recent studies have
highlighted membrane transporters as markers for cancers, little
attempt has been made at a mechanistic explanation for
the transformation of cells in cancer with respect to membrane
transport. We show that membrane transporters not only cor-
relate specifically with different cellular phenotypes associated

with cancer, but that they are a principal agent in the transfor-
mation of cellular phenotype under many conditions. Further-
more, our data supports the notion that ion channels are a
highly effective therapeutic target in the treatment of transfor-
mative disease, and demonstrate this with experimental
examples of targeted changes in cellular phenotype using
SiRNA knockdown experiments, and channel inhibitors. We
also provide an explanation and potential solution to the failure
of SLC9 specific inhibitors in the treatment of cancer
metastasis, and confirm current studies53–55 suggesting that
dysadherin is a potential therapeutic target for cancer associated
cellular transformations.
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Fig. 5 Application of the qualitative network to murine embryonic fibroblasts. Expansion of the QN to p53−/−, KrasG12D/+ (HET) and p53−/−, KrasG12D/G12D

(HOM) MEFs. a Transport proteins deregulated within HOM MEFs when compared to HET MEFs. Proteins are upregulated (red arrows), downregulated
(blue arrows), or unchanged (grey). b Phenotype change for MEFS when HOM MEFs are compared to HET MEFs. The model output represents the
physiological behaviour predicted by the model when proteins from (a) are deregulated in the model in the same manner as in the gene array. Experimental
phenotype represents behaviour reported previously42, where it is known. The model predicts that attachment will be significantly different between the
two cell types, but viability and cell size will remain unchanged. c Effects of application of channel inhibitors to HOM MEFs in vitro showing application of
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Dotted lines represent calculated Bliss independence values. d Effects of application of 10 µM DIDs ± 10 nM EIPA on viability in HOM MEFs. e Effects of
application of 10 µM DIDs ± 10 nM AHCL on attachment in HOM MEFs. f Effects of application of 10 µM DIDs ± 10 nM AHCL on viability in HOM MEFs.
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Lymph node transformation upon exposure to tumour factors
is still a poorly understood process. It is accepted that LNs
respond to tumour factors before the arrival of cancer cells, and
that they form a pre-metastatic environment suitable for the
spreading and embedding of cancers35. Stromal cells are highly
integral to this process, and whilst the physiological and pheno-
typical changes associated with this process have been demon-
strated, a mechanism has not previously been elucidated. We
propose that the reorganisation of ion channel expression is one
of the key mechanisms by which cellular transformation of TDLN
FRCs occurs. We have shown that targeted knockdown of certain
channels in vitro systems can modulate behaviour in specific ways
within FRCs.

Additionally, the model can be rapidly adapted to different
challenges with simple adjustments to the base model directed by
readily available single-cell expression data. LPS exposure repre-
sents changes associated with the LN immune response, and is an
entirely different physiological stimulus to TFs. We find that our
model accurately predicted the cellular responses displayed in the
literature, without major iteration of the mathematical under-
pinning of the model. The fact that ion channel expression can
describe cellular behaviours such as attachment capability is not
surprising—the impact of many individual ion channels on cel-
lular behaviour has been extensively studied, however, our QN
represents the first case of an attempt of unifying their concerted
actions on cellular phenotype mechanistically.

We also apply the model to a different cell system—that of
MEFs heterozygous for a Kras mutant gene, and their homo-
zygous mutant counterparts42, that show a distinct phenotype.
We show that ion channel dysregulation correlates with the
observed cell phenotype and that this behaviour can be
manipulated with the inhibition of specific channels, and thus
show that physiologically distinct systems alter their behaviour
using a common apparatus.

We go on to prove a predicted synergistic effect on attachment,
and an additive effect on viability in MEFs that has been hinted at
previously56. We suggest that the use of inhibitors of both SLC4
and SLC9 channels simultaneously will overcome previous lim-
itations on the treatment of metastatic cancers using SLC9 inhi-
bitors alone47, and demonstrate that this is feasible with in vitro
experiments. Finally, the MEF data raise an important issue
regarding the clinical interpretation of cellular cancer phenotypes
in different contexts. In mastocytoma models loss of attachment
ability is linked with reduced metastasis48. In contrast the
decreased attachment of HOM MEFs in vitro correlates with
increased metastasic potential42. The QN presents a platform for
targeted drugability of disease states, particularly poignant in this
case—as there are many highly specific, naturally occurring
inhibitors of ion channels derived from natural compounds such
as venoms and neurotoxins readily available57–59.

