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Abstract—We investigate the singular value decomposition
(SVD) of a rectangular matrix A(z) of functions that are
analytic on an annulus that includes at least the unit circle. Such
matrices occur, e.g., as matrices of transfer functions representing
broadband multiple-input multiple-output systems. Our analysis
is based on findings for the analytic SVD applicable to continuous
time systems, and on the analytic eigenvalue decomposition.
Using these, we establish two potentially overlapping cases where
analyticity of the SVD factors is denied. Firstly, from a structural
point of view, multiplexed systems require oversampling by
the multiplexing factor in order to admit an analytic solution.
Secondly, from an algebraic perspective, we state under which
condition spectral zeroes of any singular value require additional
oversampling by a factor of two if an analytic solution is to
be found. In all other cases, an analytic matrix admits an
analytic SVD, whereby the singular values are unique up to a
permutation, and the left- and right-singular vectors are coupled
through a joint ambiguity w.r.t. an arbitrary allpass function.
We demonstrate how qsome state-of-the-art polynomial matrix
decomposition algorithms approximate this solution, motivating
the need for dedicated algorithms.

I. INTRODUCTION

Following its inception and proof of existence by various

mathematicians in the 18th and 19th century [1] and the

development of powerful algorithms [2], the singular value

decomposition (SVD) has been playing a central role in

providing various optimum solutions to signal processing

problems [3]–[5]. This includes, e.g., applications such as rank

determination for source enumeration, subspace identification

for angle of arrival and frequency-estimation tasks, or source

separation. In the context of communications, the construc-

tion of precoder and equaliser matrices that are optimal in

various senses for a multiple-input multiple-output (MIMO)

channel matrix of complex gain factors [6]. For broadband

problems, where, instead of complex gain factors, impulse

responses form the channel matrix entries, such a matrix

decomposition can only decouple a matrix for one particular

time instance, or one frequency if operating in the Fourier

domain. Generally for any of the above applications, while it is
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possible to decompose a broadband problem into a number of

discrete Fourier transform (DFT)-bins, independent bin-wise

processing neglects spectral coherence and typically leads to

suboptimal solutions [7]–[9].

To address problems such as H∞ control [10] for matrices

A(t) that are functions in a real, continuous variable t, de

Moor & Boyd [11] and Bunse-Gerstner et al. [12] have proven

the existence of an SVD, where for an analytic A(t), the

factorisation A(t) = U (t)Σ (t)V H(t) on some real interval

t1 < t < t2 is satisfied by analytic left- and right-singular

vectors in U (t) and V (t). For Σ(t) to be analytic, the

singular values on its diagonal must not be restricted to be

nonnegative. A number of algorithms have been developed to

address such an analytic SVD [13]–[16].

More recently, several algorithms for a polynomial SVD

(PSVD) have been developed for a rectangular matrix A[n],
where n ∈ Z is the discrete time index. This was initially per-

formed by first computing two polynomial matrix eigenvalue

decompositions (PEVD) of parahermitian (or palindromic)

matrices. The PEVD performs an approximate factorisation

into Laurent-polynomial matrices. Two algorithm families for

approximating the PEVD have been developed — second

order sequential best rotation (SBR2) [17], [18] and sequential

matrix diagonalisation (SMD) algorithms [19]–[21]. Subse-

quently, a number of related decomposition algorithms have

emerged, whereby a PSVD is evaluated either via a number

of polynomial QR operations [22] or directly [23]. These

algorithms possess proven convergence in the sense that they

monotonically minimise a given cost function, even though it

is unclear what solution they attain. These algorithms behave

similarly in that they (i) approximate a diagonalisation, and

(ii) encourage (or even guarantee [24]) spectral majorisation,

such that the identified singular values are ordered at every fre-

quency [25]. While spectral majorisation can be useful in the

context of e.g. optimal coding [19] or communications [26],

it can lead to functions that are only piece-wise analytic and

therefore require a much higher approximation order than their

analytic counterparts [27], [28]. The use of PSVD algorithms

extends from generic problems [17], [29] to a variety of

practical applications including, e.g., MIMO communications

[26], [30]–[34], the equalisation of filter bank-based multi-

carrier systems [35], [36], broadband beamforming [37] or

the construnction of paraunitary matrices and lossless filter

banks [38], [39].

Despite the fact that the algorithms in [17]–[21] are proven

to converge to a diagonalised matrix, it is unclear what this

matrix is, if an exact solution exists, and whether potential

solutions are unique. Therefore, the purpose of this paper

is to investigate the existence and uniqueness of the SVD
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of a matrix A[n] ∈ C
M×N , whose z-transform A(z) =

∑

n A[n]z−n, or for short A(z) •—◦ A[n] [40], is analytic

in z within some region of convergence that includes |z| = 1.

We are interested in whether the SVD

A(z) = U (z)Σ(z)V P(z) (1)

exists with a diagonal, analytic Σ(z) that is real-valued

on the unit circle, i.e., Σ(ejΩ) ∈ R, and paraunitary, an-

alytic matrices U (z) and V (z). Paraunitarity implies that

U (z)U P(z) = U P(z)U (z) = I, with the parahermitian

operator {·}P performing a time reversal and complex con-

jugation, U P(z) = UH(1/z∗) [41]. The existence of analytic

factors in (1) is important as this guarantees the absolute

convergence of their time domain equivalents. This in turn

means that U[n] ◦—• U (z) and V[n] ◦—• V (z) can be well

approximated by the polynomial matrices (or filter banks with

finite impulse responses) that the PSVD algorithms in [17],

[22], [23], [29] are seeking.

To investigate the existence of an analytic solution, we

restrict ourselves to an analysis on the unit circle for z = ejΩ,

where a matrix in a real-valued parameter Ω results. Exploiting

findings in [11], [12], we must permit singular values to

become negative in order to maintain analyticity. Further, we

investigate the particular implications that a periodicity in the

continuous parameter Ω brings. We will show that the demand

for Σ(ejΩ) to be restricted to real-valued singular values

potentially has algebraic consequences for the analyticity; in

contrast, we will see that if A(z) emerges from multiplexing

— such as in multiplexed transmission or block filtering [41],

[45]–[47] — a structural loss of analyticity emerges. To

understand the existence and uniqueness of the left- and right-

singular vectors in U (z) and V (z), we rely on combining

the existence of analytic singular values with the findings on

the analytic parahermitian matrix EVD in [42]–[44].

The contribution of this paper — against the backdrop

of milestones in developing the analytic SVD on a real

interval [11], [12] accompanied by algorithms, and the design

of practical algorithms for a polynomial SVD in the complex

domain [17] — therefore lies in providing the theoretical foun-

dations for an analytic SVD. While the design of algorithms

is beyond the scope of this paper, we demonstrate how these

results relate to the PSVD, for which the spectral majorisation

property can obstruct finding the analytic solution to (1). While

recent analytic parahermitian matrix EVD algorithms in [27]

provide a solution that is closer to (1), the findings motivate

the need for analytic SVD extraction algorithms akin to [23],

[27], [28]. These could then address many of the broadband

extensions of the SVD applied to or sought for the narrowband

problems above.

In the following, Sec. II reviews the standard SVD, and

uses the analytic SVD of a matrix in a continuous, real

parameter [11], [12] to define a general approach to the

analytic SVD of a matrix A(z) with z ∈ C. Two exceptions to

the analyticity of the SVD factors are elaborated in Secs. III

and IV for algebraic and structural reasons, respectively. The

existence of an analytic SVD of A(z), and the uniqueness and

ambiguity of its analytic factors are defined in Sec. V. Sec. VI

demonstrates some results based on existing algorithms before

Sec. VII draws conclusions.

II. ANALYTIC SINGULAR VALUE DECOMPOSITION

A. Singular Value Decomposition

Any matrix A ∈ C
M×N admits a singular value decompo-

sition [48]

A = UΣVH , (2)

where Σ ∈ R
M×N is a diagonal matrix containing the non-

negative, unique singular values σi, i = 1, . . . ,K with K =
min(M,N), and U ∈ C

M×M and V ∈ C
N×N are unitary

matrices containing the left- and right-singular vectors of A.

The majorised ordering of the singular values,

σ1 ≥ σ2 ≥ . . . ≥ σK ≥ 0 , (3)

ensures that Σ is unique. If there are C identical, non-zero sin-

gular values σi = . . . = σi+C−1 > 0, with associated left- and

right-singular vectors, ui, . . . , ui+C−1 and vi, . . . , vi+C−1,

then u′

i, . . .u
′

i+C−1 and v′

i, . . .v
′

i+C−1 are also valid left- and

right-singular vectors where

[u′

i, . . .u
′

i+C−1] = [ui, . . .ui+C−1] ·Φ (4)

[v′

i, . . .v
′

i+C−1] = [vi, . . .vi+C−1] ·Φ , (5)

and Φ ∈ C
C×C is an arbitrary unitary matrix. This means

that either the C left- or right-singular vectors can be selected

arbitrarily within a C-dimensional subspace, which then ties

down the corresponding C right- or left-singular vectors,

respectively. In case C = 1, Φ = ejϕ with ϕ arbitrary; if

A is restricted to be real-valued, this leads to the well-known

sign-ambiguity of the SVD, see e.g. [49].

