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Abstract — To function effectively, nuclear power plants rely on the effective filtration of air, water, and 
process fluids, examples of which include inlet sea water, reactor coolant, plant drinking water, and moderator 
purification. Filtration assets degrade over time, which impairs their filtering performance and reduces the 
flow rate. Being able to determine the remaining useful life (RUL) of a filter could result in benefits, 
particularly when moving from a time-based to a condition-based maintenance strategy that would optimize 
the filter replacement procedure and reduce early replacement of filters that are still fit for purpose. For many 
filter applications, a time-based strategy is sufficient. For strategically important assets, such as fueling 
machines, there are benefits to be gained from the development of predictive maintenance strategies.

In this paper, we propose a predictive condition-based strategy using differential pressure data as 
a proxy for filter health. The key objective in this work was the creation of a model that could predict a filter 
asset RUL. The differential pressure for 7 to 14 days is predicted by a heuristic-based regression model of 
the history of each filter. This approach has been demonstrated using a civil nuclear generation application 
but could be applied to wider applications. While this model is still undergoing on-site evaluation, it has 
been estimated that there will be an operationally significant lifetime cost reduction.

Keywords — Condition-based maintenance, predictive analytics, remaining useful life, nuclear power 
plants, filters. 

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION

In numerous industrial settings, low-value assets like 
filters are periodically replaced according to a time-based 

maintenance approach. This is primarily because these fil-
ters lack instrumentation, making it challenging to directly 
assess their current health status.[1] While it is generally 
uncomplicated to replace such assets in various applica-
tions, the nuclear sector presents unique challenges.[2] 

Factors such as regulatory constraints, specific replacement 
timelines, and concerns for engineer safety complicate the 
replacement process.[3] Consequently, proxy measurements, 
such as the differential pressure across the filter, are com-
monly employed to estimate the filter’s condition and pre-
dict its remaining useful life (RUL).[4] For instance, as the 
filter degrades, the flow rate decreases, indicating potential 
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issues like clogging, or there may be a sudden spike, sug-
gesting filter collapse.[5] Presently, in many applications, the 
lack of sufficient prognostic information results in the reli-
ance on a time-based maintenance strategy for the routine 
replacement of these filters.[6]

While current methods in the nuclear sector, particu-
larly for the maintenance of low-value assets like deuterium 
filters in CANada Deuterium Uranium (CANDU) nuclear 
reactors, rely heavily on time-based strategies due to a lack 
of direct health assessment instrumentation, such 
approaches present inherent limitations. The reliance on 
time-based maintenance overlooks potential variations in 
filter degradation rates, leading to either premature replace-
ments, which incur unnecessary costs, or delayed replace-
ments, posing potential safety risks. Additionally, the 
absence of real-time monitoring and predictive maintenance 
capabilities hinders proactive intervention, leaving opera-
tors reactive to emergent issues. Consequently, there is 
a pressing need to transition from conventional time-based 
approaches to condition-based maintenance strategies. 
Furthermore, the cost implications of raising a work order 
for an engineer to replace a filter on short notice, such as 
reallocating resources from other tasks, are substantial com-
pared to scheduling maintenance with advanced notice. This 
highlights the economic significance of accurately predict-
ing the RUL of deuterium filters, as it allows for efficient 
allocation of engineering resources and minimizes the 
financial impact associated with unplanned downtime and 
reactive maintenance practices.

This paper introduces an approach aimed at transi-
tioning from a time-based maintenance strategy to 
a condition-based maintenance strategy for the replace-
ment of deuterium filters in CANDU nuclear reactors. 
The initial step involved extracting information from 
routinely collected data in the reactor fueling machine 
log files. To achieve this, a custom parser was developed 
to suit the specific format of the log data. Initially 
intended for post-failure analysis, these log data were 
repurposed for condition monitoring by extracting perti-
nent attributes based on operational tags. After extracting, 
processing, and cleansing the log files, the focus shifted 
to constructing an analytical model for predicting the 
state of the filters. Utilizing all available historical data 
for the deuterium filters, a constrained regression model 
was created to forecast the RUL of the filters. This pre-
diction provides engineers with a 7-day advance notice 
before the alarm limit is exceeded, enabling the timely 
issuance of a work order for filter replacement. The 
novelty of the approach lies in its integration of routine 
data from fueling machine log files, into a predictive 
maintenance strategy. Rather than relying solely on 