Whilst we do not claim to completely encapsulate all cellular
behaviour, or the only mechanism for its change, we have shown
that focusing on ion channels is enough to partly explain cellular
morphological change, and provide useful predictions for mod-
ulation of cellular behaviour, though we note that predictions
validated here are only tested in vitro.

In summary, using data science, and an executable model
tuned on experimental gene expression data, we demonstrate that
ion channel expression correlates with, and coordinates cellular
transformation in disease states, notably cancer. We show that
expression of channel allows discrimination of cancer types, and
that regulators of osmosis are key channels involved in the dis-
crimination of cancer and non-cancer cells. We generate an
executable model to explore the osmotic regulation network. We
validate our model with knockdown experiments and inhibitor
compounds, and show that targeted disruption of this

interconnected system of transporters in vitro can alter cellular
behaviour in predictable ways. Further work will refine compo-
nents of the model to be more detailed, such as calcium signalling
and aquaporin regulation, and expand the model to more clini-
cally relevant systems.

Methods
Analysis of TCGA data on membrane transport proteins. The RNA-seq counts
data was downloaded from the TCGA data portal (https://portal.gdc.cancer.gov/),
and a CPM (counts per millions) normalisation was applied on all samples.

The resultant dataset contains 11,574 samples, 10,831 (93.6%) of which are
cancer cells, 743 (6.4%) of which are non-cancer cells, from 37 different projects
covering a range of cancers.

t-SNE was run using the t-SNE method available as part of the sklearn package
in python. In order to speed up the running of the t-SNE algorithm, principal
component analysis (PCA) was initially applied to the data to reduce it down to 50
dimensions. We implemented PCA using the sklearnPCA module. The reduced
dimension data was then used as input for t-SNE clustering. We chose to
implement the barnes-hut methodology, with a perplexity of 15, learning rate of
1000, and using 1000 iterations of the algorithm. We implemented the t-SNE
module within sklearn.

Once t-SNE clustering was performed, we further clustered the resultant 2-
dimesional map using k-means clustering from the KMeans module within sklearn,
with a target number of clusters of 16 to generate the central points of each cluster.
Central points of each cluster were then used to generate the voronoi surface using
the Voronoi module within scipy in python. Figures were generated with Seaborn
within Matplotlib v2.0.260.

We chose to utilise the XGboost module within sklearn to perform binary
classification61. The gene expression data was given an extra classifier based on
whether it is reported to come from a tumour sample (value of 1), or non-tumour
sample (value of 0). The dataset was divided into a test set consisting of a random
sample of 20% of the data. The remaining 80% of the data was used to proceed with
learning, during which the sample type classifier (tumour vs. normal) was removed.
Parameter grid searching revealed the optimal parameters for this dataset to be a
maximum tree depth of 7, number of estimators to include as 400, and the learning
rate to be 0.1. We then trained the module using K-folds cross validation on 10%
subsets of the data, iterating with the F1 score. Early stopping was used after 40
rounds to prevent overfitting. The resultant model was then used to predict the
classification of the previously unseen test set. Model accuracy was assessed using
the Matthews Correlation Coefficient. Feature weights and feature gains
(Supplementary Fig. 1D) show the more commonly used genes for classification,
and strongest determiners of cell type, respectively.

Heatmaps of feature weights were generated by taking random subsets of 25
cancer, and 25 non-cancer samples. Only the top 25 feature weighted genes were
then used for heatmaps. Heatmaps were generated and clustered using hierarchical
clustering. The classifier column (value of 1 for cancer samples, and 0 for non-
cancer) was included in the clustering to ensure separation of the two sample types.
Values were normalised before being plotted using Seaborn and Matplotlib60.