Let S be the number of singular values equalling zero. If

M ≤ N and J = N − M , then the rightmost S + J right-

singular vectors span the nullspace of A, and can form an

arbitrary orthonormal basis within this (S + J)-dimensional

space. Further, the S rightmost left-singular vectors can also

be arbitrarily selected within an S-dimensional subspace. For

M > N , the same considerations apply by inspecting AT

instead of A.

One way to calculate the SVD is via two EVDs of R1 =
AAH and R2 = AHA, such that

R1 = Q1Λ1Q
H
1 = UΣ2UH , (6)

R2 = Q2Λ2Q
H
2 = VΣ2VH . (7)

The singular values can therefore be obtained as the square

root of the eigenvalues in Λ1 or Λ2. In case of distinct eigen-

values, from (6) we can deduce that U = Q1Φ1 where Φ1 is a

diagonal unitary matrix. Similarly we can write VH = ΦH
2 Q

H
2 .

Hence A = Q1Φ1Λ
1/2
1 ΦH

2 Q
H
2 = Q1Λ

1/2
1

(
Φ1Φ

H
2

)
QH

2 .

Since Λ
1/2
1 is real we require

(
Φ1Φ

H
2

)
to also be real. In the

case of a C-fold algebraic multiplicity of eigenvalues, within a

C-dimensional invariant subspace there may be different but

equivalent bases — and therefore unitary matrices as in (4)

and (5) — implied in (6) and (7) that need to be reconciled.
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B. Analytic SVD on a Real Interval

As established in [11], [12], we have:

Theorem 1 (Analytic SVD on a real interval): For an M×N
matrix A(t) that is analytic in t ∈ R on some interval, a

decomposition A(t) = U (t)Σ (t)V H(t) exists with unitary

U (t) and V (t), and diagonal, real-valued Σ(t). The singular

values in Σ(t) can be analytic if (i) they are permitted to

become negative and (ii) their ordering is relaxed from the

majorisation in (3) for every t. If the singular values are chosen

to be analytic, then the left- and right-singular vectors in U (t)
and V (t) can also be selected to be analytic.

Proof. For the case of a real-valued matrix, please see the proof

of Theorem 1 in [12]. The complex-valued case is covered

in [11]. �

The key difference between the analytic SVD and (2) lies

in permitting singular values to become negative. Enforcing

a positive semi-definite constraint may lead to singular values

σi(t), i = 1, . . . , K, that are continuous but not differentiable.

Therefore, implementations of the analytic SVD are based on,

e.g., checking the first derivative [11], the arc length [12], or

on Chebychev polynomials to enforce smoothness of func-

tions [16].

C. Periodicity of a Singular Value

For the analytic SVD of a matrix A(z) that is analytic on an

annulus containing at least the unit circle, we can restrict our

investigation to z = ejΩ [40]. We thus work with A(ejΩ),
which now is analytic in Ω ∈ R. Therefore, Theorem 1

guarantees a decomposition A(ejΩ) = U ′(Ω)Σ ′(Ω)V ′H(Ω)
with analytic but not necessarily periodic factors U ′(Ω),
Σ ′(Ω), and V ′(Ω). We will first contemplate the singular

values σ′

i(Ω), i = 1, . . . ,K, on the diagonal of Σ ′(Ω).

The 2π-periodicity of A(ejΩ) means that, similar to the

case of the eigenvalue decomposition of a self-adjoint R(ejΩ)
in [43], [44], Σ ′(Ω) has to equal, up to some permutation

and negation for individual singular values, Σ ′(Ω+2πn) and

its derivatives w.r.t. Ω with n ∈ Z. Thus, the singular values

are composed of repeats of 2π segments. Let a ‘segment’ be

that part of a singular value between 0 and 2π, defined as

ςi(Ω) = σ′

i(Ω), Ω ∈ [0; 2π), i = 1, . . . ,K.

To record the repetition of segments that make up an ana-

lytic singular value σi(Ω), we utilise an index sequence such

as, e.g., {1, 2,−3, . . . } to indicate a concatenation of segments

σ′

i = [ς1, ς2,−ς3, . . . ]. A negative index refers to a negated

segment. We assume that there are K distinct singular values.

Then, due to the uniqueness theorem for analytic functions,

there is only one possibility for analytic continuation from one

segment to another. Hence, for a sequence {. . . , i, j, . . . } with

a fixed index i, there is exactly one unique index j, which can

be either positive or negative. Therefore, some simple rules

follow:

(R1) If an index is repeated such as i in

{. . . , i, j, . . . , i, ℓ, . . . }, analytic continuation demands

that ςi can only be followed by one unique segment,

such that ℓ = j.

(R2) Analytic continuation also demands that e.g. for

{. . . , j, i, . . . , ℓ, i, . . . } the segment preceding ςi must be

unique, i.e. j = ℓ.
(R3) For an index sequence {. . . , i, j, . . . ,−i, ℓ, . . . } with

distinct indices i and j, ςi is analytically continued by

ςj ; therefore, −ςi must be analytically continued by −ςj ,

i.e. ℓ = −j.

Note that there are only a maximum number of K distinct

segments that can be concatenated, hence two consequences

result:

(C1) The repeat of an index according to (R1) and (R2) after

k segments, 1 ≤ k ≤ K, implies a 2kπ periodicity of a

singular value.

(C2) The repeat of a negated index after k seg-

ments means that a sequence {. . . , i, j, . . . , ℓ,−i, . . . }
must continue according to rules (R3) and (R1) as

{i, j, . . . , ℓ,−i,−j, . . . ,−ℓ, i, . . . }, and thus leads to a

4kπ-periodic singular value.

Therefore analytic singular values must be periodic, with a

maximum possible period of 4πK.

For a more detailed analysis of the periodicity, below we

will extract one analytic singular value, without loss of gen-

erality σ′

1(Ω), from these segments. To start, for Ω ∈ [0; 2π),
we set σ′

1(Ω) = ς1(Ω), with an index sequence {1}. On the

interval Ω ∈ [2π; 4π), we find three possibilities to analytically

continue σ′

1(Ω), with the notation (Pξ.n) indicating the nth

possibility for segment (ξ + 1):

(P1.1) For σ′

1(Ω) = ς1(Ω− 2π), we have an index sequence

{1, 1}, and due to (C1) have established 2π-periodicity.

(P1.2) For σ′

1(Ω) = −ς1(Ω−2π), we have −σ′

1(Ω) = σ′

i(Ω−
2π) and an index sequence {1,−1}; due to (C2), the

periodicity is 4π;

(P1.3) otherwise, ς1(Ω) must be followed by a different seg-

ment; w.l.o.g. we assume this to be σ′

1(Ω) = ±ς2(Ω−2π),
and record an index sequence {1,±2}.

We have established periodicity with cases (P1.1) and (P1.2).

For case (P1.3), we continue to investigate the analytic con-

tinuation.

In general, for the interval Ω ∈ [2ξπ; 2(ξ + 1)π) with

ξ = 1, 2, . . . , (K − 1), assuming we have not yet encountered

a periodicity, we will assume w.l.o.g. that we have already

used the segments [1,±2, . . . ,±ξ]. Then we find the following

possibilities for an analytic continuation:

(Pξ.1) With σ′

1(Ω) = ς1(Ω − 2ξπ), the index sequence

{1, . . . ,±ξ, 1} implies a periodicity of 2πξ according to

(C1).

(Pξ.2) For σ′

1(Ω) = −ς1(Ω − 2ξπ), the index sequence is

{1 . . . ,±ξ,−1}, and σ′

1(Ω) is 4πξ periodic according to

(C2).

Continuations σ′

1(Ω) = ±ςi(Ω − 2ξπ), i ∈ {2, . . . , ξ} would

imply the repeat of a previous segment or negated segment

without repeating index 1. E.g. the index sequence {1, 2, 3, 2}
violates rule (R2), and cannot represent an analytic continua-

tion. Therefore:

(Pξ.3) The singular value σ′

1(Ω) must be followed by a

different, yet unused segment. Without loss of generality



PROPERTIES AND STRUCTURE OF THE ANALYTIC SINGULAR VALUE DECOMPOSITION 4

we assume this to be σ′

1(Ω) = ±ςξ+1(Ω − 2ξπ), with a

resulting index sequence of {1,±2, . . . ,±ξ,±(ξ + 1)}.

Unless a periodic repetion has been established via the cases

(Pξ.1) or (Pξ.2), ξ = 1, 2, . . . , (K − 1), via (Pξ.3) we finally

reach the interval Ω ∈ [2Kπ; 2(K + 1)π). We find:

(PK.1) Analytic continuation with σ′

1(Ω) = ς1(Ω) leads to an

index sequence {1,±2, . . . ,±K, 1} and 2Kπ periodicity

due to (C1).

(PK.2) Analytic continuation with σ′

1(Ω) = −ς1(Ω− 2Kπ)
implies a sequence {1,±2, . . . ,±K,−1} with 4Kπ pe-

riodicity due to (C2).

Any other continuation violates rules (R1) and (R2), and

cannot yield an analytic function. Thus, the above scheme for

analytic continuation either ends with (Pk.1) and a periodicity

of 2kπ, or with (Pk.2) and a periodicity of 4kπ, k = 1, . . . ,K,

for this singular value.

D. Properties of the Singular Value Matrix

Sec. II-C has established the periodicity of a singular value.

We now explore the properties of Σ ′(Ω), and therefore of all

the singular values.

