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Abstract
Diagnostic abdominal ultrasound screening and monitoring protocols are based around gathering
a set of standard cross sectional images that ensure the coverage of relevant anatomical structures
during the collection procedure. This allows clinicians to make diagnostic decisions with the best
picture available from that modality. Currently, there is very little assistance provided to
sonographers to ensure adherence to collection protocols, with previous studies suggesting that
traditional image only machine learning classification can provide only limited assistance in
supporting this task, for example it can be difficult to differentiate between multiple liver cross
sections or those of the left and right kidney from image post collection. In this proof of concept,
positional tracking information was added to the image input of a neural network to provide the
additional context required to recognize six otherwise difficult to identify edge cases. In this paper
optical and sensor based infrared tracking (IR) was used to track the position of an ultrasound
probe during the collection of clinical cross sections on an abdominal phantom. Convolutional
neural networks were then trained using both image-only and image with positional data, the
classification accuracy results were then compared. The addition of positional information
significantly improved average classification results from∼90% for image-only to 95% for optical
IR position tracking and 93% for Sensor-based IR in common abdominal cross sections. While
there is further work to be done, the addition of low-cost positional tracking to machine learning
ultrasound classification will allow for significantly increased accuracy for identifying important
diagnostic cross sections, with the potential to not only provide validation of adherence to protocol
but also could provide navigation prompts to assist in user training and in ensuring adherence in
capturing cross sections in future.

1. Introduction

Diagnostic ultrasound relies on the capture of cross-sectional images of anatomical structures within the
body to provide a clinician with the requisite information to make a clinical decision. Capturing these
anatomical cross sections is time consuming and requires a high level of user skill in anatomy and ultrasound
operation [1, 2]. Machine learning has the potential to reduce the skill floor by assisting and automating
ultrasound capture procedures, but to do so it must overcome the two fundamental difficulties: the
differentiation of anatomical cross sections that are in close proximity and those that are visually similar. This
is exampled in previous studies [3, 4] showing that both experienced clinicians and neural networks [5] have
substantial difficulty classifying abdominal cross sections where the anatomical structures were visually
similar from image alone.

Machine learning has previously been used in the classification of 11 abdominal cross sections [3, 4]
achieving respective accuracies of 77.9% and 82.2% using transfer learning. A classification study of 16
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abdominal cross sections [5] achieved an accuracy 83.9%. The use of segmentation and landmarking [4, 6]
was also shown to improve accuracy with models achieving 85.2% and 83.4% respectively, with increased
accuracy possible if errors from similar cross sections were excluded. These studies show reduced accuracy
where cross sections overlap or have visual similarities. Where a distinct dataset is used, that avoids these
overlaps and visual similarities, accuracies of between 95.7% and 98.6% can be achieved [7]. This further
highlights the limitations of using an image-only approach for abdominal cross sections, due to the lack of
distinctive landmarks where there are overlapping classes within the imagery. Therefore, additional
identifiers should be sought. Positional data has been previously used in medical ultrasound applications [8]
such as 3D image reconstruction [9] and biopsy [10], but has not been utilised to assist machine learning in
improving classification of diagnostic abdominal cross sections.

In order to test the efficacy of positional based tracking of an ultrasound probe for machine learning, two
separate systems were tested: optical infrared tracking (IR) using a Vicon system, and an IR system based
upon low-cost application specific integrated circuits (ASICs) IR sensors. Vicon has been shown to be highly
accurate with within 2 mm [11], and is effective as a positional and registration reference measurement in
other medical imaging applications [12, 13]. It also has shown to achieve high accuracies in motion capture,
as part of complex automated classification processes such as respiratory tracking [14] and pose estimation
[15]. The use of optical IR tracking would be difficult to implement within a clinical environment, due to the
need for a large camera gantry, therefore a more mobile IR tracking system was designed based on a system
used for full body tracking for virtual reality (VR). IR tracking has shown to be highly accurate at tracking
while maintaining a low latency [16] with previous studies of similar positional systems being capable of
tracking an ultrasound probe mounted to a robotic arm [17], spinal column tracking [18, 19], and tracking
operator movements when applying machine learning to scanning the median nerve and radial artery [20].