Qualitative network models. Qualitative networks are an extension of Boolean
networks, described in detail in62. Briefly, a qualitative network, Q(V,T,N), is
formally defined as consisting of variables (V ¼ ν1; ν2; ν3; ¼ νnð Þ, representing
genes, proteins, or other components), target functions (T) and granularity (N+ 1).
A state of the system is a finite map s : V ! 0¼Nf g. Each variable has a specific
target function associated with it, and variables update synchronously. The target
functions determine the update of the network from a state s ¼ d1; d2; d3; ¼ dnð Þ
to the next state s′ ¼ d′1; d

′
2; d

′
3; ¼ d′n

� �
computed as in Eq. 1:

d′i ¼
di þ 1 di <N and di < TiðsÞ
di � 1 di � 1 di > 0 and di>TiðsÞ
di otherwise

8
><

>:
ð1Þ

As the model state space is finite, the set of recurring states (states can reach
themselves after a finite number of steps) is never empty. A QN is said to be
stabilising if there exists a unique recurring state and the next state s′ ¼ s.

In biological terms values in these models represent states of biological activity,
such as the ranges of the expression of proteins, varying concentrations of
chemicals within systems. The associated target function is an algebraic formula
that describes how the variable responds to upstream variables; that is to say, how it
is activated and deactivated in response to stimuli.

Stability refers to the concept by which a model can eventually reach a point in
simulation from all possible starting states where it only updates to the state it is
already in—it reaches a single fixed point. Stability in terms of biology therefore
can be used as a specification for such biological phenomena as homoeostasis or
equilibria.
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The BioModel Analyzer. The BioModelAnalyzer (BMA) is a graphical interface
for the construction and analysis of qualitative networks, is publicly available
(http://biomodelanalyzer.org) and is described in detail elsewhere63,64. It allows
construction of QNs through a simple drag-and-drop interface, and testing and
simulation can be performed through the use of in-built stability, LTL analysis
(bounded model checking) and simulation functions. All models presented in this
study are available in their entirety at https://doi.org/10.5281/zenodo.1257326.

Details of specification for TDLNs. We recently demonstrated35 that LN FRCs
undergo transcriptional and phenotypic changes when exposed to tumour factors
(TFs). In particular, we observed substantial remodelling within the conduit net-
work, of which FRCs are the key structural component, over time. Conduit dia-
meters increased, the number of branches within them decreased, and conduits
appear to become more contractile. We were able to surmise the changes in cell
phenotype into a group of specific cell behaviours that are different between control
non-tumour draining lymph nodes (NTDLN), and LN in the early and late stages
of exposure to tumour factors named early tumour draining lymph nodes
(ETDLN), and late tumour draining lymph nodes (LTDLN) respectively. Findings
by Reidel et al. indicate that there is a difference between the phenotypes of FRCs
following 4 days of exposure to TFs (ETDLN), and 11 days (LTDLN), and we chose
to use these time points as our definition of early and late stage characteristics.

In TDLNs, proliferative expansion of FRCs contributed to the remodelling
observed. During this transformation process, as would be expected during large
structural reorganisation, there was a significant dysregulation to cell–cell adhesion
pathways upon exposure to TFs, resulting in higher cell–cell attachment. Moreover,
FRCs exposed to TF become more contractile, and the conduit network is known
to be more elastic in malignant systems40,65,66 (Supplementary Fig. 8A). In
contrast, in the case of inflammation, FRCs exposed to LPS exhibit a reduction in
contractility with increased proliferation38,39.

Beyond morphological changes, gene array analysis confirmed that proliferation
and cellular junction/attachment pathways were deregulated at the transcriptional
level after exposure (Supplementary Fig. 8B), and also highlighted movement/
migration pathways as undergoing significant alteration. Whilst it is unclear
whether FRCs in the conduit network move substantially during transformation
there is a large degree of overlap between cell motility and cell membrane
dynamics67,68. As such we chose to interpret and model movement/migration
pathway deregulation in the context of dynamic motion of the membrane. The
membrane dynamics of FRC networks are likely critical to their immune function,
regulating immune cell access to antigen-rich lymph fluid transported within
conduits, from which they sample lymph directly69,70. On this basis, we chose to
have a single output node for movement/membrane dynamics together, as these
behaviours are difficult to dissociate, and are highly interrelated. By combining
morphological and gene array analysis we are able to generate a description of
cellular behaviour under different conditions (Supplementary Fig. 8C).