Let us assume that a first analytic singular value σ′

1(Ω)
has been investigated as outlined in Sec. II-C. Assume

it has a repeat pattern via case (Pk1.1), with a sequence

{1,±2, . . . ,±k1, 1} and a periodicity of 2k1π. Since all

segments have to be used in a given [2nπ, 2(n+ 1)π) range,

then another analytic singular value starts with the segment

±k1. Because of the arguments in Sec. II-C, its sequence

must be {±k1, 1,±2,±3, . . . ,±k1, 1, . . . } i.e. a shifted ver-

sion of σ′

1(Ω). This consideration continues similarly for the

singular values that start with the segment ±ℓ (2 ≤ ℓ < k1).
Therefore, σ′

1(Ω) is part of a set of k1 frequency-shifted

singular values, all with a 2k1π-periodicity. If we establish

a pattern via (Pk1.2), then the investigated singular value

is also part of a set of k1 singular values related by a

frequency shift but with a periodicity of 4k1π. Note in this

case that a shift by more than k1 in the index sequence only

leads to a negated value, e.g. {1, . . . ,±k1,−1, . . . ,∓k1, 1}
would produce {−1, . . . ,∓k1, 1, . . . ,±k1,−1}. Overall, we

therefore find that

σ′

ν(Ω) = σ′

1(Ω− 2(ν − 1)π), ν = 1, . . . , k1 . (8)

The periodicity of these singular values is 2k1κ1π, whereby

κ1 = 1 in case of (Pk1.1) and κ1 = 2 for (Pk1.2).

From the remaining (K − k1) singular values of A(ejΩ),
we pick another singular value and iterate the investigation

of Sec. II-C. This will lead to a pattern via (Pk2.1) or

(Pk2.2), with k2 ∈ {1, . . . ,K − k1}, establishing a set of

k2 singular values of periodicity 2k2κ2π. We repeat this

until all K analytic singular values are addressed, whereby

we have P sets of frequency-shifted singular values. The

p-th set contains kp frequency-shifted singular values with

a periodicity 2kpκpπ where κp ∈ {1, 2} depending on the

inclusion of a negated segment in the singular value. Note

that
∑P

ν=1 kp = K. Since all singular values are periodic, we

can write σm(ejΩ/L) = σ′

m(Ω) or overall

Σ(ejΩ/L) = Σ ′(Ω) , (9)

whereby L = lcm{k1κ1, k2κ2, . . . }, i.e. the period of Σ ′(Ω)
is the least common multiple (lcm) of the periods of all the

singular values of A(ejΩ).

E. Analytic SVD on the Unit Circle

Theorem 2 (Analytic SVD on the unit circle): For an analytic

matrix A(ejΩ), Ω ∈ R, the analytic SVD on the unit circle

can be formulated as

A(ejΩ) = U (ejΩ/L)Σ(ejΩ/L)V H(ejΩ/L) , (10)

where the diagonal matrix Σ(ejΩ/L) and unitary matrices

U (ejΩ/L) and V (ejΩ/L) can be analytic in Ω for some L ∈ N.

Proof: We can state the SVD of A(z) on the unit circle

generally as A(ejΩ) = U ′(Ω)Σ ′(Ω)V ′H(Ω). Starting with

the singular values, based on Theorem 1 and the reasoning

in Secs. II-C and II-D, we know that Σ ′(Ω) must be 2Lπ-

periodic for some L ∈ N, see (9).

For the left- and right-singular vectors in U ′(Ω) and

V ′(Ω), Theorem 1 guarantees analyticity of their elements,

but their periodicity still needs to be shown. For this, we for-

mulate the parahermitian matrices R1(z) = A(z)AP(z) and

R2(z) = AP(z)A(z). For the analytic EVD on the unit circle

we potentially require oversampling such that analytic 2π-

periodic eigenvalues [43] exist for Ri(z
Li), i = 1, 2, Li ∈ N.

Further, analytic eigenvectors that match the periodicity of the

eigenvalues also exist [44]. We therefore have

R1(e
jΩ) = Q1(e

jΩ/L1)Λ1(e
jΩ/L1)QH

1 (e
jΩ/L1) (11)

R2(e
jΩ) = Q2(e

jΩ/L2)Λ2(e
jΩ/L2)QH

2 (e
j/L2) . (12)

Inserting the SVD A(ejΩ) = U ′(Ω)Σ (ejΩ/L)V ′H(Ω) into

the definition of R1(e
jΩ) and R2(e

jΩ), we obtain

R1(e
jΩ) = U ′(Ω)Σ (ejΩ/L)ΣH(ejΩ/L)U ′H(Ω) (13)

R2(e
jΩ) = V ′(Ω)ΣH(ejΩ/L)Σ(ejΩ/L)V ′H(Ω) . (14)

The analytic eigenvalues of a parahermitian matrix are unique

up to a permutation [42]. Assuming appropriate ordering, we

find that

Λ1(e
jΩ) = Σ(ejΩL1/L)ΣH(ejΩL1/L) (15)

Λ2(e
jΩ) = ΣH(ejΩL2/L)Σ(ejΩL2/L) , (16)

and hence L1 = L2 = L 1. Comparing (11) with (13)

and (12) with (14), and allowing for the ambiguities dis-

cussed in Sec. II-A, we may set U ′(Ω) = Q1(e
jΩ/L) and

V ′(Ω) = Q2(e
jΩ/L)Ψ ′(Ω). The unitary matrix Ψ ′(Ω) links

the ambiguities of the left- and right-singular vectors as per

Sec. II-A. For distinct singular values it is a diagonal matrix

of allpass functions, i.e. functions with unit magnitude but

variable phase response [40]. Inserting these expressions for

U ′(Ω) and V ′(Ω) into the SVD of A(ejΩ), we find

A(ejΩ) = Q1(e
jΩ/L)Σ(ejΩ/L)Ψ ′H(Ω)QH

2 (e
jΩ/L) . (17)

This leaves Ψ ′(Ω) as the only factor on the r.h.s. of

(17) whose periodicity is unknown. Since A(ej(Ω+2Lπ)) =

1If the singular values contain sign changes, it may be possible to even
halve the periodicity, such that L1 = L2 = L/2.



PROPERTIES AND STRUCTURE OF THE ANALYTIC SINGULAR VALUE DECOMPOSITION 5

Fig. 1. Example of 8π-periodic singular values of A1(ejΩ) that are analytic
in Ω ∈ R; ◦ indicates the repeat of the singular values at Ω = 0, • signifies
a repeat of such a singular value with a sign change. To be analytic in z ∈ C,
these functions have to be oversampled by L = 4.

A(ejΩ), expanding both sides according to (17) and exploiting

the paraunitarity and hence invertibility of Q1(e
jΩ/L) =

Q1(e
j(Ω/L+2π)) and Q2(e

jΩ/L) = Q2(e
j(Ω/L+2π)), we arrive

at Σ(ej(Ω/L+2π))Ψ ′H(Ω + 2Lπ) = Σ(ejΩ)Ψ ′H(Ω). Since

Σ(ej(Ω/L+2π)) = Σ(ejΩ/L), we obtain

Σ(ejΩ/L)
{

Ψ ′H(Ω + 2Lπ)−Ψ ′H(Ω)
}

= 0 (18)

Therefore, assuming that Σ(ejΩ/L) has only the trivial null

space, Ψ ′(Ω) = Ψ ′H(Ω + 2Lπ) and is thus 2Lπ-periodic

i.e. we can write Ψ ′(Ω) = Ψ(ejΩ/L). If Σ(ejΩ/L) has a

nontrivial null space, the properties of Ψ ′(Ω) in that null

space are moot as it always appears multiplied by a zero

portion of Σ(ejΩ/L). Then we also have that V ′(Ω) is at

least 2Lπ-periodic as well. Hence A(ejΩ) has the SVD as

in (10) where U (ejΩ/L) = Q1(e
jΩ/L) and V (ejΩ/L) =

Q2(e
jΩ/L)Ψ(ejΩ/L). �

Example 1: As an example for the case L > 1, consider the

matrix A1(z) = [1, 1; z−1, 1]. This matrix can be shown to

possess on the unit circle singular values σ′

1(Ω) = 2 cos(Ω/4)
and σ′

2(Ω) = 2 sin(Ω/4) = σ′

1(Ω − 2π) that are analytic in

Ω ∈ R and 8π periodic as shown in Fig. 1, such that w.r.t. (10),

L = 4. Note that for e.g. Ω = 0, Ω = 2π, Ω = 4π and Ω = 6π
the moduli of the singular values are identical, as indicated in

Fig. 1.

The considerations according to Sec. II-C end with case

(2.2), and we find that the sequences of segment indices are

{1, 2,−1,−2, 1 . . . } and {−2, 1, 2,−1,−2, . . . }, and so k1 =
κ1 = 2 and L = 4. The singular values in Fig. 1 are 2π-shifted

versions of each other and are 2Lπ = 8π periodic. △
The discussion in Sec. II-D was based on the extraction

of functions that are analytic in Ω ∈ R with a 2πL peri-

odicity. Thus, while e.g. Σ(ejΩ/L) in (9) is analytic in the

real parameter Ω, the same function may not be analytic

in the complex parameter z [44]. W.r.t. Example 1, while

σ′

1(Ω) = 2 cos(Ω/4) = ejΩ/4 + e−jΩ/4 is analytic in Ω on

the unit circle, the resubstitution with z = ejΩ leading to

σ1(z) = z1/4 + z−1/4 is not analytic in the complex plane.

