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A B S T R A C T

A study is made of the saturation mechanism of a single superradiant ‘spike’ of radiation in a Free Electron
Laser. A one-dimensional (1D) computer model is developed using the Puffin, un-averaged FEL simulation code,
which allows sub-radiation wavelength evolution of both the spike radiation field and the electron dynamics to
be modelled until the highly non-linear saturation process of the spike is observed. Animations of the process
from the start to the end of the interaction are available. The resultant saturated spike duration is at the
sub-wavelength scale and has a broad spectrum. The electrons passing through the spike can both lose and
gain energy many times greater than that of the ‘normal’ non-pulsed FEL interaction. A saturation mechanism
is proposed and tested via a simple analysis of the 1D FEL equations. The scaling results of the analysis are
seen to be in good agreement with the numerical results. A simple model of three dimensional diffraction
effects of the radiation is applied to the results of the 1D simulations. This greatly reduces longer wavelengths
of the power spectrum, which are seen to be emitted mainly after the electrons have propagated through the
spike, and is seen to be in qualitative agreement with recent experimental results.
Introduction

Analytical studies of FEL amplifiers have identified two distinct so-
lutions to the equations describing the co-propagation of the electrons
and radiation in the FEL undulator: the Steady-State and Superradi-
ant regimes [1–5]. When the equations describing the FEL electron–
radiation interaction are averaged over at least one resonant radiation
wavelength, the pulsed superradiant emission, describing pulse effects,
has been shown to have a hyperbolic secant solution for the radiation
field emitted in this regime [6]. An experiment has also recently
investigated superradiant pulses obtained from an FEL oscillator [7].

As a superradiant radiation pulse, or ‘spike’, evolves in an electron
beam, the averaged analysis and numerical simulations predicts that
as the spike’s peak power increases, its temporal duration decreases.
Clearly, both the analysis and simulations will start to break down
when spike durations start to approach that of the radiation wave-
length. Hence, the evolution of ultra-short spikes in FELs is not fully
described or understood. Both analytical methods and numerical simu-
lations are unable to determine whether superradiant spikes eventually
reach a saturation point and the self-similar solution breaks down. A
preliminary study has already shown that the averaged and unaveraged
numerical simulations diverge, once sub-period effects occur in the
evolution of ultra-short superradiance FEL spikes [8,9].
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To help advance our understanding of the spike evolution, the
unaveraged numerical simulation code Puffin [10,11] was used to
study the highly nonlinear FEL radiation spike growth and evolution
as it propagates through a uniform, effectively infinitely long, electron
beam. These simulations were conducted in the 1D, cold beam limit,
and have unveiled a novel regime in which the superradiant spike is
seen to saturate. This research provides an idealised baseline and gives
new insights into the evolution of FEL superradiant spikes and the
electron dynamics at sub-wavelength scales.

Simulation model

Unaveraged numerical simulations of FEL pulse evolution using
Puffin in the 1D limit are now presented. The parameters used in the
simulation are not intended to represent any particular existing or
proposed FEL experiment, but are used to investigate the basic FEL
interaction as it enters the highly non-linear regime of very intense radi-
ation pulse evolution with sub-wavelength resolution. Previous studies
comparing Puffin with experiments and averaged 3D FEL simulation
codes have shown good agreement when the FEL parameters do not
vary significantly over a radiation wavelength [9].

The parameters used here are scaled using the FEL parameter 𝜌,
defined as [12]:

𝜌 = 1
𝛾𝑟

(𝑎𝑤𝜔𝑝

4𝑐𝑘𝑤

)2∕3
, (1)
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Fig. 1. Schematic of the simulation window in the scaled radiation frame of reference �̄�2 = (𝑐𝑡−𝑧)∕𝑙𝑐 . It consists of three main regions, Head, Interaction and Tail. All macroparticles
propagate left-to-right as their speed is less than that of light. Top: The macroparticles representing the electron beam have propagated one undulator period (left-to-right) through
an intense radiation pulse. The ‘slow’ macroparticles (red) have lost energy to the radiation pulse and some have propagated into the tail window 24 < �̄�2 < 24 +𝑊 , as have some
that have gained energy from the pulse (blue). Those that propagate further than the Tail window, �̄�2 > 24 +𝑊 , are re-assigned into the Head window by application of periodic
boundary conditions over −𝑊 < �̄�2 < 24 + 𝑊 . Bottom: All macroparticles in both the Head and Tail windows are then re-initialised as shown, with equal spacing in �̄�2 and a
resonant, monoenergetic distribution. Here 𝑊 represents the range of the windows in �̄�2 for simulating different values of 𝜌, e.g. 𝑊 = 238 for 1 ≤ 4𝜋𝜌 ≤ 1.25, and 𝑊 = 488 for
0.5 ≤ 4𝜋𝜌 < 1.
w

where 𝛾𝑟 is the resonant electron beam Lorentz factor, 𝑎𝑤 is the un-
dulator parameter, 𝑘𝑤 = 2𝜋∕𝜆𝑤 is the undulator wavenumber, 𝜔𝑝 =
√

𝑒2𝑛𝑝∕𝜖0𝑚𝑒 is the non-relativistic electron beam plasma frequency, and
𝑛𝑝 is the peak number density of the electron beam.