Details of specification for LPS exposed LNs. The presence of LPS in the LN is a
sign of immune infection. Upon detection of a bacterial or other immune threats,
the LN initiates an immune reaction resulting in morphological changes to the
organ itself, and to the cells that form it. Stromal cells in particular, such as FRCs,
transform significantly under immune activation of the LN39. FRCs are observed to
reduce in their contractile properties, allowing an initial expansion of the conduit
network of which they are the principal structural element38. The proliferative rate
of FRCs under immune reaction also increases, contributing to LN swelling36,39.
Gene pathway deregulation, and integrin expression predict that migration/motile
ability of FRCs under immune conditions will be increased36,71, a position sup-
ported by general understanding of organ morphology changes39.

Details of specification for KrasG12D MEFs. A specification for the phenotypic
differences between p53−/−;KrasG12D/+ (HET) and p53−/−;KrasG12D/G12D (HOM)
MEFs was generated through reference to published data42. Cell size and pro-
liferative capabilities remain unchanged, but metastatic potential through a colo-
nisation assay increased in HOMs.

Details of model generation. The model is generated form the literature. Inter-
actions between proteins and ions are determined through thorough literature
review, and refined against emergent behaviour of the model, literature justifica-
tions for biological function of genes involved in the model are detailed in Sup-
plementary Data 5. The model is broken down into components for an easier
understanding hereafter.

The osmotic regulation model was constructed based on the canonical proteins
involved in primary osmotic response. Osmotic pressure changes are sensed by a
cell, and channels involved in the response are activated, or in some cases
upregulated. The activation of these channels results in a rapid influx or efflux of
ions down their concentration gradients. As the osmotic pressure gradient is
rectified, then the channels reduce in activity, and osmotic pressure is maintained.
As the mechanisms by which cells sense and response directly to osmotic pressure
are complex, and not fully understood, we chose to abstract the osmotic pressure
sensed by the cell into a single node that corresponds to the difference between
internal and external osmolyte concentrations. We increased the granularity of

nodes representation transporting proteins, as this allowed the network to stabilise
despite its cyclical nature. Biologically this slowness (as nodes can only update by a
single step at a time) to respond to changes in osmotic pressure represents both the
upregulation of osmotic response genes, and the graded response mechanosensitive
channels can have to membrane pressure.

A module was included representing calcium signalling. The temporal and
spatial properties of calcium exert numerous controls over cellular behaviours
including movement and migration, proliferation, and adhesion. Calcium is also
somewhat involved in the osmotic response. The calcium signalling region of the
model contains pumps involved in moving calcium between the plasma membrane,
cytoplasm, and endoplasmic reticulum (ER), as well as an abstracted node for
calcium pulse rate. Whilst we are unable to capture spatial polarisation properties
explicitly within our model (though this is theoretically possible), the rate of
calcium pulses from the ER is directly linked to cellular behaviour such as focal
adhesion stability. We chose to represent calcium pulses with an integer value,
rather than a cycle within the model, in order to make stability analysis possible.

Maintenance of pH within mammalian cells is performed via a mechanism that
is similar to osmotic regulation, and many components are shared, as such we
explicitly included a pH maintenance motif. The pH of cellular components must
be maintained within a standard range, in order to maintain enzymatic function,
and metabolic rates. pH dependent proteins change their activity levels in response
to different pHs, resulting in a robust equilibrium. We chose to include the pH
maintenance network due to the overlap of many proteins with those in the
osmoregulatory network, such as NHE proteins, and due to the integral role pH
plays in cellular behaviour, and particularly cancer phenotype. We chose to include
pH domains for the glycocalyx (the sugar containing shell surrounding a cell), and
the cytoplasm. We increased the granularity of the pH node from 4 (in the majority
of the rest of the model) to 6. This allowed a better discrimination of the effects of
certain protein knockdowns on pH (as pH could be altered by a small amount that
is significant but not registered when the node is 0–4).

We chose not to explicitly represent any metabolic processes due to the
complexity of the model. Instead we chose to represent metabolic output in terms
of an explicit mitochondrial activity node. This node influences the available
concentrations of metabolic outputs, such as protons and lactate. This node is
altered in disease states where metabolism is disrupted. This is the case in HOM
cells42.