traditional time-based maintenance schedules, the 
approach repurposes these data for condition monitoring, 
allowing for more precise predictions regarding the state 
of deuterium filters. Additionally, the development of 
a custom parser tailored to the specific format of the log 
data demonstrates a novel solution to data extraction 
challenges. Furthermore, the construction of an analytical 
model for predicting the RUL of filters represents a novel 
application of predictive analytics. Overall, the combina-
tion of data extraction and predictive modeling constitu-
tes a novel approach to optimizing maintenance strategies 
in CANDU nuclear reactors.

II. BACKGROUND

II.A. CANDU Nuclear Reactors

The CANDU nuclear reactor is a unique design 
renowned for its flexibility and efficiency in generating 
electricity.[7] Developed in Canada, the CANDU reactor 
employs natural uranium as fuel and uses heavy water 
(deuterium oxide) both as moderator and coolant. Unlike 
most other reactor designs, CANDU reactors can be 
refueled without shutdown, enabling continuous opera-
tion and maximizing efficiency.[8] This design feature, 
coupled with its inherent safety mechanisms, makes 
CANDU reactors highly reliable and economically com-
petitive. In the operation of a CANDU nuclear reactor, 
the refueling process is a critical aspect that ensures 
continuous power generation. The refueling machine 
used in CANDU reactors is a sophisticated piece of 
equipment designed to handle heavy water coolant and 
fuel channels with precision. These machines are remo-
tely operated to minimize radiation exposure to person-
nel. One crucial component of the refueling process is the 
deuterium filters. These filters are responsible for remov-
ing impurities from the heavy water coolant. Ensuring the 
purity of the heavy water coolant is essential for main-
taining the efficiency and safety of the reactor operation. 
Regular maintenance and replacement of these filters are 
part of the reactor’s ongoing maintenance schedule to 
ensure optimal performance and safety.

The selection of deuterium filters as the component 
of interest was due to their critical role in ensuring the 
purity and safety of the heavy water coolant within 
CANDU nuclear reactors. While it is true that nuclear 
power plants contain several high-value components, the 
significance of deuterium filters lies in their direct impact 
on reactor performance and safety. These filters are inte-
gral to maintaining the optimal functioning of the reactor 
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system by removing impurities and contaminants from 
the coolant, thus preventing potential disruptions to 
operations and safeguarding against equipment damage 
or failures.

Considering the cost-effectiveness of implementing 
a RUL model for deuterium filters, it is crucial to under-
stand the expense associated with predictive maintenance 
against the potential savings and operational benefits it 
offers. While the upfront costs of developing and imple-
menting the RUL model may be notable, the long-term 
benefits outweigh these expenses.[9] By accurately pre-
dicting the RUL of deuterium filters, operators can sche-
dule maintenance activities more efficiently, minimizing 
unplanned downtime and reducing the likelihood of 
costly reactive repairs or replacements. Additionally, 
optimizing maintenance schedules based on predictive 
analytics can lead to improved resource allocation, 
increased equipment lifespan, and enhanced overall 
operational reliability.

II.B. Maintenance Strategies

In various industrial applications, two predominant 
maintenance strategies are commonly employed: time- 
based maintenance and condition-based 
maintenance.[10,11]

Time-based maintenance follows a conventional 
approach, relying on the repair or replacement of assets 
based on historical failure time analysis. This method 
operates under the assumption that the asset’s failure 
rate is predictable. The bathtub curve depicted in Fig. 1 
illustrates the expected failure rate of an asset throughout 
its design life. In the nuclear sector, time-based mainte-
nance strategies often incorporate significant conserva-
tism due to the safety and financial implications of 
failures. Consequently, assets are frequently addressed 
proactively, even before reaching the point of necessity. 
Moreover, the lack of available failure data for modeling 
failure rates is a notable challenge, primarily stemming 
from the same safety and financial concerns associated 
with failures.