E.g. the term z−1/4 represents a fractional delay; its time

domain equivalent is a sampled sinc function [50], which is not

absolutely convergent, and hence z−1/4 is not analytic. We can

however obtain analytic singular values in the complex plane if

we analyse A1(z
4) instead of A1(z), i.e. if we oversample the

matrix A1(z) by a factor of L = 4, and thus avoid fractional

delays.

In the following two sections, we will explore in more detail

when and why cases with L > 1 occur; first, in Sec. III we

consider the algebraic aspect that causes a sign change in a

singular value. Thereafter, we focus on the case of frequency-

shifted —or in the time domain modulated— singular values

in Sec. IV.

III. UNMODULATED SINGULAR VALUES

This section addresses the case where singular values

σ′

k(Ω), k = 1, . . . ,K are not frequency-shifted — or equiv-

alently, σk[n] ◦—• σ′

kq(Ω) are not modulated — versions of

one another, but can be 4π-periodic instead of the 2π-periodic

functions required for analyticity of the singular values. For

this, we initially focus on the degenerate case of a 1 × 1
matrix A(z) = γ(z) : C → C in Sec. III-A. We then explore

how for multiple distinct singular values, their zero-crossings

determine their periodicity in Secs. III-B and III-C.

A. Factorising 2π-Periodic Complex-Valued Functions

For a function γ(z) : C → C that is analytic in z, we

initially evaluate the SVD on the unit circle for z = ejΩ,

γ(ejΩ) = u′(Ω) · σ′(Ω) · v′∗(Ω) , (19)

which factorises γ(ejΩ) into a real-valued and two complex-

valued components. The function σ′(Ω) represents the real-

valued analytic singular value and the complex-valued analytic

left- and right-singular vectors u′(Ω) and v′(Ω) reduce to

allpass filters. W.l.o.g., we set v′(Ω) = 1, i.e., we mandate that

the frequency-dependent phase change has to be performed by

u′(Ω).
As long as σ′(Ω) > 0 ∀Ω, the SVD performs a split into a

magnitude and a phase term. Since we only have one singular

value, no shifted versions can appear; further, since there is no

sign change, and given that σ′(Ω) = σ′(Ω− 2π), then σ′(Ω)
must be 2π-periodic. Therefore, according to Theorem 2, the

terms in (19) can be analytic, such that γ(z) = u(z)σ(z)vP(z).
The same argument applies if σ′(Ω) < 0 ∀Ω, as the sign can be

incorporated into u′(Ω), and an analytic 2π-periodic solution

is also possible.

Example 2: The function γ(z) = 1 + jz−1 + 1
2z is not

parahermitian, i.e. γP(z) 6= γ(z), and therefore γ(ejΩ) /∈ R,

but satisfies |γ(ejΩ)| > 0. Its singular value decomposition

leads to the analytic singular value σ(z) and an allpass u(z)
characterised in Fig. 2. Note from Fig. 2(a) that σ[n] = σ∗[−n]
is Hermitian. Both σ[n] and u[n] are (potentially infinite)

Laurent series, but due to their analyticity are absolutely

convergent and hence decay at least exponentially, as seen

in Fig. 2(b). While thus the support of σ(z) has increased

w.r.t. γ(z), the exponential decay is sufficient for analyticity,

which in turn guarantees that σ(z) can be approximated

arbitrarily closely by a finite length Laurent polynomial [27],

[28]. △
The remainder of Sec. III considers the case where σ′(Ω)

is not strictly positive or negative, i.e. σ′(Ω) = 0 for some

Ω, and we aim to understand under which circumstances a 2π
or a 4π periodicity arises. We further expand the scope from

a single function σ′(Ω) to multiple singular values σ′

k(Ω),
k = 1, . . . ,K, that are not shifted versions of each other.
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Fig. 2. For γ(z) = 1+jz−1− 1
2
z−2 = u(z)σ(z) in Example 2, (a) singular

value σ[n] ◦—• σ(z), and (b) decay of both σ[n] and u[n] ◦—• u(z).

B. Sign Changes of Singular Values

Since we have excluded the case of modulated singular val-

ues, following the discussions of Sec. II-C we only look at rep-

etitions of a single segment. The index sequence {k, k, . . . } for

the kth singular value means that σ′

k(Ω) = σ′

k(Ω− 2π), i.e. a

2π periodicity. In contrast for the sequence {k,−k, k, . . . }
we have σ′

k(Ω) = −σ′

k(Ω−2π) and 4π periodicity. The latter

must include at least a sign change within a 2π interval of

σ′

k(Ω), which must be connected with zeros , i.e. values where

σ′

k(Ω) = 0. Such zeros on the unit circle are also referred to

as spectral zeros.

C. Numbers and Multiplicities of Spectral Zeros

We next explore under which conditions a singular value

does or does not experience a sign change over a 2π-

interval, i.e. whether σ′

k(Ω) is 2π-periodic. Assume that a

function σ′

k(Ω) possesses zeros at I distinct frequencies Ωi,

i = 1, . . . , I , within the interval 0 ≤ Ω < 2π, where each

has multiplicity Ci. We will show below that the absence or

presence of a sign change over a 2π interval can be tied to

whether the condition

mod2
{

I∑

i=1

Ci

}
= 0 (20)

holds true. This motivates the following theorem.

Theorem 3 (Non-existence of an analytic singular value due

to spectral zeros): If a singular value σ′

k(Ω) is not a frequency

shifted version of another singular value, and possesses zeros

at I distinct frequencies in [0, 2π) with multiplicities Ci, i =
1, . . . , I , and (20) is satisfied, then σ′

k(Ω) is 2π-periodic, and

an analytic σ′

k(z) exists. If (20) does not hold, then σ′

k(Ω)
must be 4π-periodic.

Proof: For an even Ci, σ
′

k(Ω) will only tangentially touch

zero at Ω = Ωi without crossing. Hence there will not be a

sign change if all the Ci are even. If there is one odd Ci then

the singular value will change sign once within Ω0 ≤ Ω <
Ω0 + 2π, with Ω0 ∈ [0, 2π) and σ′

k(Ω0) 6= 0. This means

that σ′

k(Ω0) and σ′

k(Ω0 + 2π) will have different signs and

so σk(Ω) is 4π periodic. If, on the other hand, there are two

odd Ci then the singular value will change sign twice within

Ω0 ≤ Ω < Ω0 + 2π. So although σ′

k(Ω) becomes negative at

some point, we have that σ′

k(Ω0) and σ′

k(Ω0 + 2π) will have

2 21 11 2

(a)

(b)

Fig. 3. (a) Moduli of singular values σ′

k
(Ω), with zeros indicated by circles

together with their multiplicities Ci; (b) singular values with 2π-periodicity
for k = 1, 2 and 4π periodicity for k = 3 that are analytic in Ω ∈ R.

identical signs and σ′

k(Ω) is 2π periodic. More generally, 2π-

periodicity results if the number of zeros with an odd order

of multiplicities is even, as established by (20). �

Example 3: Fig. 3(a) shows the moduli of three singular

values σ′

k(Ω), k = 1, 2, 3, that all take on a value of zero for

some Ω. The multiplicity Ci of these zeros is also indicated

in the graph. With two zeros, each of multiplicity two, σ′

1(Ω)
satisfies (20) and hence is 2π-periodic and analytic. The

function σ′

2(Ω) possesses two single zeros, and the modulus

is not differentiable at Ω = 0 and Ω = 7
4π. An analytic,

2π-periodic function σ′

2(Ω) can be created by allowing the

singular value to be negative on the interval 7
4π ≤ Ω < 2π,

as shown in Fig. 3(b). The singular value σ′

3(Ω) in Fig. 3(a)

has two zeros, one with an even multiplicity and one odd,

thus violating (20). Simply letting σ′

3(Ω) be negative on the

interval 1
4π ≤ Ω < 3

2π will result in an analytic continuation

at Ω = 1
4π, but causes the non-existence of derivatives above

first order at Ω = 3
2π (even though this may not be directly

evident from Fig. 3(b)), and therefore does not create an

analytic function. An analytic function can only be created

with a 4π periodicity, as shown in Fig. 3(b). Overall, Fig. 3(b)

illustrates the resulting analytic functions, which for zeros of

even multiplicity Ci only tangentially touch zero, but which

for odd multiplicities Ci possess a crossing point at zero. △
In summary, spectral zeros can lead to a 4π-periodicity

instead of a 2π periodicity of the singular values on the unit

circle. If condition (20) is not met by all singular values, and if

these singular values are not modulated, then analytic singular

values can only be obtained for A(z2).

IV. MODULATED SINGULAR VALUES

This section explores under which circumstances an analytic

matrix A(z) will not admit an analytic SVD due to modulated

singular values. Following preliminaries in Sec. IV-A, we first

show how particular matrix structures are necessarily linked to

modulated singular values: a single set of modulated singular

values is linked to pseudo-circulant matrices in Sec. IV-B,

while block-pseudo circulant matrices are connected to multi-

ple sets of modulated singular values of the same cardinality

in Sec. IV-C. For general sets of modulated singular values,
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Sec. IV-D shows that the corresponding matrices necessarily

and sufficiently must be linked to multiplexing operations, but

that structural evidence such as the pseudo-circulant property

of a matrix, can be obscured by arbitrary paraunitary opera-

tions.