Other important scaling parameters derived from this fundamental
scaling parameter include [13]: the cooperation length, 𝑙𝑐 = 𝜆𝑟∕4𝜋𝜌,
where 𝜆𝑟 is the resonant radiation wavelength; the gain length, 𝑙𝑔 =
𝜆𝑤∕4𝜋𝜌, where 𝜆𝑤 is the undulator period; the scaled distance through
the undulator �̄� = 𝑧∕𝑙𝑔 = 4𝜋𝜌𝑁𝑤, where 𝑁𝑤 is the number of the
undulator periods; and �̄�2 = (𝑐𝑡 − 𝑧)∕𝑙𝑐 is the scaled length in the
radiation frame of reference.

In the Puffin simulation code, the electron beam is modelled using
a system of macroparticles. The beam is assumed to be an infinitely
long ‘CW’ cold beam, i.e. zero energy spread, with all initial param-
eters having a uniform distribution. The coupled radiation/electron
equations are solved in a simulation window travelling at the speed
of light and therefore of fixed width in �̄�2. As the electrons propagate
at a lesser speed, the macroparticles therefore always propagate to
larger values of �̄�2 in this window and with a resonant macroparticle
having a propagation speed of 𝑑�̄�2∕𝑑�̄� = 1. The fact that 𝑑�̄�2∕𝑑�̄� > 0
for all macroparticles assists in the modelling of an infinite electron
beam. The simulation window is defined by three separate regions: the
head, interaction and tail windows. The interaction window contains
the initial radiation pulse field and is where the spike of the radiation
evolves. The macroparticle positions in �̄�2 are tested at the end of
each undulator period and those that have propagated outside of the
interaction window, into the tail window, are re-initialised in both
position and energy to re-populate the head window and so maintain a
CW electron beam. The initial number of macroparticles per radiation
wavelength is set to 800. A schematic of the simulation windows and
the process of re-initialisation of the macroparticles between at the end
of 𝑁𝑤 and before starting 𝑁𝑤 + 1 undulator periods is shown in Fig. 1.

The initial electron phases of the 𝑗th macroparticle, �̄�2𝑗 , are uni-
formly distributed over the simulation window, with all Lorentz factors
set equal to the resonant energy 𝛾𝑟 = 100, so that 𝑝𝑗 = (𝛾𝑗 − 𝛾𝑟)∕𝜌𝛾𝑟 = 0
∀𝑗. The undulator has period 𝜆𝑤 = 4 cm and undulator parameter
𝑎𝑤 = 1.0.

Simulation example

Superradiant pulse behaviour into the highly non-linear regime and
with sub-wavelength resolution is now investigated using the above
2

simulation method and parameters in a helical undulator configuration.
The radiation–electron evolution is first modelled from a relatively
low power input seed pulse through to a very short, high power
superradiant spike. It is demonstrated that, for the relatively large value
of 𝜌 = 1∕4𝜋 used, the superradiant spike interaction saturates following
a long propagation distance of approximately 400 gain lengths (�̄� ≈ 400)
and with a peak scaled intensity approximately 4000 times the usual
steady-state saturation intensity of |𝐴𝑠𝑎𝑡|

2 ∼ 1.4 [12]. While this type of
evolution may not currently be practical with current FEL systems, it
is of general interest to observe the radiation spike saturation process.

The scaling of the saturated values of peak spike energy etc, is then
investigated for different values of 𝜌, and an estimate is made of how
3D diffractive effects may affect the radiation spike properties.

Superradiant pulse simulation

With the value of 𝜌 = 1∕4𝜋, one radiation period corresponds to a
scaled length of 𝛥�̄�2 = 1, and one undulator period of 𝛥�̄� = 1. A rela-
tively small Gaussian seed radiation field of scaled intensity |𝐴0|

2 = 0.4,
width 𝜎(�̄�2) = 2 and centred at �̄�2 = 12, is injected into the interaction

indow 0 ≤ �̄�2 ≤ 24 and is set to zero elsewhere at the undulator
entrance �̄� = 0. From this seed field a superradiant interaction evolves
which is effectively independent of the initial seed. The field is sampled
uniformly at 201 points per radiation wavelength. After propagating
a scaled distance of �̄� = 4𝜋𝜌𝑁 for 𝑁 = 1, 2, 3,… , 𝑁𝑤, where 𝑁𝑤 is
the number of undulator periods, the macroparticles and the radiation
field outside the interval 0 ≤ �̄�2 ≤ 24 are re-initialised in the head
and tail windows as described above. The number of integration steps
over one undulator period is 800, with the macroparticle and radiation
data saved every 20 steps. The sub-wavelength radiation and electron
dynamics can then be observed with the resolution of 𝜆𝑟∕20.