Condition-based maintenance, also known as predic-
tive maintenance, determines the optimal replacement time 
for an asset based on its specific operating condition.[12,13] 

This involves monitoring various process variables, such as 
vibration, temperature, flow rate, contaminants, and noise 
levels. By tracking and modeling these variables over time, 
predictions can be made regarding when maintenance deci-
sions are necessary. The entire process can be divided into 
three main tasks: data acquisition, data processing, and 
maintenance decision making (see Fig. 2)[14]: 

1. Acquiring data: In this phase, essential data about 
the asset’s health are collected.

2. Processing data: This stage involves the analysis 
and modeling of relevant data to enhance comprehension 
and interpretation.

3. Decision making for maintenance: Based on the 
analyzed data, predictions or recommendations are gen-
erated regarding any necessary maintenance 
interventions.

III. METHODOLOGY

The information stored in the log files of the fuel-
ing machine acts as a substitute for machine health 
measurements in this particular application. These log 
files are text based and document each operation con-
ducted by the fueling machine. A specific operation 
within these files provides details about the differential 
pressure across the deuterium filters. As the filter 
degrades, the flow rate diminishes to the extent that 
there is no flow, indicating possible filter clogging. 
Alternatively, a sudden spike in flow rate could signify 
filter collapse. Figure 3 illustrates the proposed process 
for initiating a RUL prediction, beginning with the 
text-based log files.

Fig. 1. Bathtub curve representing early life failure, 
through life incidental failures and wearout.

Fig. 2. Three-stage condition-based maintenance 
approach.
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III.A. Data Extraction

The initial step involved acquiring regularly recorded 
data from the log files of the reactor fueling machine. This 
required developing a specialized parser tailored to the com-
plex log data format, enabling the extraction of relevant 
attributes based on operational tags and revealing 
a substantial amount of data. Figure 4 provides an example 
of an entry in the log file, with all sensitive information 
concealed. By extracting information from each log file 
entry with the operation tag “1075,” details such as date and 
time, quadrant, and differential pressure could be obtained. 
These data could then be graphically represented over time 
for each quadrant of the nuclear reactor, as illustrated in Fig. 5.

The differential pressure information saved in the log 
files is stored in octal format. To assess the filter’s health 
and make predictions, it was essential to convert these 
data into decimal kilopascals (kPa) first. Equation (1) 
provides an illustrative example of the conversion process 
for differential pressure stored in octal format in the 
fueling machine log files into the corresponding differ-
ential pressure in kilopascals:

Figure 5 illustrates a set of differential pressure mea-
surements for one quadrant of the reactor spanning an 

entire year. In this representation, abrupt declines in dif-
ferential pressure correspond to four instances of filter 
changes. Following a filter replacement, the differential 
pressure across the filter experiences an exponential 
increase. According to the current time-based mainte-
nance approach, filters are replaced once this pressure 
surpasses a predetermined threshold. Examining the 
third curve in Fig. 5, it is evident that the filter was 
changed before reaching the alarm limit, indicating that 
there was still some RUL in that particular filter. The 
delay between initiating a work order for filter replace-
ment and the actual replacement, which takes approxi-
mately 7 days, is a key reason for employing a time-based 
maintenance strategy rather than changing the filter 
strictly when it exceeds the alarm limit.

III.B. Data Preprocessing

The data extracted from the fueling machine log files 
often contain erroneous or abnormal values, which can 
adversely affect the accuracy of subsequent analyses. One 
common issue arises from the recording of differential 
pressure measurements even during periods of reactor 

Fig. 3. Methodology for RUL prediction from fueling 
machine log files.

Fig. 4. Example log file for single operation.

Fig. 5. Data for one quadrant with multiple filter 
changes. Filter changes are represented by a sudden 
drop in differential pressure at the end of the degradation 
curve.
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outage or when no flow occurs through the filter. These 
abnormal readings need to be identified and eliminated to 
ensure the reliability of the dataset.

Initially, the extracted data, including the erroneous 
data points, are visualized to gain insights into their 
characteristics. As depicted in Fig. 6, the original data 
often exhibit spikes or irregularities, indicative of abnor-
mal measurements.

To address this issue, a multistep approach is 
employed. First, an analysis of the time intervals between 
consecutive data points is conducted to identify periods of 
reactor stoppage or no flow. It is observed that during such 
periods, the time gap between data points significantly 
exceeds the regular sampling interval, often exceeding 
12 h. Upon detecting these intervals, a decision is made 
to treat them as anomalous and remove the corresponding 
data points. However, simply removing all data points with 
time intervals exceeding a predefined threshold may lead to 
the loss of valuable information, especially if the stoppage 
is relatively short lived.