A. Preliminaries

This section explores under which circumstances an analytic

matrix A(z) will not admit an analytic SVD due to modulated

singular values. As a basic building block, we want to consider

a matrix A(z) : C → C
M×N , whose singular values at a κF -

times oversampled rate are F frequency-shifted or modulated

versions of a single function σ(z),

Σ(z)=diag
{

σ(z), σ(zej
2π
κF ), . . . , σ(zej(F−1) 2π

κF )
}

. (21)

The parameter F is introduced for later consistency but here

we have F = K, and κ accounts for Theorem 3: in case (20)

is satisfied, we have κ = 1, otherwise we require κ = 2 for

Σ(z) to be analytic. Note that any matrix produced under left-

and right-multiplication of Σ(z) with arbitrary paraunitary

operators U (z) : C → C
M×M and V P(z) : C → C

N×N ,

respectively, will have the same singular values.

B. Pseudo-Circulant Matrices

We initially restrict ourselves to a square matrix A(z) :
C → C

M×M and thus F = K = M , and investigate under

which conditions it will possess modulated singular values as

defined in (21). From multirate signal processing, it is known

that for a pseudo-circulant matrix [25]

A(z) =









H0(z) H1(z) . . . HF−1(z)

z−1HF−1(z) H0(z)
...

...
. . . . . .

...

z−1H1(z) . . . z−1HF−1(z) H0(z)









,

(22)

the expanded matrix A(zF ) is diagonalised by a paraunitary

operation W (z),

W (z) = D(z)T , (23)

where D(z) = diag
{
1 , z−1 , . . . z−F+1

}
and T represents

an F -point DFT matrix scaled to be unitary [18], [52]. This

yields a factorisation A(zF ) = W (z)Γ (z)W P(z), where

Γ (z) = diag
{

H(z), H(zej
2π
F ), . . . , H(zej

2π(F−1)
F )

}

. (24)

The elements Hm(z), m = 0, . . . , (F − 1), in (22) are com-

monly known as the F polyphase components of some system

H(z) =
∑F−1

m=0 z
−mHm(zF ). This system and its (F − 1)

modulated versions form the diagonal entries of the matrix

Γ (z) in (24). Importantly, the connection between pseudo-

circulance in (22) and the diagonalisation involving modulated

functions in (24) is both necessary and sufficient [45].

The elements H(zej
2πi
F ) relate to the entries of Σ(z) as

follows. As per (19) and allowing for a spectral zero (see

Sec. III-C) we can write the SVD of H(zκ) as H(zκ) =

↑2

↑2 ↓2

↓2

H(z)z
−1

+

z
−1

A(z)

Fig. 4. System matrix A(z) : C → C2×2 created by multiplexing across a
single-input single-output system H(z).

ϕ(z)σ(z) where ϕ(z) is an allpass filter and σ(ejΩ) ∈ R.

Then overall we have

A(zκF ) = U (z)Σ(z)V P(z) , (25)

where

U (z) = W (zκ)diag
{

ϕ(z), . . . , ϕ(zej
2π(F−1)

κF )
}

(26)

Σ(z) = diag
{

σ(z), . . . , σ(zej
2π(F−1)

κF )
}

(27)

V (z) = W (zκ) . (28)

This necessarily and sufficiently connects a set of F modulated

singular values to an F × F pseudo-circulant matrix A(z),
as also observed in [44]. Hence, an analytic SVD does not

exist for a pseudo-circulant matrix A(z). In contrast, the

oversampled version A(zκF ) does have an analytic SVD.

Example 4: The matrix A1(z) from Example 1 is a pseudo-

circulant system arising from multiplexing data across a trans-

fer function H(z) = 1 + z−1 with F = 2 as shown in Fig. 4.

In this multiplexed operation, the input of H(z) arises from

interleaving of two lower rate signals by means of expansion

and delay, while at the output a deinterleaver or serial-to-

parallel converter extracts two signals sampled at a lower

rate via delay and decimation operations [41], [45]–[47]. The

paraunitary W (z) in (23) indeed diagonalises A1(z
2) with

F = 2, such that

A1(z
2) = W (z)diag

{
H(z), H(zejπ)

}
W P(z) , (29)

with H(zejπ) = 1 − z−1. Since H(z) possesses a single

spectral zero at z = −1, (20) is violated and we have to

oversample by a further factor κ = 2 in order to extract

analytic singular values. By therefore expanding both H(z)
and H(zejπ) by a factor of κ = 2, we have

H(z2) = 1 + z−2 = z−1
︸︷︷︸

ϕ(z)

·(z + z−1

︸ ︷︷ ︸

σ1(z)

) (30)

H(z2ejπ) = 1− z−2 = −jz−1(jz − jz−1) (31)

= (zej
π
2 )−1

︸ ︷︷ ︸

ϕ(zej
π
2 )

·
(
zej

π
2 + (zej

π
2 )−1

)

︸ ︷︷ ︸

σ2(z)=σ1(ze
jπ
2 )

. (32)

Therefore, overall we have A1(z
4) = U 1(z)Σ1(z)V

P
1(z)

with

U 1(z) = W (z2)

[
z−1

−jz−1

]

, (33)

V 1(z) = W (z2) and Σ1(z) = diag{σ1(z), σ2(z)} =
diag

{
σ1(z), σ1(ze

jπ2 )
}

. Thus, the terms ϕ(zej
π
2 ) = −jz−1
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and σ1(ze
jπ2 ) are indeed modulated versions of ϕ(z) = z−1

and σ1(z) as per (26) and (27) with F = κ = 2. △

C. Block-Pseudo-Circulant Systems

As a first generalisation of Sec. IV-B, we consider non-

square matrices that possess modulated singular values. As-

sume a multiple-input multiple-output system H (z) : C →
C

MH×NH , whereby its inputs and outputs are multiplexed and

demultiplexed by a factor of F . Thus, in analogy to Fig. 4,

a system matrix A′(z) : C → C
M×N with M = FMH and

N = FNH results, which for block sampling yields a matrix-

valued version of (22),

A′(z) =









H 0(z) H 1(z) . . . H F−1(z)

z−1H F−1(z) H 0(z)
...

...
. . . . . .

...

z−1H 1(z) . . . z−1H F−1(z) H 0(z)









,

that is sometimes referred to as a generalised pseudo-circulant

matrix [53]. With a permutation matrix PQ = [IF ⊙ e1, IF ⊙
e2, . . . , IF ⊙ eQ], where IF is an F × F identity matrix, ⊙
the Kronecker product, and eq ∈ Z

Q a vector of zeros except

of a value of one as the qth element, we can define A(z) =
PMH

A′(z)PT
NH

,

A(z) =






A1,1(z) . . . A1,NH
(z)

...
. . .

...

AMH ,1(z) . . . AMH ,NH
(z)




 . (34)

The matrix A(z) in (34) possesses a block-pseudo-circulant

structure: the submatrices Ai,j(z) : C → C
F×F , with

i = 1, . . . ,MH and j = 1, . . . , NH , are pseudo-circulant, and

emerge from F -fold multiplexing the element Hi,j(z) in the

ith row and jth column of H (z) analogously to (22).

While the diagonalisation of pseudo-circulant matrices [45]

and of block-circulant (i.e. non-polynomial) matrices [54], [55]

has been addressed in the literature, we are not aware of any

discussions of block-pseudo-circulant matrices. We therefore

state:

Theorem 4 (Singular values of block-pseudo-circulant ma-

trices): If a system A(z) emerges from F -fold multiplexing

of a system H(z), then the singular values of A(z) will be

F -fold modulated versions of those of H (z).
Proof: To investigate the singular values of A(z), we define

W l(z) = blockdiag
{
W (z), . . . , W (z)
︸ ︷︷ ︸

MH

}
(35)

W r(z) = blockdiag
{
W (z), . . . , W (z)
︸ ︷︷ ︸

NH

}
, (36)

with W (z) as in (23). With paraunitary matrices Q l(z) : C →
C

MHF×MHF and Qr(z) : C → C
NHF×NHF , we initially

postulate the decomposition

A(zF ) = W l(z)Q l(z)Γ (z)QP
r(z)W

P
r(z) , (37)

and let Γ (zκ) = Ψ(z)Σ(z), where Ψ(z) : C →
C

MHF×MHF and Γ (zκ),Σ (z) : C → C
MHF×NHF are

diagonal matrices. First consider the structure of

S(z) = W P
l(z)A(zF )Wr(z) . (38)

This matrix S(z) can be subdivided into F × F subblocks

S i,j(z), i = 1, . . . , MH , j = 1, . . . , NH , such that

S(z) =






S1,1(z) . . . S1,NH
(z)

...
. . .

...