This paper presents a proof-of-concept method to improve machine learning classification accuracy for
abdominal scanning using positional information to augment image-based classification. This paper first
compares image only machine learning classification to optical IR tracking within a Vicon system.
Sensor-based IR tracking was then tested using a modified HTC VR tracking system. The use of the
sensor-based IR tracking, while less accurate than Vicon, is to demonstrate the addition of positional
tracking using a mobile sensor which would be more indicative of what could be used in a clinical
environment. This paper does not seek to compare positional tracking precision, but the resultant output of
the neural network classification using these tracking systems. This is to show how effective positional
information is at improving classification of difficult to identify ultrasound cross sections and edge cases.

2. Method

In order to make an effective comparison between image-only neural networks and those augmented with
positional information, image and positional data was collected for six standard clinical abdominal cross
sections and three normalisation points using an ultrasound abdominal phantom. This was performed
within a laboratory environment using a medical ultrasound device and the optical IR or IR sensor
positional tracking systems respectively. This data was then pre-processed into an image tensor and file
containing classifier and raw coordinate output from the positional device to produce the dataset. The
dataset was then split 80/20 at the session level to prevent data leakage and used to train a three-channel
image only model and then a four-channel image and positional model. This model was validated using the
unseen test set data and results outputted, the dataset was then re-split and the experiment repeated.

2.1. Dataset
A Kyoto Kagaku ‘Echozy’ ultrasound phantom (Kyoto Kagaku Co., Ltd, Japan) was scanned using a
SonixTouch Q+medical ultrasound system (SonixTouch, BK Ultrasound, USA) using a curved array, 5–2/60
ultrasound probe. These images were captured via HDMI cable using OpenCV [21] and were stored as .jpeg
and .pt three-dimensional tensor files. Six cross sections were chosen as regions of interest (figure 1):

(a) Right hypochondrium transverse approach for common bile duct.
(b) Right intercostal approach sweeping through the liver to visualise the right portal vein.
(c) Right hypochondrium longitudinal approach for the Gall Bladder.
(d) Epigastric longitudinal approach sweeping through the aorta.
(e) Transverse approach of the left kidney
(f) Transverse approach of the right kidney.

These cross sections were chosen specifically based on classification error in previous studies [3–5, 7] and
due to visual similarity, such as with the left and right kidneys and over lapping region of interest (ROI) such
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Figure 1. Phantom cross sections. (a) Common bile duct. (b) Portal vein. (c) Gall bladder. (d) Aorta. (e) Left kidney. (f) Right
kidney.

Table 1. Phantom dataset size and composition.

Cross section Optical Infrared

Left kidney 3611 630
Right kidney 2629 563
Aorta 3335 725
Bile duct 3488 438
Gall bladder 2854 426
Portal vein 2697 628
Total images 18 614 3410

as with Gall bladder and Common Bile Duct. Complex sweep scans of aorta and portal veins that contain
both visual similarities and overlapping anatomical structures were also chosen to provide added complexity
to classification.

The optical IR dataset is made up of 137 sets of scans totalling 18 614 images, the IR dataset is made up of
22 sets of scans totalling 3410 images (table 1). Images were captured at a rate of 5 frames per second. Each
set was performed as if scanning an individual patient with the sonographer using minor pressure and angle
variation during the capture process while ensuring that the target ROI was visible and would adhere to
standard clinical collection protocols. This was done to provide additional natural variation in the images.

2.2. Tracking system
Two methods of probe tracking were tested: Vicon optical IR tracking and sensor-based IR tracking. While
the ultrasound and positional tracking systems were all capable a high rate of capture, a capture rate of 5
frames per second was used to prevent any de-synchronisation due to potential changes in system latency
throughout the scanning process. As both Vicon optical IR and IR sensor tracker require line of sight and
operate within the same frequency band, separate sessions were performed for each positional system to
minimise any potential interference.