To mitigate this, a more nuanced approach is 
adopted. Specifically, the time intervals exceeding 12 h 
are considered as indicative of stoppage periods. 
However, instead of outright removal, a method is 
devised to interpolate the missing data points, ensuring 
that the overall temporal structure of the dataset is pre-
served. To achieve this, the gap between consecutive data 
points during stoppage periods is artificially reduced to 
1 h. This choice is based on consultation with the engi-
neering team, who determined it to be a close approxima-
tion of the actual operational time of the filter between 
two samples in a no-flow region. The interpolated data 
points are then smoothed using appropriate filtering tech-
niques to minimize the impact of abrupt changes on 

subsequent analyses. Finally, the cleansed dataset, devoid 
of abnormal values, is obtained, as illustrated in Fig. 7.

By identifying and addressing abnormal data points, 
this preprocessing step ensures the integrity and reliabil-
ity of the dataset, laying a solid foundation for subsequent 
analysis and model development.

III.C. RUL Prediction

For a representative dataset, all available data for 
each quadrant were partitioned to encompass only one 
filter change, representing a single degradation curve, as 
exemplified in Fig. 6. Subsequently, only the data corre-
sponding to filters that reached the alarm limit and were 
not replaced prematurely were retained. As depicted in 
Fig. 8a, the limited amount of data surpassing the alarm 
limit aligns with expectations given the current time- 
based maintenance strategy. To validate any model 
results, only data exceeding this limit can be utilized for 
testing. The selection of solely the data surpassing the 
alarm limit resulted in a constrained dataset comprising 
only five example degradation curves, illustrated in 
Fig. 8b. Because of variations in the filters used in the 
asset, including manufacturing tolerances and filter hole 
size, there exists an offset in the normal operating differ-
ential pressure. To address this, the average value of the 
first 100 data points for each curve was calculated to 
normalize the data and eliminate this variance. 
Subsequently, two models were developed for the RUL 
prediction.

The initial model employed was an exponential 
regression model,[15] a statistical approach utilized to fit 
a curve to data points exhibiting exponential growth or Fig. 6. Original data with erroneous data points.

Fig. 7. Processed data after removal of outliers and 
abnormal values.
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decay. Equation (2) illustrates the structure of this expo-
nential model:

where a, b, and c = model’s coefficients. The variables a, b, 
and c are determined through a technique called nonlinear 
regression, optimized by nonlinear least squares. This 
method involves minimizing the sum of squared errors 
between the actual values of y and the predicted values of 
y. Coefficients were estimated for each curve, and by 
reducing the dataset used for regression, an RUL prediction 
was generated for comparison with the ground truth data.

The second model follows many of the same proce-
dures but incorporates the widely recognized technique of 
leave-one-out cross-validation[16] to enhance prediction 
accuracy. This method refines prediction accuracy by 
producing regression models for the dataset, with each 
iteration excluding one degradation curve for evaluation. 
The constrained regression process operates by constrain-
ing the coefficients of the regression model to fall within 
the range of coefficients observed in previous instances 
of degradation curves. By doing so, the model is less 
susceptible to anomalous data, as it has been trained on 
prior instances and is inherently limited to realistic para-
meter values. Equation (3) shows the mathematical repre-
sentation of this approach: 

where f ðxiÞ = predicted value of yi given input xi; 
amin; amax; bmin; bmax; cmin; andcmax = minimum and max-
imum bounds for coefficients a, b, and c, respectively.

While this approach yields marginal improvements 
for data in proximity to the alarm limit, it plays a crucial 
role for data nearing filter change by preventing predic-
tions that would be physically impossible, such as an 
increase in RUL while the filter is in use.

IV. RESULTS

Both models underwent testing on the five degrada-
tion curves, utilizing an expanding dataset ranging from 1 
to 13 days for each curve. The error, determined as the 
difference between the RUL prediction (the time the 
model forecasts the alarm limit will be exceeded) and 
the actual time when the alarm limit was surpassed, was 
computed for each curve at each time interval.