The results of the simulation up to a normal steady-state type FEL
saturation process are shown in Fig. 2 at undulator positions �̄� = 9 and
10 over the observation interval 0 ≤ �̄�2 ≤ 8 in the interaction window
as shown in Fig. 1.

The electron phase-space (�̄�2𝑗 , 𝑝𝑗 ), scaled circularly polarised radia-
tion fields components 𝐴𝑥, 𝐴𝑦, the corresponding scaled intensity |𝐴|2

and the scaled power spectrum 𝑃 are plotted. The localised electron
number density �̄�𝑒, initially �̄�𝑒 = 1 for the ‘fresh’ uniform electron beam
at �̄� = 0, and localised energy 𝛴𝑝 , are also plotted.
𝑗
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Fig. 2. FEL electron phase-space and radiation evolution about post-linear evolution saturation of the radiation pulse. (a,c) are at �̄� = 9, and (b,d) are at �̄� = 10. Top (a,b): The
electron phase-space (�̄�2𝑗 , 𝑝𝑗 ) (black dotted) and localised net energy 𝛴𝑝𝑗 . Middle (a,b): The radiation field components 𝐴𝑥, 𝐴𝑦 (blue and red solid lines) and localised electron
number density �̄�𝑒 (green bars) as normalised to 1 for a ‘fresh’ unbunched beam. The bar plots for the localised electron parameters 𝛴𝑝𝑗 and �̄�𝑒 are within the bins of width 𝜆𝑟∕20.
Bottom (a,b): The scaled radiation power |𝐴(�̄�2)|

2. Plots (c,d) are of the scaled spectral power 𝑃 (𝜔) as a function of frequency scaled with respect to the resonant frequency 𝜔𝑟.
Note that as 4𝜋𝜌 = 1 in this simulation, a resonant electron propagates one undulator period for a change of 𝛥�̄� = 1, and one radiation period corresponds to a change of 𝛥�̄�2 = 1.
Electronic version: To see an animation of the interaction over 2 undulator periods click Fig. 2 (a) or (b). An animation of the full evolution from the start of the undulator to
full saturation is also available from [14].
In Fig. 2(a), at �̄� = 9, the interaction is approaching the ‘normal’,
post-linear evolution FEL saturation process, as described in [13].
The electrons are seen to be strongly bunched about the peak of the
radiation pulse with a bunch spacing at the fundamental radiation
wavelength (𝛥�̄�2 ∼ 1). Notice that the bunched electrons drive the field
locally at the sub-wavelength scale, unlike in averaged simulations.

In Fig. 2(b), at �̄� = 10, the electron bunching is seen to saturate and
begin to de-bunch around the peak of the radiation power at (�̄�2 ∼ 5.5).
For �̄�2 > 5.5 the de-bunching electrons are seen to start re-absorbing
energy from the radiation causing its pulse duration to start to decrease
post-saturation. At both values of �̄�, the power spectrum is seen to be
centred about resonance 𝜔∕𝜔𝑟 = 1.

For further interaction to larger values of �̄� > 10, it can be expected
that this process continues each successive undulator period, with maxi-
mum electron bunching and coherent emission occurring just before the
peak of the radiation power and then de-bunching and re-absorbing.
This then drives the growth of the scaled radiation peak power while
reducing its pulse duration. This regime is shown in Fig. 3 where a
breakdown of the averaged theory model is seen to occur, with electron
bunching deviating from being spaced at the resonant wavelength and
radiation powers approximately constant over a radiation wavelength.
3

In Fig. 3(a), at the scaled undulator distance of �̄� = 40, the
electron pulse is seen to enter the leading radiation pulse ‘edge’ at
�̄�2 ∼ 1, initiating the bunching process as seen from the phase-space
and normalised electron density, �̄�𝑒 (middle). Note that the electron
density variations for �̄�2 > 2 mainly originate from the interaction
during previous undulator periods. The electron bunching process is
seen to occur within one radiation period over one undulator period
positioned about the main radiation peak power about �̄�2 ∼ 2.

During one undulator period (𝛥�̄� = 1), the electrons strongly bunch
within the short radiation pulse, centred at �̄�2 ∼ 2 and of Full Width at
Half Maximum (FWHM) in �̄�2 of 𝜏𝑝 ≈ 1, lose energy and then propagate
out of the main pulse, as seen in the interval 2.5 < �̄�2 < 3.5 for 𝑝𝑗 < 0.
Some electrons also gain energy to values of 𝑝𝑗 > 0. These electrons do
not propagate as quickly to larger values of �̄�2 as those that have lost
energy with 𝑝𝑗 < 0. They also tend to retain their higher energy over
many undulator periods. The energies gained are significantly greater
than those during a normal FEL process where maximum gains are
𝑝𝑗 ∼ 1 - see Figs. 2(a) and 2(b). As may be expected and subsequently
shown, the energy gain of those electrons increases as the spike power
increases.
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Fig. 3. As Fig. 2, but for scaled undulator distances of �̄� = 40 (left) and �̄� = 100 (right). Electronic version: To see an animation of the interaction over 2 undulator periods click
Fig. 3(a) or (b). An animation of the full evolution from the start of the undulator to full saturation is also available from [14].
Note that some of the electrons, in the interval 2.7 < �̄�2 < 3.5, have
lost and then re-gained energy in their interaction with the radiation
pulse. This is because of their initial large energy loss from 𝑝𝑗 = 0 to
𝑝𝑗 ∼ −8 which happens in less than one undulator period (�̄� < 1) as they
enter the radiation pulse and encounter its rapidly increasing power.
This energy loss causes them to propagate rapidly in �̄�2 in the high
power pulse within one undulator period, from a radiation emission
phase, where they lose energy, to a radiation absorption phase, where
they gain energy.