2.2.1. Vicon optical-based IR tracking
The Phantom was placed on a non-reflective surface within a fully calibrated Vicon optical measurement
volume utilising a Vicon MX Giganet system [22] with 12 Vicon T160 cameras (16 MP, 18 mm focal length
lens) mounted to a professional camera rig (figure 2). These cameras detect light reflected off tracking dots at
a wavelength of∼850 nm. Volume calibration was performed by placing the origin point on the floor
1 meter from the phantom ensuring that coordinates were as similar as possible between sessions. The
ultrasound machine with the screen at its lowest position and laptop were placed at least 2 metres from the
phantom and masked in the calibration setup to prevent interference with tracking. Vicon tracking markers
were affixed to the probe, phantom and a Y frame that had been secured to the probe. The addition of the Y
frame allowed for additional distance between tracking dots therefore increasing the sensitivity of the optical
camera imagery and also ensuring line of sight could be maintained while the operator was positioning the
probe. The Vicon API was used to stream the coordinates into python which was captured at a rate of 5
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Figure 2. Optical tracking setup.

Figure 3. IR tracking setup.

frames per second via a Wi-Fi connection from the laptop capturing the ultrasound images to a computer
running the Vicon optical tracking development kit.

2.2.2. Infrared sensor tracking
This positional system is a modified setup based on those used for full body tracking for VR [23]. The system
itself had been modified to track a single HTC VIVE (3.0) tracker [16, 24] which was affixed to the
ultrasound probe using a strap and hot glue. A Steam VR base station (2.0) [25] was attached via a mounting
strap to the ultrasound cart which was positioned anteroinferior to the Phantom ensuring clear line of sight
(figure 3). The base station produces pulses of infrared light at a wavelength of∼850 nm which is then
detected by simple ASIC IR sensors on the VIVE tracker. VIVE tracker has previously been shown to be
accurate to within 0.68± 0.32 cm translationally and 1.64± 0.18◦ rotationally [18] in comparison to the
Vicon tracking system. The Base station was moved after each collection set to mimic moving to a new
patient or clinical space. Note that anterosuperior scans were performed but excluded as they provided
conflicting reversed positional data, this data could have been used if the angle of the phantom was tracked
during the IR experiment, or a second base station used to provide additional point of reference. Software
requirements for a headset and VR stage were bypassed by using a modified system profile and using
developer options within the Steam VR software. OpenXR [26] was used to extract the coordinates from the
VR runtime with a modified API used to stream the coordinates into python which was captured at a rate of
5 frames per second using a USB cable to the Steam VR base station.

2.2.3. Phantom coordinate normalisation
In order for the positional data to be used to effectively track the ultrasound probes movement it is necessary
to normalise coordinates provided to the neural network so that they are of similar scale. In order to test
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Figure 4. Abdominal normalisation points. (1) 9–10 on right midclavicular line, (2) 9–10 on left midclavicular line, (3)
horizontally positioned on xiphoid notch.

normalisation methods, scans of three fixed points on the phantom were taken before each set of scans was
performed as shown in figure 4:

• On the right midclavicular line, between the right 9th and 10th ribs.
• The probe is positioned on the xiphoid notch along themidsternal line with the probe positioned anteriorly.
• On the left midclavicular line, between the left 9th and 10th ribs.

These anatomical points on the ribcage, are less subject to variation due to patient positioning or disease
process, are not subject to patient dignity concerns, and can be precisely and consistently pinpointed by a
clinician. Use of soft tissue landmarks such as the umblicus would be impractical in cases with abdominal
distension where these features would be subject to greater variation. These defined points on the abdomen
were used to normalise the coordinates for each axis, where multiple points are used, a simple mean is used
to provide a single normalisation point. This normalisation point was then applied during the conversion to
positional tensor.

Post-capture normalisation for the optical data was not required, as the optical IR positional data was
automatically calibrated to a point within the measurement volume during each collection session, meaning
that differences in coordinates between scan sessions was very small. However, the IR sensor base station was
moved after each cycle of data collection to represent moving between patents and potential changes in
clinical area.

In order to evaluate the amount of normalisation required prior to input into the neural networks four
sets of normalisation data was produced by setting a new zero point:

• No normalisation—using the original captured values.
• 1-point normalisation from point one on the anatomical right side of the phantom. This locates a single
point on the abdomen within the tracked volume.

• 2-point normalisation using a simple mean of points 1 and 2 on the phantom. These measurements would
allow for the sizing of the abdomen along a single dimension.