IV.A. Exponential Regression Model

Figure 9 displays the predictions made by the expo-
nential regression model on one of the sample degrada-
tion curves while withholding 1 to 13 days of data. In 
Fig. 9a, it is evident that the model offers a satisfactory 
estimate of the RUL, aligning with expectations. The 
estimation remains relatively accurate until Fig. 9d; 
however, a momentary decrease in differential pressure 
is observed, suggesting a potential issue with data acqui-
sition or a physical reason for the pressure drop. This 
occurrence appears to be the contributing factor to the 
less accurate predictions in Figs. 9d and 9e. It is note-
worthy that in Fig. 9f, the prediction is more precise as 

Fig. 8. (a) All degradation curves available for the specific reactor. (b) Selected data used from training and testing the RUL 
model. The red line indicates the alarm limit.
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the data from the preceding section have not been incor-
porated into the model.

IV.B. Improved Regression Model

The outcomes for the second model are illustrated in 
Fig. 10 for the same sample degradation curve. Similarly, the 
estimates for the initial 3 days provide an accurate prediction 
of RUL. In contrast to the suboptimal predictions of the 
original model, the improved model, as demonstrated in 
Figs. 10d and 10e, exhibits predictions much closer to the 
actual RUL. This improvement is attributed to the con-
strained nature of the enhanced model. Since the model has 
been trained on prior instances of degradation curves and 
since its coefficients are restricted to fall within the coeffi-
cients of those previous models, it is less susceptible to 
anomalous data.

IV.C. Comparison

To assess both approaches, the RUL prediction errors 
were computed for all degradation curves, withholding data 
from 1 to 13 days. Figure 11 displays the resulting plots for 
both models. Up to 4 days before the alarm limit, there is 

minimal disparity in prediction error between the two mod-
els. Beyond this threshold, it becomes evident that the 
improved regression model exhibits a smaller variance in 
prediction errors compared to the original regression model. 
In this case study, the primary objective was to make an 
accurate prediction of the RUL 7 days before the filter 
surpasses the alarm limit. This time frame aligns with the 
duration required to initiate a work order and dispatch an 
engineer for filter replacement. Specifically, at the 7-day 
mark, the prediction error is significantly lower with the 
improved regression model than with the original model. 
For the original model, the error at this point ranged from 
a maximum of � 6:07 days with an average of � 2:46 days, 
while for the improved regression model, the error was 
a maximum of � 2:83 days with an average of � 1:65 days:

The primary challenge in developing a robust model 
for the case study data stemmed from the limited avail-
ability of data surpassing the targeted differential pres-
sure threshold. This scarcity was a direct consequence of 
the conservative time-based maintenance strategy cur-
rently in use for filter replacement. The strategy 
involved the replacement of filters before reaching the 
desired threshold, resulting in a small number of 
instances where the differential pressure exceeded the 

Fig. 9. RUL prediction for an increasing amount of withheld data for the exponential regression model. Day(s) to alarm limit: (a) 
1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6. The blue line is differential pressure data, the orange line is the prediction, and the green line 
is the time the alarm limit is exceeded.
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desired level, essential for training a reliable predictive 
model.

To address the limitation posed by the scarcity of data, 
a proposed solution involves reducing the specified pres-
sure threshold. By doing so, a considerably larger dataset 
becomes available for model training (Fig. 12). This adjust-
ment in the threshold allows for the inclusion of more 
instances where the differential pressure reaches levels 

that were previously considered suboptimal for predictive 
purposes. The increased diversity in the dataset allows for 
more accurate learning of the limits in the regression 
model, ultimately leading to improved predictions and bet-
ter-informed decision making regarding maintenance inter-
ventions. Reducing the pressure threshold to obtain more 
data represents an approach aimed at enhancing the robust-
ness and generalizability of the developed models. By 

Fig. 10. RUL prediction for an increasing amount of withheld data. Day(s) to alarm limit: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6. 
The blue line is differential pressure data, the orange line is the prediction, and the green line is the time the alarm limit is 
exceeded.

Fig. 11. Prediction error for (a) regression model and (b) improved regression model. The red line indicates the decision point.
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lowering the pressure threshold, the aim is to capture 
a broader range of operating conditions and degradation 
scenarios, thereby enriching the dataset and mitigating the 
limitation posed by the small sample size. Theoretically, 
this technique aligns with the principles of statistical infer-
ence, where increasing the sample size improves the accu-
racy and reliability of estimates. This approach attempts to 
address the data scarcity issue but also contributes to the 
novelty of the work by offering a theoretically justified 
method for improving model performance and reliability.