SMH ,1(z) . . . SMH ,NH
(z)




 , (39)

whereby

S i,j(z) = W P(z)Ai,j(z
F )W (z) . (40)

Recall from (34) that Ai,j(z
F ) is a pseudo-circulant matrix

derived from F -fold multiplexing a system Hi,j(z). Thus

S i,j(z) is diagonal with modulated entries, such that

S i,j(z) = diag
{

Hi,j(z), . . . , Hi,j(ze
j2π(F−1)/F )

}

. (41)

We now focus on the structure of

S(z) = Q l(z)Γ (z)QP
r(z) , (42)

which is sparse with only every F th sub-diagonal occupied

by potentially non-zero values. Using the earlier defined

permutation matrices, the operation

S ′(z) = PMH
S(z)PT

NH
(43)

= blockdiag
{

H (z),H (zej2π
1
F ), . . . ,H (zej2π

F−1
F )

}

(44)

changes S(z) into a block-diagonal matrix. From Theorem 2,

H (zJ) admits an analytic SVD for some J ∈ Z, and the same

can be said for all its shifted versions as

H (zJej2π
s
F ) = H ([zej2π

s
FJ ]J)

= U ′(zej
2πs
JF )Σ ′(zej

2πs
JF )V ′P(zej

2πs
JF ) (45)

s = 0, . . . , (F − 1). Therefore, the paraunitary matrices

Q ′

l(z) = blockdiag
{

U ′(z),U ′(zej
2π
FJ ), . . .

. . . ,U ′(zej
2π(F−1)

FJ )
}

(46)

Q ′

r(z) = blockdiag
{

V ′(z),V ′(zej2
2π
FJ ), . . .

. . . ,V ′(zej
2π(F−1)

FJ )
}

(47)

are block-diagonal and Σ(z
1
J ) =

blockdiag{Σ ′([zej2π
s
F ]

1
J )}s=0,...,F−1 contains the singular

values of H (z) and its F -fold modulated versions. From

(37), (38), (44), and (45), we have that

A(zF ) = Wl(z)P
T
MH

Q ′

l(z
1
J )Σ(z

1
J )Q ′P

r (z
1
J )PNH

W P
r(z) ,

(48)

thus proving that the singular values of A(z) are the F -

fold modulated versions of those of H (z), even if the latter

contains modulated singular values. If H (z) does not contain

any further modulated singular values, then indeed J = 1. The

result in (48) relates back to the postulated (37), with Ψ(z)
absorbed into the either left- or right-singular vectors. �

Example 5: Consider the system H (z) : C → C
2×3,

H (z) =

[
1 + 2z−1 j jz−1

z−1 −2 j− jz−1

]

. (49)
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Fig. 5. Singular values of (a) H (z) and (b) A(z2) in Example 5.

By evaluating individual SVDs along the unit circle, we find

the singular values σH,m(ejΩ), m = 1, 2 of H (ejΩ) as shown

in Fig. 5(a). Note that both singular values satisfy (20), such

that κ = 1. For a system A(z) : C → C
4×6 obtained by

2-fold multiplexing H (z) , we need to evaluate the twice

oversampled system A(z2). Its singular values σA,µ(e
jΩ) are

shown in Fig. 5(b). Note that in addition to matching singular

values σA,1(e
jΩ) = σH,1(e

jΩ) and σA,3(e
jΩ) = σH,2(e

jΩ),
the modulated versions σA,2(e

jΩ) = σH,1(e
j(Ω−π)) and

σA,4(e
jΩ) = σH,2(e

j(Ω−π)) appear due to the multiplexing

operation. △

D. General Multiplexed Systems

Sec. II-D has shown that for an analytic matrix A(z) : C →
C

M×N , M ≤ N , we can generally have P sets of modulated

singular values, each of cardinality kp, p = 1, . . . , P , where
∑

p kp = M . We now want to explore under which condi-

tions such singular values may occur in systems of transfer

functions. For simplicity, we exclude singular values with zero

crossings, so that κp = 1, resulting in (see after (9)) an overall

2πL periodicity of singular values with L = lcm{k1, . . . , kP }.

Different from the preceding subsections, where we as-

sumed particular matrix structures, we start with the singular

values of some matrix A(z). Assume that the kp modulated

singular values of periodicity 2πkp form the diagonal of the

kp× kp matrix Σ̄p(z
1/kp); the notation z1/kp reminds us that

this function will only be analytic once oversampled by integer

multiples of kp. The reasoning in Sec. II-D yields an overall

M ×M matrix Σ̄(z) of singular values, such that

Σ̄(z1/L) = blockdiag
{

Σ̄1(z
1/k1), . . . , Σ̄P (z

1/kP )
}

. (50)

Based on the analysis in Sec. IV-B we know that Σ̄1(z
1/k1)

can be related to an analytic pseudo-circulant matrix

via a paraunitary matrix Wkp
(z) (cf. (23)). Specifically

we have that Wkp
(z) = Dkp

(z)Tkp
with Dkp

(z) =
diag

{
1, z−1, . . . , z−kp−1

}
and Tkp

a kp-point DFT matrix.

By forming a block-diagonal matrix

W̄ (z1/L) = blockdiag
{

Wk1
(z1/k1), . . .WkP

(z1/kP )
}

,

(51)

we find that

Ā(z) = W̄ (z1/L)Σ̄(z1/L)W̄
P
(z1/L) (52)

is analytic in z, and is an M × M block-diagonal matrix

consisting of P pseudo-circulant subblocks.

We now want to utilise these results to factorise the general

matrix A(z), such that sets of modulated singular values as

in (50) arise. We are therefore looking for a decomposition of

A(z) = U (z1/L)[Σ(z1/L) 0L×(N−L)]V
P(z1/L) , (53)

where U (z1/L) : C → C
M×M and V (z1/L) : C → C

N×N

are matrices of left- and right-singular vectors that potentially

must be oversampled by integer multiples of L in order to be

analytic. Inserting nugatory factors W̄
P
(z1/L)W̄ (z1/L) and

substituting (52), we obtain

A(z) = U (z
1
L )W̄

P
(z

1
L )

︸ ︷︷ ︸

Ū (z1/L)

Ā(z) [W̄ (z
1
L ) 0]V P(z

1
L )

︸ ︷︷ ︸

V̄
P(z1/L)

. (54)

This means that A(z) consists of an inner system Ā(z),
representing P multiplexed systems of the type analysed in

Sec. IV-B, each with potentially different multiplexing factors

kp, p = 1, . . . , P . Outer system components, the paraunitary

Ū (z1/L) : C → C
M×M and the matrix V̄ (z1/L) : C →

C
N×M containing M columns of a paraunitary matrix, are as

defined in (54). These outer components may involve further

sampling rate changes, and can generally obscure the pseudo-

circulant property when inspecting A(z).
With the analysis of general multiplexed systems concluded

with (54), we briefly show how this result can be reconciled

with the block-pseudo-circulant systems of Sec. IV-C. In this

case, the cardinality of the different sets of modulated singular

values are the same, so that k1 = . . . = kP = L = F ,

such that M = LP , i.e. we have P sets of L-fold modulated

singular values. Without any further modulations across the

therefore distinct sets of singular values, we can write the

analytic SVD with (48) as

A(zL) = W l(z)P
T
MH

Q ′

l(z)Σ(z)Q ′P
r (z)PNH

W P
r(z) .

(55)

In contrast, with (52) and (54),

A(zL) = Ū (z)W̄ (z)Σ̄(z)W̄
P
(z)V̄

P
(z) . (56)

The square matrixΣ̄(z) contains potentially permuted singular

values, such that Σ(z) = PΣ,1[Σ̄(z) 0M×(N−M)]P
T
Σ,2, with

PΣ,1 and PΣ,2 suitable permutation matrices. Comparing (55)

and (56), and noting that W̄ (z) = W l(z), we find for the

outer systems as defined in (54)

Ū (z) = W l(z)P
T
MH

Q ′

l(z)PΣ,1W
P
l (z) , (57)

V̄ (z) = W r(z)P
T
NH

Q ′

r(z)PΣ,2

[
IM

0(N−M)×M

]

W P
l (z) .

(58)

Thus, a block-pseudo-circulant matrix can be viewed as a

special case of a more general matrix A(z) containing —

potentially hidden by outer operations, i.e. without obvious

pseudo-circulant or block-pseudo-circulant properties — mul-

tiplexing operations.
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The following theorem summarises the findings of Sec. IV:

Theorem 5 (Modulated singular values): A matrix A(z)
analytic in z ∈ C that can be tied to a multiplexing operation

via paraunitary operations necessarily and sufficiently pos-

sesses modulated singular values. Such singular values have

a periodicity of 2πL, L ∈ N that only become analytic for

A(zL), i.e. if A(z) is oversampled by a factor L.

Proof: The necessary and sufficient link between multiplex-

ing and modulated singular values has been established by

(54). �

If A(z) is not pseudo-circulant or block-pseudo-circulant

then there is no known way of determining whether it can

be tied to a multiplexing operation by paraunitary operations

Ū (z) and V̄ (z) as in (54), except for the causality dilemma:

we would need to determine the analytic SVD, but it does not

exist unless A(z) is expanded. Interestingly, with some effort

that is beyond the scope of this paper, it can be shown that the

outer, paraunitary factors in (54) can be selected to be analytic,

such that any A(z) can be brought into a block-diagonal

pseudo-circulant representation without oversampling.