The electrons continue to emit and absorb radiation as they propa-
gate away from the initial radiation pulse, but with reduced bunching,
with a secondary pulse at �̄�2 ∼ 3 and further pulses with reducing
powers following.

The electrons traversing this pulse structure for �̄�2 > 3 are seen to
have bunching structures greater than one radiation wavelength for the
electrons with lower energies, and less than one radiation wavelength
for the electrons with higher energies. Those at the lower energies radi-
ate at longer wavelengths and those at higher energies emit at shorter
wavelengths. This can be seen in the associated scaled radiation power
spectrum in Fig. 3(c), with a prominent lower frequency peak (𝜔∕𝜔𝑟 ∼
0.5). The electrons that have increased in energy, with a (smaller) sub-
wavelength bunching structure contribute to an increased emission at
frequencies just above resonance (𝜔∕𝜔𝑟 ∼ 1). This non-linear radiation
pulse emission still maintains similarities to the superradiant structures
as derived in [6,7,15].
4

In Fig. 3(b), at the scaled undulator distance of �̄� = 100, it can
be seen that process described for Fig. 3(a) has continued, with the
pulse peak radiation power increasing and its duration reducing. This
increased pulse power and reduced duration reduces the time within an
undulator period that electrons experience within the first peak, now
centred at �̄�2 ∼ 1.2. This leads to the electrons entering the subsequent
radiation pulse(s), centred at larger �̄�2, within one undulator period
and leads to a more complex main-pulse/sub-pulse interaction with the
electrons. Note that the pulse width of the main peak has now reduced
to just over half of the radiation wavelength, 𝜏𝑝 ∼ 0.5.

For both �̄� = 40 and 100, the distance between the lower energy
electron bunches that have interacted with the radiation pulse (and
subsequently propagated outside of the observation window in the case
of Fig. 3(d)) exceeds two fundamental wavelengths. This is seen to
result in significant enhanced emission at lower frequencies, 𝜔∕𝜔𝑟 <
0.5, as seen in the spectral power of Figs. 3(c), 3(d).

In Fig. 3(d), a further characteristic in this regime is the rapid
energy fluctuation of electrons that initially lose energy on entering the
pulse. This is due, in part, to the fast inter-wavelength scale movement
of the electrons within one undulator period. Those electrons that
initially gain energy from the radiation pulse can achieve a relatively
high energy value of 𝑝𝑗 ∼ 10 within the first peak. These accelerated
electrons form a more stable, shorter period, electron bunching band
after the first peak at �̄� > 2. This behaviour is evident in the 𝛴𝑝 and
2 𝑗
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𝑛

Fig. 4. As Fig. 2, but for scaled undulator distances of �̄� = 200 (left) and �̄� = 400 (right). Electronic version: To see an animation of the interaction over 2 undulator periods
click Fig. 4(a) or (b). An animation of the full evolution from the start of the undulator to full saturation is also available from [14].
𝑧

̄𝑒 plots of Fig. 3(b) (top and middle). These smaller, higher energy,
electron bunches, positioned within the interval of 1 < �̄�2 < 3, have
spacings that are less than the fundamental radiation wavelength, and
consequently there is a noticeable broadening of the bandwidth in the
higher frequency range as seen in Fig. 3d, for 𝜔∕𝜔𝑟 > 1.

Note that those electrons that have been accelerated by the pulse,
and so gained energy, tend to remain within the simulation window
travelling at the speed of light for a much longer time than those that
have lost energy to the pulse. The latter electrons quickly propagate to
larger values of �̄�2, as can seen in the animations, and then propagate
outside of the simulation window. This is why there appear to be more
electrons at higher energy in the simulation window — most of those
that have lost significant energy to the pulse do not remain visible in
the simulation window.

In Fig. 4, the interaction has progressed to �̄� = 200 (left) and �̄� = 400
(right). The first radiation peak about �̄�2 ≈ 1 is seen to have further
increased in power, and with a reduced width to significantly less than
one radiation wavelength. While the electrons that gain energy have
increased to higher values, it is seen that those that lose energy attain
similar values to those of Fig. 3. This increased power and reduced
width of the radiation pulse induces the electrons to exhibit significant
energy fluctuations in a short interval of propagation through the pulse.
Electrons can then propagate through the pulse of width 𝜏𝑝 < 0.25 in
less than a quarter of an undulator period, experiencing both energy
5

loss and gain as they do so. This is evidenced by the greater spiraling in
phase space of the lower energy electrons that have propagated through
the initial pulse when compared with those of Fig. 3.