For the initial results for the original model with the 
limited dataset, both models were tested on five degrada-
tion curves, employing an increasing dataset from 1 to 13 
days for each curve. The error, representing the difference 
between the RUL prediction (the time that the model fore-
casts the alarm limit will be exceeded) and the actual time 
when the alarm limit was surpassed, was calculated for 

each curve at various time intervals. With the enriched 
dataset resulting from the reduced pressure threshold, 
a similar evaluation process was conducted. Both models 
were tested on the same five degradation curves, and the 
error analysis, involving the comparison between the RUL 
predictions and the actual alarm limit surpassing time, was 
carried out for each curve across different time intervals.

Figure 13 shows the comparison between results 
obtained from the original dataset and the augmented data-
set. The incorporation of additional data leads to more 
consistent outcomes and significantly diminishes the occur-
rence of negative RUL predictions, which represent over-
estimations of the RUL. These overestimations are more 
impactful than underestimations of RUL. Around the cri-
tical decision point of 7 days, the improved regression 
model utilizing the original dataset exhibited a maximum 
error of � 2:83 days with an average of � 1:65 days: With 

Fig. 12. (a) All degradation curves available for a specific reactor. (b) Selected data used from training and testing the RUL 
model with the reduced alarm limit.

Fig. 13. Prediction error for (a) original dataset and (b) expanded dataset. The red line indicates the decision point.
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the expanded dataset, the maximum error was notably 
reduced to � 1:15 days with an average of � 0:74 days.

While the analysis provides valuable insights into the 
predictive accuracy of the models up to a 13-day forecast 
horizon, it is important to note that the chosen evaluation 
period aligns with the typical degradation behavior of the 
filters. Filters typically last approximately 4 to 5 weeks, 
with the first 2 weeks exhibiting no degradation, character-
ized by stable differential pressure. Only after this initial 
period does the filter begin to degrade, hence the focus on 
a 14-day window for evaluation. Given this degradation 
behavior, the evaluation period captures the critical phase 
when degradation begins to manifest, allowing for timely 
maintenance interventions. However, it is recognized that 
the importance of extending the evaluation period to 
include longer-term predictions would provide deeper 
insights into the robustness and reliability of the models 
over extended operational timelines.

V. CONCLUSIONS

This paper outlines an approach to facilitate the tran-
sition from a time-based to a condition-based mainte-
nance strategy for the replacement of deuterium filters 
in a CANDU nuclear reactor.[17] The methodology 
involves leveraging routinely collected data from the 
reactor fueling machine log files, originally designed for 
purposes other than condition monitoring, to support this 
transition. The acquired data underwent thorough proces-
sing and analysis to predict the RUL of the filters. 
Introducing an enrichment step to the dataset by reducing 
the pressure threshold resulted in a more comprehensive 
and varied dataset.

Two models were introduced for RUL predictions, 
with results indicating that a constrained exponential 
regression model yielded the most accurate predictions. 
The developed analytical model provides engineers with 
advanced notice, predicting when the alarm limit will be 
surpassed and allowing 7 days to raise a work order and 
replace the filter before the limit is breached. Notably, 
for the test dataset, the RUL prediction exhibited 
a maximum error of � 2:83 days and an average error 
of � 0:35 days; showcasing enhanced prediction accu-
racy around the critical 7-day mark with the enriched 
dataset.

It is important to acknowledge that as a consequence 
of the reduced pressure threshold and, consequently, 
a shortened time to failure, the predictions beyond this 
point exhibit a slight decline in accuracy. While this is 
a current constraint of the model, in the future when more 

data are gathered on filters that are run closer to the alarm 
threshold, it will be possible to mitigate or remove 
entirely this constraint by updating the model. However, 
it is also crucial to emphasize that this outcome aligns 
with the primary objective of achieving a precise predic-
tion at the critical 7-day mark. The overarching aim was 
to facilitate the timely initiation of a work order for filter 
replacement. Therefore, while there may be a marginal 
decrease in predictive accuracy beyond the 7-day thresh-
old, this trade-off is deemed acceptable given the prior-
itized focus on the targeted time frame for maintenance 
intervention.
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