By curation of the literature, phenotypes and their associations with ion
concentrations within regions of the cell were generated. These were then added to
the model, phenotypes involved, and associated references are included in
Supplementary Data 3.

Verification of the model. Most conditions were tested using BioModelAnalyzer
using the unbounded stability proof algorithm from Cook et al.63, through the
BioModelAnalyzer web interface. For a single condition (External Ion Con-
centration of 2, with no other external factors present), unbounded model checking
was not possible, and bounded checking performed through the command line
version of the tool18 were tested, using pairs of queries (eventually selfloop) and
(eventually selfloop and not A), where A is the selfloop state of the system iden-
tified by the first query. The bound for simulations was set to 20 steps. Testing with
larger bounds timed out on our workstations. (Time limit 24 h, workstation with
Intel xeon CPU E5-2697 v3 @ 2.60 GHz processor).

Analysis of microarrays. TDLN microarray data was normalised and pre-
processed using the lumi package. In short, the bottom 50% of the genes by inter-
sample variance were removed, variance stabilisation transformation was per-
formed followed by quantile normalisation. Genes were then filtered by P-value
(P > 0.05 were excluded), and fold change ±1.5.

LPS exposed microarray data was analysed using GenePattern, specifically the
ComparativeMarkerSelection tool was used. After normalisation using the
PreprocessDataset module, resultant data was fed into comparative marker
selection for analysis. A two-sided t-test was used to generate P-values, and the
results were filtered by P-value (P > 0.05 were excluded), and fold change ±1.5.

MEF microarray data was normalised and preprocessed using the lumi package.
In short, the bottom 50% of the genes by inter-sample variance were removed,
variance stabilisation transformation was performed followed by quantile
normalisation. Genes were then filtered by P-value (P > 0.05 were excluded), and
fold change (genes ± 1.3 were included).

Cell culture. Primary murine fibroblastic reticular cells (pmFRCs) were isolated
from murine lymph nodes of C57BL/6 mice. Lymph nodes were mechanically
disrupted and digested in a 500 μl mixture of 1 mg/ml collagenase A (Roche) and
0.4 mg/ml DNase I (Roche) in PBS at 37 °C for 30 min with 600 r.p.m. rotation.
Following centrifugation at 1000 r.p.m. for 5 min, the supernatant was discarded
and replaced with 500 μl of PBS containing 1 mg/ml Collagenase D (Roche) and
0.4 mg/ml DNase I. The mixture returned to 37 °C for 20 min with 600 rpm
rotation before addition of EDTA (final concentration 10 mM). PmFRCs were
characterised based on their expression of Pdpn and VCAM-1 and their lack of
expression of CD45 and CD31 via flow cytometry. Cells were maintained in RPMI
(R875, Sigma Aldrich) with 10% foetal bovine serum (Sigma Aldrich), 10 mM
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HEPES, 100 U/ml penicillin-streptomycin (both Life Technologies), 15 μM beta-
mercaptoethanol (Sigma-Aldrich) in a 37 °C incubator with 5% CO2.

For MEFs, animals were maintained under SPF conditions and in compliance
with UK Home Office regulations. KrasLSL-G12D mice were crossbred to p53Fx to
obtain mixed background (C57Bl/6/129/Sv) KrasLSL-G12D/+;p53Fx/Fx mice. For
MEF generation, KrasLSL-G12D/+;p53Fx/Fx mice were crossed, embryos collected at
embryonic day (E)12.5 and fibroblasts isolated. Adenoviral cre-mediated
recombination of alleles was performed one passage after isolation using 5 × 107

plaque-forming units per 1 × 106 cells (University of Iowa, Viral Vector Core).
Cells were cultured in DMEM supplemented with 10% FBS, 2 mM L-glutamine
(Life Technologies) and maintained at 37 °C with 5% CO2.

All cells were regularly checked for mycoplasma contamination.