As �̄� increases, and the peak pulse decreases in width, higher fre-
quency components of the field with 𝜔∕𝜔𝑟 > 1 receive further growth.
Electrons that have left the radiation peak, form bunches with a greater
spacing in �̄�2 > 1, and consequently emit at a lower-frequency. This is
seen in the lower frequency radiation fields on the trailing edge of the
pulse, where a correlation between the electron bunches and the scaled
field phase is noticeable. This correlation is seen to continue to larger
̄ as the interaction progresses.

In Fig. 5, the short, high power pulse appears to have entered into a
highly non-linear saturated regime, where the growth of the pulse peak
power and its width are very similar at both �̄� = 800 (left) and �̄� = 1100
(right). This pulse saturation process and scaling as a function of the
FEL parameter 𝜌, are now investigated.

Pulse saturation

As the interaction progresses to larger values of �̄�, the growth of
the first radiation spike in the scaled radiation power is seen to have
saturated with |𝐴𝑝|

2 ≈ 7000 around �̄�2 ≈ 0.8, as seen in Fig. 5. While
in Fig. 2(a) it is seen that the average energy lost by the electrons
immediately after passing through the first spike is large, causing the
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Fig. 5. As Fig. 2, but for scaled undulator distances of �̄� = 800 (left) and �̄� = 1100 (right). Electronic version: To see an animation of the interaction over 2 undulator periods
click Fig. 5(a) or (b). An animation of the full evolution from the start of the undulator to full saturation is also available from [14].
𝑧

electron bunches to rapidly propagate in �̄�2 so increasing the distance
between bunches after the spike, in Fig. 5(a) it is seen that the aver-
age energy lost reduces following saturation, causing the electrons to
propagate more slowly in �̄�2. This results in the electron bunches that
have propagated through the first spike having a smaller separation in
�̄�2. Where the bunched electron separation is larger, it is seen that this
contributes to longer wavelength emission. Note also that as saturation
occurs, there are more electrons gaining energy from the spike. The
relative energy gain may be estimated for the 𝑗th electron from the
definition of its 𝑝𝑗 as (𝛾𝑗−𝛾𝑟)∕𝛾𝑟 = 𝜌𝑝𝑗 , which in Fig. 5 gives a significant
maximum relative energy gain of (𝛾𝑗 − 𝛾𝑟)∕𝛾𝑟 ∼ 5.2.

From a simplistic perspective, it is hypothesised that saturation of
the first radiation spike occurs when the energy loss of electrons propa-
gating through it means they can propagate a relatively large distance
with respect to a radiation wavelength within one undulator period.
From a scaling perspective, saturation is therefore defined to occur
when an electron loses sufficient energy within one half of an undulator
period to propagate an additional one half of a resonant radiation
wavelength 𝛥�̄�2𝑗 above its resonant slippage rate in the radiation frame
of reference of 𝑑�̄�2𝑗∕𝑑�̄� = 1, i.e. 𝛥�̄�2𝑗 = 𝛥�̄� = 2𝜋𝜌. A simple estimate of
the scaling using this definition is given in Appendix A ‘‘Pulse saturation
scaling’’, from which the peak scaled power of the spike is given by
|𝐴𝑝|

2 ≈ 1∕𝜋2𝜌4 and its scaled energy is 𝜀𝑝 ≈ 𝜏𝑝|𝐴𝑝|
2 ≈ 4𝑓∕𝜋𝜌3, where

𝜏𝑝 = 𝑓 × 4𝜋𝜌 describes the spike width in �̄�2 and 𝑓 is the spike width
as a fraction of one radiation wavelength.
6

From the computer simulations, saturation is defined to be when
the full pulse duration 𝜏(�̄�) over the simulation interval 0 < �̄�2 <
8 is a minimum. This may be calculated from 𝜏(�̄�) = 𝜀(�̄�)∕|𝐴𝑝(�̄�)|

2

where the scaled pulse energy over the simulation interval is 𝜀(�̄�) =
∫ |𝐴(�̄�, �̄�2)|

2𝑑�̄�2 and, as above, the peak scaled power over the interval
is given by |𝐴𝑝(�̄�)|

2. Simulation results as a function of �̄� and for
4𝜋𝜌 = 1, are shown in Fig. 6 where saturation is seen to occur at
̄ ≈ 419, as highlighted by the vertical dashed line in Fig. 6(c). While
the peak power |𝐴𝑝(�̄�)|

2 and pulse energy 𝜀(�̄�) continue to increase post-
saturation, as seen in Fig. 6(a), the energy within the first peak 𝜀p(�̄�)
(that of the radiation spike), is also seen to saturate at �̄� ≈ 419 and then
decreases with increasing �̄� as shown in Fig. 6(b). While at saturation
the pulse duration 𝜏(�̄�) minimises, and then begins to increase with �̄�
(Fig. 6c), the width of the first radiation spike, 𝜏𝑝(�̄�) = 𝜀𝑝(�̄�)∕|𝐴𝑝(�̄�)|

2, is
seen to continue to reduce as seen in Fig. 6(d).