Example 6: Consider B(z) = [1 + z−1, 2; 1 − z−1, 0].
This matrix is not pseudo-circulant, but can be obtained as

B(z) =
√
2T2A(z), with A(z) the pseudo-circulant system

of Example 1, with which it therefore shares its modulated,

8π-periodic singular values. In terms of an implementation,

B(z) can be constructed by attaching a 2-point DFT matrix

to the output of the system in Fig. 4. △

V. EXISTENCE OF THE ANALYTIC SVD

A. Existence

Recall that we want to establish under which conditions

a matrix A(z) : C → C
M×N that is analytic in z ∈ C

within some region including the unit circle admits, without

oversampling, an analytic SVD A(z) = U (z)Σ(z)V P(z) as

in (1) with analytic factors. The matrices U (z) : C → C
M×M

and V (z) : C → C
N×N are paraunitary matrices containing

the left- and right-singular vectors. For the diagonal matrix

Σ(z) : C → C
M×N , we only demand that Σ(ejΩ) ∈ R

M×N ,

i.e., for the singular values to be real-valued on the unit circle

but not necessarily positive.

Theorem 6 (Existence of the analytic SVD): The decompo-

sition of an analytic matrix A(z) with analytic factors in (1)

exists if and only if A(z) cannot be tied to a multiplexing

operation, and if on the unit circle the spectral zeros of its

singular values all satisfy (20).

Proof: We first evaluate on the unit circle. According to

Theorem 5, a matrix A(z)|z=ejΩ cannot be tied to a multi-

plexing operation if and only if its analytic singular values

are not modulated. Additionally, Theorem 3 guarantees 2π-

periodic singular values if and only if (20) is satisfied for all

singular values. Thus, we have L = 1, which with Theorem 2

also establishes 2π-periodic left- and right-singular vectors.

Resubstituting z = ejΩ means that the SVD factors in (1) are

analytic within a region of convergence that includes at least

the unit circle.

To show that the region of convergence extends beyond the

unit circle, we utilise (1) to write the EVDs

R1(z) = A(z)AP(z) = U (z)Σ(z)ΣP(z)U P(z) (59)

R2(z) = AP(z)A(z) = V (z)ΣP(z)Σ(z)V P(z) . (60)

Since A(z) is unmultiplexed, R1(z) and R2(z) are neither

tied to multiplexing operations, and their EVDs are guaranteed

to exist with analytic eigenvalues and eigenvectors [43] whose

region of convergence extends beyond the unit circle. Hence

the factors Σ(z), U (z), and V (z), due to the uniqueness

theorem of analytic functions [51], must also have a region of

convergence extending beyond the unit circle, within which

they are analytic in z. �

If A(z) emerges from multiplexing and/or (20) is not

satisfied, an analytic SVD can only be found for A(zL), for

some suitable integer L > 1.

Example 7: The two causes for a loss of analyticity can

occur simultaneously, as seen in Example 1, which involved

multiplexing by F = 2 and where the singular value violated

(20), such that κ = 2. An analytic SVD is only possible for

A(zL) with L = κF = 4. △
Corollary 1 (Existence of the Analytic SVD without Over-

sampling): For an analytic matrix A(z) that neither can be

tied to multiplexing operations nor possesses any singularities

for z = ejΩ, the analytic SVD as defined in (1) exists without

the need for oversampling of A(z).

Proof: If A(z) is not tied to any multiplexing operations, then

A(z) only denies the existence of an analytic SVD if and

only if its singular values violate (20). However, A(ejΩ) not

possessing any singularies implies that its singular values are

free of zero crossings, which is sufficient albeit not necessary

for (20) to be satisfied. �

B. Ambiguities

For the singular values, Sec. II-D has established that

the analytic solution is unique up to some ordering. While

the standard SVD is defined with majorised singular values

according to (3), such ordering is not meaningful for functions

that can intersect. For the following, we do however assume

that any identical singular values are ordered in groups,

s.t. σi(e
jΩ) = . . . = σi+C

−
1(e

jΩ) ∀Ω in the case that there

are C identical singular values.

For the singular vectors, we assume w.l.o.g. that M ≤ N ,

as otherwise we can operate on the transpose matrix. Let

Φ1(z) : C → C
M×M and Φ2(z) : C → C

(N−M)×(N−M) be

two paraunitary matrices. The matrix Φ1(z) is block-diagonal

with the size of the blocks reflecting the groups of identical

singular values on the diagonal of the square matrix Σ̄(z).
For M distinct singular values, Φ1(z) is a diagonal matrix

of arbitrary allpass filters. Note that Σ̄(z) and Φ1 commute.

The matrix Φ2(z) is an arbitrary paraunitary matrix. If A(z)
is rectangular with M < N and admits an analytic SVD then
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A(z) = U (z)
[
Σ̄(z),0

]
V P(z). Inserting a nugatory factor

we have

A(z) = U (z)
[
Σ̄(z),0

]
[

Φ1(z) 0

0 Φ2(z)

]

·
[

ΦP
1(z) 0

0 ΦP
2(z)

]

V P(z)

= U (z)Φ1(z)Σ(z)

[
ΦP

1(z) 0

0 ΦP
2(z)

]

V P(z) .

The matrix Φ1(z) represents a coupled ambiguity between the

left- and right-singular vectors is equivalent to (4) and (5) in

the case of a standard SVD. The matrix Φ2(z) permits the

right-singular vectors to form an arbitrary orthonormal basis

within the (N − M)-dimensional nullspace of A(z) without

affecting the decomposition.

VI. COMPUTATION USING SOME EXISTING ALGORITHMS

This section explores the computation of the analytic SVD

in (1) by means of existing algorithms. There are currently

three types of algorithm for calculating a polynomial SVD.

The first involves repeatedly applying a polynomial QRD

algorithm [22]. The second method is an SBR2-style, direct

diagonalisation of a matrix A(z) [23]. The third one uses two

EVDs as in section V. There are two classes of EVD algo-

rithms: time domain and frequency domain. The time-domain

approaches include the SBR2 [17], [18] or SMD [19]–[21]

families of algorithms. The SBR2 and SMD algorithms have

either been explicitly proven to converge to, or may encourage,

a spectrally majorised solution. In contrast, the frequency

domain approaches [27]–[29] seek to compute the analytic

solution. The QRD and direct diagonalization approaches are

also based in the time domain and yield results similar to

SBR2- and SMD-based methods. In the following, in order

to compare the majorised vs analytic approaches we utilise

the “two EVD” approach using either the SMD [19] or DFT

domain algorithms in [27], [28] to approximate (1).

A. Approach and Challenges

To attempt to calculate an analytic SVD via two paraher-

mitian matrix EVDs, we first compute

R1(z) = A(z)AP(z) = Q1(z)Λ1(z)Q
P
1(z) , (61)

R2(z) = AP(z)A(z) = Q2(z)Λ2(z)Q
P
2(z) . (62)

Assuming that the eigenvalues in Λ1(z) and Λ2(z) are distinct

and similarly ordered, then comparing (61) to (59), we set

U (z) = Q1(z). Since the ambiguity of the eigenvectors

in Q2(z) is not coupled with the ambiguity of those in

Q1(z), with (61) and (60) we find that V (z) = Q2(z)Ψ(z),
where Ψ(z) is some diagonal matrix of allpass filters. Thus,

equivalently to (17), we have

Σ̂(z) = QP
1(z)A(z)Q2(z) = Σ(z)Ψ(z) . (63)

As a result, (63) yields a Σ̂(z) with diagonal components

σ̂m(z),

σ̂m(z) = σm(z)ψm(z), m = 1, . . . ,K , (64)

where ψm(z) is some allpass filter. Thus, on the unit circle

we find that σ̂m(ejΩ) /∈ R in violation of the desired real-

valuedness of the singular values in (1). When using SBR2- or

SMD-based time domain methods, due to spectral majorisation

the resulting PEVD differs from the analytic solution in

(61) and (62) if singular values intersect. Then SBR2- and

SMD-based algorithms aim to approximate piecewise analytic

functions, resulting in approximation errors and incomplete

diagonalisation of Σ̂(z). Nonetheless, the latter approach has

been applied widely, see e.g. [17], [26], [30]–[33], [37].

To demonstrate some of the challenges using the above

approach, we now consider two examples: one where the

singular values are majorised, and one where they are not.

B. Spectrally Majorised Singular Values

We want to diagonalise a matrix A(z) : C → C
3×4 with

a known ground truth analytic SVD. The singular values in

Σ(z) : C → C
3×4 are given by

σ1(z) =
1
4z + 2 + 1

4z
−1 , (65a)

σ2(z) =
j
4z +

5
4 − j

4z
−1 , (65b)

σ3(z) =
j
2z +

1
4 − j

2z
−1 , (65c)

and are spectrally majorised, such that σ1(e
jΩ) > σ2(e

jΩ) ≥
σ3(e

jΩ) (as shown later by the grey underlaid lines in Fig. 8(a)

and (b)). The left-singular vectors are determined via parau-

nitary elementary operations [41],

U (z) =
2∏

i=1

{
I− (1− z−1)uiu

H
i

}
, (66)

where ui ∈ C
3, i = 1, 2 are random unit-norm vectors.

The matrix of right-singular vectors V (z) : C → C
4×4 of

order 2 is defined analogously to (66) with a different set

of random unit-norm vectors. Thus, we assemble A(z) =
U (z)Σ(z)V P(z).