RNA interference. Commercially available endoribonuclease-prepared siRNAs
pools comprising a mixture of siRNAs that all target the same mRNA sequence
(Sigma) were used for the targeted knock-down of the mRNAs for ATP2A3,
FXYD5 and SLC9A1. Briefly, 100,000 pmFRCs were reversely transfected with 1600
ng esiRNA with the help of Lipofectamine RNAiMAX (Thermo Fisher Scientific)
transfection reagent in a six-well plate. Twenty-four hours later the medium was
exchanged and 72 h after assays (attachment and qRT-PCR) were performed.

Viability assays. 1000 Murine primary pmFRCs were reversely transfected with
100 ng esiRNA (Sigma) and seeded in triplicates into a 96-well plate. Twenty-four
hours later the medium was exchanged and 72 h later cell viability was measured by
the addition of CellTiter-Blue (Promega) viability assay reagent. After 6 h of
incubation under normal growth conditions, fluorescence intensities were mea-
sured at 560EX nm/590EM nm with a microplate reader (Tecan).

KrasG12D/G12D; p53null MEFs were seeded at 3000 cells per well in clear 96 well
plates and allowed to adhere overnight. Cells were then treated with indicated
concentrations of DIDS, EIPA, AHCL or a combination of these and cell viability
was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT, Sigma) assay after 72 h. Cells were incubated with 0.5 mg/ml MTT solution
for 3 h at 37 °C before stain was resuspended in DMSO and absorbance at 570 nm
determined by microplate reader (Tecan).

Proliferation assays. 5000 Murine primary pmFRCs were reversely transfected
with 160 ng esiRNA (Sigma) and seeded in quadriplicate into a 96-well plate.
Media was exchanged 6 h post-transfection. Proliferation was determined by
measuring cellular confluence, over 70 h, in an Incucyte Zoom Live-Cell Analysis
System (Essen Bioscience).

Attachment assays. 5000 pmFRCs were seeded per well in a 16 chamber E-plate
and loaded into a xCELLigence system (both ACEA) maintained in a 37 °C
incubator with 5% CO2. Electrical impedance was measured every 10 min until 3 h
after seeding.

KrasG12D/G12D; p53null MEFs were seeded at 3000 cells per well in a 16 chamber
E-plate (ACEA), treated with DIDS and/or EIPA or AHCL and immediately loaded
into the xCELLigence system (ACEA) maintained in a 37 °C incubator with 5%
CO2. Electrical impedance was measured every 15 min over 4 h post-seeding.

Statistical analysis. All viability, proliferation, and attachment assays were
assessed using the two tailed unpaired t-test with *P < 0.05, **P < 0.01, ***P < 0.001.

Quantitative reverse-transcription PCR (qRT-PCR). RNA extraction was per-
formed using the RNeasy Mini Kit (QIAGEN). One microgram of total RNA was
reverse transcribed using the First Strand cDNA synthesis Kit (Thermo Scientific)
with oligo(dT) primers. qRT-PCR was performed using TaqMan assays (ATP2A3
(Mm00443911_m1), FXYD5 (Mm00435435_m1), SLC9A1 (Mm00444270_m1))
and a StepOne Real Time PCR System instrument (both Life Technologies).

Reagents. 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate
(DIDS), 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) and Amiloride hydrochloride
(AHCL) were purchased from Sigma (D3514, A3085 and A0370000) and dissolved
in DMSO.

Chloride channel blocker analysis. KrasG12D/G12D; p53null MEFs were seeded at
3000 cells per well in black, clear-bottomed 96-well plates and allowed to adhere
overnight. Cells were then pre-incubated for 1 h with 5 mM N-(Ethox-
ycarbonylmethyl)-6-Methoxyquinolinium Bromide (MQAE, Sigma, 46123) before
PBS wash and addition of a range of DIDS concentrations in culture media, fol-
lowing which fluorescence intensities (Ex: 350 nm Em: 460 nm) measured by
microplate reader (Tecan) over 4 h. Data was normalised to non-MQAE DIDS-
treated control.

Data availability. All models generated in this manuscript are available for
download https://doi.org/10.5281/zenodo.1257326, and are additionally supplied as

Supplementary Data 6. Models can be run using the BioModelAnalyzer (http://
biomodelanalyzer.org).

Code availability. Code for replicating XGboost machine learning on publicly
available gene expression data is available for download https://doi.org/10.5281/
zenodo.1257326.
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