The simulation of above was also carried out for a range of values
of 4𝜋𝜌 = 0.5…1.25. (For 𝛾𝑟 = 100, these values of 𝜌 typical span an FEL
operational wavelengths from the Far-Infrared to THz range.) This al-
lows comparison of the saturated values, when 𝜏(�̄�) is a minimum, with
the simple scaling analysis of Appendix A ‘‘Pulse saturation scaling’’
These saturated values, together with their best-fit scalings, are plotted
in Fig. 7, for the peak power of the radiation |𝐴𝑝|

2 and the saturation
undulator length �̄�sat; in Fig. 8, for the radiation pulse energy 𝜀 and
pulse duration 𝜏 over the simulation interval; and in Fig. 9 for the pulse
energy 𝜀 and duration 𝜏 of the first radiation spike.
𝑝 𝑝
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Fig. 6. The FEL evolution as measured in the interval 0 ≤ �̄�2 ≤ 9 as a function of �̄� for the case of 4𝜋𝜌 = 1. (a) scaled peak power |𝐴𝑝|
2 and pulse energy 𝜀; (b) scaled energy

ithin the first peak (spike) 𝜀p; (c) the scaled pulse duration 𝜏 - the vertical dashed line shows the minimum defined as the point of saturation; and (d) the first radiation pulse
spike) duration 𝜏𝑝.
Fig. 7. The saturated values of the simulations (dots) for (a) scaled peak power |𝐴𝑝|
2,

nd (b) scaled saturation undulator length �̄�
sat

, as a function of 4𝜋𝜌. The solid lines are
he fitting functions as given in the box.

Using the above definition of saturation, and the simple scaling
nalysis of Appendix A ‘‘Pulse saturation scaling’’, estimates of the
caled peak radiation power and energy of the radiation spike were
btained from (A.5) and (A.6) respectively. For example, in the sim-
lations with 4𝜋𝜌 = 1 above, the estimated saturation values are
𝐴𝑝|

2 ≈ 2500 and 𝜀𝑝 ≈ 300 for the fractional factor 𝑓 = 0.12 as taken
rom Fig. 9(b). Given the significant approximations used in Appendix

‘‘Pulse saturation scaling’’, the relatively good agreement with the
highly non-linear) computational results, of Fig. 7(a) for |𝐴𝑝|

2 and
ig. 9(a) for 𝜀𝑝, appears to be good, giving credence to the above
ypothesis of the radiation spike saturation process. This is further
emonstrated with good agreement between the analysis and best-fit
caling of the simulations for both |𝐴𝑝|

2 ∝ 𝜌−4 (Fig. 7a and (A.5)) and
∝ 𝜌−3 (Fig. 9a and (A.6)).
7

𝑝

Fig. 8. The saturated values of the simulations (dots) for (a) scaled pulse energy 𝜀,
and (b) pulse duration 𝜏, as a function of 4𝜋𝜌. The solid lines are the fitting functions
as given in the box.

It is evident from Figs. 7a, 8a, and 9a that as 𝜌 decreases greater
radiation peak powers and pulse energies are required to achieve
saturation. This is because the lower 𝜌 values cause a weaker inter-
action between the electrons and the radiation field, so demanding an
increased radiation power to attain the same level of energy exchange
required to achieve saturation. In addition, a shorter scaled pulse
duration is required, as seen from Fig. 8b. The first peak duration 𝜏𝑝,
expressed in units of radiation wavelength 𝜆𝑟, remains approximately
constant for all values of 4𝜋𝜌, as shown in Fig. 9b. This strongly suggests
a single-cycle type limit where the radiation field assumes its minimal
realistic duration. The use of an longer undulator to attain saturation is
also seen in Fig. 7b. Consequently, modelling such saturation behaviour
at smaller values of 𝜌 is increasingly computationally demanding.

A video of the full evolution of the superradiant spike from the start
of the undulator to full saturation is available from [14].
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Fig. 9. The saturated values of the simulations (dots) for (a) scaled energy of the first
radiation pulse (spike) 𝜀p, and (b) its width 𝜏𝑝, as a function of 4𝜋𝜌. The solid lines
re the fitting functions as given in the box.

stimation of diffractive effects

The simulation and scaling results presented above are in one-
imension (1D), and so exclude any three-dimensional (3D) effects such
s radiation diffraction. It can be expected that the longer wavelengths
f the radiation in the above simulations would diffract away from the
lectron beam, assumed to have a constant radius w0. Assuming there
re no optical or gain ‘guiding’ effects [13] acting on the radiation by
he electron beam, then the radiation will diffract in accordance with
ts Rayleigh range, 𝑍𝑅 = 𝜋w2

0∕𝜆 ∝ 𝜔. This will result in an increased
ecoupling between the electron beam and its radiation output at
onger wavelengths/lower frequencies as the interaction progresses
hrough the undulator.