Performing two polynomial EVDs using the SMD al-

gorithm [19] for a maximum of 400 iterations yields the

matrix Σ̂(z) via (63) shown in Fig. 6. The notation

σ̂i,k[n] ◦—• σ̂i,k(z) refers to the element in the ith row and kth

column of Σ̂(z). Firstly, note that the diagonal components

σ̂i,i[n], i = 1, 2, 3, are not symmetric, which implies that

Σ̂(ejΩ) is not real valued. Secondly, there are small non-

zero components remaining in off-diagonal elements. The

diagonalisation metric

ρ =

∑

i,k,n |σ̂i,k[n]|2 − ∑

i,n |σ̂i,i[n]|2
∑

i,k,n |σ̂i,k[n]|2
(67)

measures the ratio between the energy in the off-diagonal

terms and the overall energy, which in the case of complete

diagonalisation is zero. For the SMD approach, we obtain

a value of ρ = 1.1 · 10−2. For the left- and right-singular

vectors, the matrices extracted by SMD are of orders 8 and

10, respectively, after trimming tails in these polynomials

containing less than 0.01% of the energy in these paraunitary

matrices [20].

Fig. 7 shows the result for Σ̂[n] ◦—• Σ̂(z) when using the

parahermitian matrix EVD algorithm in [27], which aims to
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Fig. 6. Elements of Σ̂(z) in (63) obtained via two polynomial EVDs
implemented using the SMD algorithm [19] on a matrix A(z) with ground
truth spectrally majorised singular values.
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Fig. 7. Elements of Σ̂(z) in (63) obtained via two parahermitian matrix EVDs
implemented using the analytic EVD algorithm in [27], [28] on a matrix A(z)
with ground truth spectrally majorised singular values.

extract analytic factors. In this case, ρ = 9.0 · 10−10, and

at least the moduli of the extracted singular values show

symmetry. On inspection, because the analytic eigenvector

extraction pursues a minimum support for its solution, the

matrices U (z) and V (z), extracted with the correct ground

truth polynomial order of two, appear closely coupled: the

allpass filters ψm(z) that couple the left- and right-singular

vectors in (60) are approximately constant with ψ1(z) ≈ 1,

ψ2(z) ≈ ej0.4755π , and ψ3(z) ≈ e−j0.1386π .

The evaluation of the singular values on the unit circle

is provided in Figs. 8(a) and (b) for the SMD [19] and

the analytic parahermitian matrix EVD [27], respectively.

Both methods approximate the ground truth singular values,

underlaid in grey, well, with the SMD approach demonstrating

a slight deviation for σ̂(ejΩ) at around Ω = 5
4π.

C. Spectrally Unmajorised Singular Values

We repeat the experiment in Sec. VI-B for a matrix A(z)
that possesses the same ground truth left- and right-singular

vectors in U (z) and V (z), but that now has the following

Fig. 8. Moduli of ground truth singular values σm(ejΩ) and of the estimated
quantities σ̂m(ejΩ), m = 1, 2, 3, using (a) SMD [19] and (b) the Fourier
domain approach in [27], [28], when applied to a matrix A(z) with ground
truth spectrally majorised singular values.

spectrally unmajorised singular values:

σ1(z) =
1
2z +

5
4 + 1

2z
−1 , (68a)

σ2(z) = − 1
2z +

5
4 − 1

2z
−1 , (68b)

σ3(z) = jz + 1
2 − jz−1 . (68c)

Their evaluation on the unit circle, σm(ejΩ) ∈ R, is depicted

in Fig. 11 as grey underlaid curves.

The extracted matrices Σ̂(z) are characterised in Figs. 9

and 10 for SMD [19] and the Fourier domain approach in [27],

[28], respectively. For SMD, the polynomial order of Σ̂(z)
has significantly increased w.r.t. the spectrally majorised case

in Fig. 6, and the diagonalisation in Fig. 9, with a metric of

ρ = 0.7 · 10−2, looks incomplete. Similarly, the polynomial

orders of the extracted left- and right-singular vectors have

significantly increase w.r.t. the spectrally majorised case and

now are 37 and 40, respectively. This is caused by the

SMD algorithm encouraging a spectrally majorised solution,

which causes permutations in the extracted singular values

in Fig. 11(a). In these points, the SMD algorithm tries to

approximate non-differentiable functions, which requires high

polynomial orders and incurs poor convergence of an approx-

imation [42].

The Fourier domain approach in [27], [28], extracting the

analytic solution, provides the Σ̂[n] in Fig. 10 with diago-

nalisation metric ρ = 9.0 · 10−16. This matrix is at least

symmetric w.r.t. the moduli of its coefficients. The extracted

left- and right-singular vectors match the polynomial order of

the ground truth. Further we find that ψ1(z) ≈ 1, but have the

2nd and 3rd singular values permuted w.r.t. (68b) and (68c),

with σ̂2(z) ≈ e−j0.0334πσ3(z) and σ̂3(z) ≈ ej0.0103πσ2(z).
Figs. 11(a) and (b) characterise the extracted singular val-

ues on the unit circle. The SMD approach, which favours

spectral majorisation, yields singular values that are indeed

approximately spectrally majorised and hence deviate from the

ground truth. This has the benefit of concentrating as much
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Fig. 9. Elements of Σ̂(z) in (63) obtained via two polynomial EVDs
implemented using the SMD algorithm [19] on a matrix A(z) with ground
truth spectrally unmajorised singular values.
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Fig. 10. Elements of Σ̂(z) in (63) obtained via two parahermitian matrix
EVDs implemented using the analytic EVD algorithm in [27] on a matrix
A(z) with ground truth spectrally unmajorised singular values.

energy as possible in as few subchannels as possible. Note

that at the permutation points, i.e. where the ground truth

singular vectors intersect, the spectrally majorised solution

attempts to approximate a piecewise analytic solution, which

can be rather poor. In contrast, the Fourier domain approach

in Fig. 11(b), targetting the analytic solution, provides a very

accurate extraction of the singular values save for the allpass

filters ψm(z), m = 1, 2, 3 in (64).

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have established under which circum-

stances an analytic matrix A(z), for example consisting of

transfer functions of a multiple-input multiple-output system,

admits an analytic SVD, such that the extracted singular

values, as well as the left- and right-singular vectors, can be se-

lected as analytic functions. An analytic solution is guaranteed

to exist for the oversampled A(zκF ), with κ, F ∈ N. There

are two situations that lead to κF 6= 1: (i) structurally, if A(z)
can be tied to a multiplexing operation by a factor F , such

as in the case of block filtering or multiplexed transmission;

(ii) algebraically, if any of the singular values of A(zF )
possesses spectral zeros whose multiplicities sum to an odd

integer. In the latter case, we have κ = 2; otherwise, we have

Fig. 11. Moduli of the ground truth singular values σm(ejΩ) and of the
estimated quantities σ̂m(ejΩ), m = 1, 2, 3, using (a) SMD [19] and (b) the
Fourier domain approach in [27], when applied to a matrix A(z) with ground
truth spectrally unmajorised singular values.

κ = 1. In the absence of multiplexing, and as long as none

of the singular values have zeros with multiplicities that sum

to be odd, we have proven that an analytic singular value

decomposition of A(z) exists. While the analytic singular

values are unique up to a permutation, there is an ambiguity

for the analytic singular vectors: corresponding left- and right-

singular vectors can be modified by the same allpass function.

The implications of the existence of an analytic solution for

the singular values and the left- and right-singular vectors are

profound. Firstly, previous polynomial SVD algorithms have

been proven to converge in terms of yielding a diagonali-

sation and spectral majorisation, but it was unclear to what

values these algorithms would converge. The analysis in this

paper provides this answer. Secondly, since the time domain

equivalents of analytic SVD factors are absolutely convergent,

they can be well approximated by Laurent polynomials. This

favours DFT-domain algorithms such as [27]–[29] over their

time domain counterparts [17]–[21]. The former algorithms

pursue the analytic solutions for the singular values, even if

they are not spectrally majorised on the unit circle.

The algorithmic pursuit of real-valued singular values may

be tempting in ‘correctly’ generalising the ordinary SVD, and

can be built into dedicated DFT-domain algorithms that not

only avoid a spectrally majorised solution in favour of the

analytic one, but may also yield singular values that are real-

valued on the unit circle. However, a real-valued rather than a

complex-valued solution for the singular values may come at

the cost of (i) an increased order of the analytic SVD factors

(see Example 2 and Fig. 2), and (ii) the need for oversampling

by κ = 2 in case of spectral zeros whose multiplicities sum to

an odd value. It may therefore be advantageous to perform a

modified analytic SVD which permits complex-valued diago-

nal entries as e.g. contemplated in [57]. Of particular interest

may be the combination of a dedicated SVD algorithm in [23]

with an analyticity-enforcing DFT-domain approach [27], [28].

Thus, in addition to describing the existence, properties, and

structure of the analytic SVD, this paper motivates a number
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of new algorithmic developments.
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[46] H. Scheuermann and H. Göckler, “A comprehensive survey of digital
transmultiplexing methods,” Proc. EEE, 69(11):1419–1450, Nov. 1981.

[47] A. Akansu, P. Duhamel, X. Lin, and M. de Courville, “Orthogonal
Transmultiplexers in Communication: a Review,” IEEE TSP, 46(4):979–
995, Apr. 1998.

[48] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. Baltimore,
Maryland: John Hopkins University Press, 1996.

[49] R. Bro, E. Acar, and T.G. Kolda, “Resolving the sign ambiguity in the
singular value decomposition,” J. Chemometrics, 22(2):135–140, 2008.
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