Assuming a transverse Gaussian radiation profile, the intensity 𝐼
an be expressed as a function of its peak power, 𝑃0 on propagating
distance 𝑧 through the undulator as:

(𝑧) =
2𝑃0

𝜋w2(𝑧)
, (2)

here 𝑤(𝑧) is the transverse radiation beam size along the 𝑧 axis:

(𝑧) = w0

√

1 +
(

𝑧
𝑍𝑅

)2
. (3)

For increasingly larger distances 𝑧 > 𝑍𝑅, w(𝑧) tends to become
nversely proportional to 𝑍𝑅, and so to 𝜔. Hence, the radiation intensity
(𝑧) of (2) and its corresponding power 𝑃 (𝑧), emitted by and then

co-propagating a distance 𝑧 with the electron beam, tend to become
directly proportional to the frequency as 𝐼(𝑧) ∝ 𝜔2.

This approximation is now used to estimate the effects of diffraction
on the Power Spectral Density (PSD) of the radiation emission and its
subsequent effect on the temporal pulse output. The approximation is
applied after the 1D simulation has been completed and is not applied
during the simulation. While this method is relatively simplistic, and
cannot be expected to provide an accurate model of any full 3D
simulation of the FEL interaction, it does provide a first estimate of
what may be expected.

The frequency spectrum of the scaled electric field 𝐴(�̄�2) at a given
point in the undulator is defined as �̃�(�̄�) = | [𝐴(�̄�2)] where  is
the Fourier transform in �̄�2 with respect to �̄� = 𝜔∕𝜔𝑟, and with the
caled PSD given by 𝑃 (�̄�) = |�̃�(�̄�)|2. The scaled PSD of the radiation

including diffractive effects due to propagation scales with �̄�2 as above
8

o

in Eq. (2), and the spectrum, including 3D diffraction, is then estimated
as 𝑃3𝐷(�̄�) = |�̃�3𝐷(�̄�)|

2 = |�̄��̃�(�̄�)|2. The scaled intensity can then be
etrieved via the inverse Fourier transform |𝐴3𝐷(�̄�2)|

2 = |−1[�̃�3𝐷(�̄�)]|
2.

These 3D estimates are now shown as the radiation spike evolves
hrough saturation in Fig. 10 (�̄� = 200 and 750) and Fig. 11 (�̄� =
200.5 and 2156.5), for the case where 4𝜋𝜌 = 0.5. Given the approx-
mations made, these plots cannot be expected to give an accurate
umerical estimate, and so are all scaled with respect to their peak
alues to allow a comparison of their relative temporal and spectral
ontent.

In Fig. 10(a), for �̄� = 200, the system has entered the superradiant
ulse regime and there are similarities between the 3D approximation
nd the 1D result. The lower frequencies appear to be emitted following
ropagation of the electrons through the first spike, after �̄�2 ∼ 1.5.
his can be inferred also from the PSDs of 𝑃 and 𝑃3𝐷 and the electron
ehaviour of e.g. Fig. 4(a), where the electron bunching is spaced
t distances larger than one radiation wavelength. Radiation emitted
ollowing the first spike is therefore at a lower frequency, which when
educed due to diffraction, is observed as a reduced 𝑃3𝐷, compared
o the 1D case. The characteristics of this superradiant pulse emission
egime, as derived from the 3D spectrum, show similarities with the
xperimental results of [7], indicating that the method of introducing
D diffractive effects above appears not unreasonable.

This behaviour is also demonstrated further in Fig. 10(b) for �̄� = 750
hich shows that in the 3D approximation, the radiation pulse power

ollowing the first spike is reduced, as the lower frequencies emitted by
he electrons following the spike diffract away. As the radiation spike
uration decreases, a broader spectrum towards higher frequencies is
lso observed, and consequently, the radiation field is seen to approach
hat of a single-cycle pulse.

The above diffractive behaviour is seen to progress well into the
aturated regime of the spike evolution as seen in Fig. 11, for �̄� = 1200.5
nd 2156.5. Despite some small differences in sub-pulse structure, the
WHM of the first peak maintains its sub-resonant wavelength duration
ustained by the broad spectral content towards higher frequencies.

onclusion

The simulations presented in this paper have provided the first
etailed study of how high-power radiation spikes saturate in a FEL.
hile the simulations are in 1D, and the radiation spikes only interact
ith a beam of cold electrons, they have revealed at a fundamental

evel how a superradiant spike saturates, with peak powers orders of
agnitude above the normal steady-state value. The saturation process

nvolves the rapid loss of electron energy to the radiation field and their
ubsequent transit through the spike within one undulator period. The
lectrons therefore lose their energy to the spike at the sub-wavelength
cale. This involves the emission of radiation across a broad range of
requencies well above that of the fundamental. It was also seen from
he simulations that electrons that enter the spike with an absorptive
hase may be rapidly accelerated to much higher energies of ∼ 5
imes their initial energy. An examination of the simple scaling of the
aturation process agreed well with the numerical results.

By applying a simplified scaling of radiation diffraction to the 1D
adiation field, an estimate of the 3D spectral power of the field was
ade. This showed, and as observed from the field simulations, that the

ower frequency radiation components were emitted after the electrons
ad passed through the spike and lost energy to it. The spectrum was
lso similar to that observed in experiment [7].

Clearly, further research is required to model 3D effects in the
naveraged simulations. This can be expected to alter the detail of how
he superradiant spiking develops. The 1D results presented, however,
ive a reasoned, consistent insight, analogous to the 1D description of
he basic FEL interaction itself, into how the spiking saturation process
evelops.

While the above research will probably not be able to be applied
t any FEL facilities in the near future, it does provide further under-
tanding of the fundamental FEL process and may open up new areas

f research.
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Fig. 10. Comparison of 1D simulations with the 3D approximation for diffractive effects in the post-saturated superradiant regime for (a) �̄� = 200 and (b) �̄� = 750. (Top) Normalised
1D scaled power |𝐴|2 (solid blue line) and the 3D diffraction approximation |𝐴3𝐷|

2 (dashed red line). (Middle) Scaled 1D electric field components 𝐴𝑥,𝑦 (solid line) and the 3D
approximation 𝐴3𝐷𝑥,𝑦

(dashed line). (Bottom) The 1D scaled Power Spectral Density 𝑃 (solid line) and the 3D diffraction approximation 𝑃3𝐷 (dashed line).
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Appendix A. Pulse saturation scaling

The equations governing the 𝑗th electron’s motion in the scaled
radiation frame of reference �̄�2 may be written as [3]:
𝑑�̄�2𝑗
𝑑�̄�

= 1 − 2𝜌𝑝𝑗
𝑑𝑝𝑗
𝑑�̄�

= −2𝐴(�̄�2) cos
( �̄� − �̄�2𝑗

2𝜌

)

where the field 𝐴(�̄�2) is assumed constant in �̄� and describes a short,
high power radiation pulse (spike) of peak power 𝐴𝑝 into which the
electron will propagate. Assume that the electron starts it interaction
with the pulse at resonance, 𝑝𝑗 = 0, and at the phase of maximum
rate of energy loss where cos

((

�̄� − �̄�2𝑗
)

∕2𝜌
)

= 1, then the incremental
change in 𝑝𝑗 for a propagation distance 𝛥�̄� may be written as:

𝛥𝑝 ≈ −
𝐴𝑝 𝛥�̄�, (A.1)
𝑗 2

https://doi.org/10.15129/60af5807-790e-4a97-9a4b-b0861d8c5fe8
https://doi.org/10.15129/60af5807-790e-4a97-9a4b-b0861d8c5fe8
https://doi.org/10.15129/60af5807-790e-4a97-9a4b-b0861d8c5fe8
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Fig. 11. As Fig. 10 but for (a) �̄� = 1200.5 and (b) �̄� = 2156.5.
where it is assumed 𝐴 ≈ 𝐴𝑝∕2 over 𝛥�̄�.
Similarly, the change in electron position 𝛥�̄�2𝑗 due to its interaction

with the radiation field (i.e. not including the resonant drift of 𝛥�̄� in
the radiation frame of reference) may be approximated as:

𝛥�̄�2𝑗 = −2𝜌𝑝𝑗𝛥�̄�, (A.2)

and assuming 𝑝𝑗 ≈ 𝛥𝑝𝑗∕2 = −𝐴𝑝𝛥�̄�∕4, then:

𝛥�̄�2𝑗 =
𝜌𝐴𝑝

2
𝛥�̄�2 (A.3)

Saturation of the electron motion in the radiation pulse is now
defined as when the electron propagates an extra half a radiation
wavelength through the radiation field, in addition to its drift in the
radiation frame of �̄�2, in half of a wiggler period. This may be written
as 𝛥�̄�2𝑗 = 𝛥�̄� = 2𝜋𝜌, so that for saturation:

2𝜋𝜌 ≈
𝜌𝐴𝑝

2
(2𝜋𝜌)2 (A.4)

⇒ |𝐴𝑝|
2 ≈ 1

𝜋2𝜌4
(A.5)

The pulse duration of the first peak 𝜏𝑝, is assumed to scale as the
radiation wavelength, which in units of �̄�2 is 𝜏𝑝 = 𝑓 × 4𝜋𝜌 where 𝑓 is a
fractional factor. The scaled energy in the first peak at saturation 𝜀 is
10

𝑝

then:

𝜀𝑝 ≈ 𝜏𝑝|𝐴𝑝|
2 ≈

4𝑓
𝜋𝜌3

(A.6)

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rinp.2024.107673.
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