• 3-point normalisation using a combined simple mean of all three normalisation points. This would allow
for the two-dimensional sizing of the abdomen.

Training of the neural network was performed for image only and for each of the normalisation point using
the same dataset split so that results could be compared.

2.3. Machine learning implementation
All training and testing was performed on a 64bit version of Windows 10, using a Intel core i9 and Nvidia 40
series GPU using python [27] (version 11.4) and the CUDA toolkit (version 11.7). The SciPy metrics library
was used to analyse model output. A pre-trained ResNet-50 [28] convolutional neural network from the
torchvision library was used as the basis for study, with weights based on ImageNet challenge dataset [29].
The final layer of this network is adjusted to output 6 classes. Image-only method uses the default 3 channel
neural network. For the positional study, the neural network was modified to accept a 4th channel for the
inclusion of the positional data.
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As the dataset consists of scan of a single phantom, overfitting is a concern, as such the experiment was
repeated 50 times for each normalisation type to provide an average training response, over a maximum of 5
epoch using early stopping [30] and a small batch size of 64 to promote better generalisation [31]. Training
used a learning rate of 1.00× 10−04 using the ADAM optimizer [32]. Training and testing methodology was
identical for both 3 and 4 channel versions of the network.

The dataset images were converted into tensors with 3 channels of size 330× 370 pixels. The optical
dataset was split 80/20 into training and test sets for each experimental run using a stratified random split to
ensure a balanced training set, with both the 3 and 4 channels networks trained and validated using this split,
so that a direct comparison between image-only and positional tracking could be performed. For the
positional experiments the IR dataset was split 50/50 between training and testing. The positional data was
converted into a tensor, the normalisation sum performed and input into the network alongside the 3 image
channels. Training was repeated for each normalisation state on the same data split to ensure comparison
could be performed. The datasets were split at session level to prevent bias due to data leakage.

3. Results

Neural networks trained using the optical IR dataset produced average accuracies of 91.47% for image-only
based training and 95.75% with the addition of positional data, an average improvement of 4.3% (table 2).
The largest accuracy improvements can be seen in classification of the bile duct (6.4%) and portal vein
(7.8%). The highest performing image-only network achieved an accuracy of 96.34% with the largest error
in the classification of Gall Bladder and Bile Duct. The highest performing optical IR network achieved an
overall accuracy of 98.84%, with errors in aorta, bile duct and gall bladder classification. When examining
accuracy variance as seen in figure 5, networks trained with positional data, achieved an average reduction in
variance of 23% overall.

When statistically comparing image-only and optical IR tracked results by performing a twin tailed
T-Test with the assumption of heteroscedastic variance (table 2), the optical IR tracking results proved to be
statically significant with an averaged P value of 0.0482. When the results are analysed on a class by class
basis, results are shown to be highly significant achieving P-values<0.003, however there is insufficient
statistical significance when comparing aorta classification results (p-value 0.2436).

Using figure 5 to compare the accuracy all 50 trained networks, the deviation in class accuracy was
substantially higher in image only trained network in comparison to those using optical IR tracking data.
Misclassification of gall bladder, bile duct, aorta and portal vein was the largest cause of deviation for both
image-only and optically tracked networks. Misclassification of left and right kidney was reduced to less than
3% in optically tracked networks with the average network achieving above 99% accuracy for the kidney
cross section images.

When examining the networks with the highest accuracy using a confusion matrix (figure 6), the largest
source of error for both image-only and optically tracked network is between bile duct and gall bladder, this
error is present throughout both network types, and was consistent across all 100 networks. If we compare
the image-only networks to its optically tracked network trained on the same dataset split, the optically
tracked network improves upon the image only accuracy result by an average of 4% with optically tracked
always improving on its image only counterpart.

The inclusion of the IR data into the training and test sets (table 3) saw an average accuracy of 89.70% for
image only classification. Positional accuracy achieved average accuracy of 92.71% without any form of
normalisation, 93.61% for single point normalisation, 93.73% for two-point normalisation, and 93.28% for
three-point normalisation respectively. When compared against image-only accuracy results, networks
trained on non-calibrated positional data achieved an average improvement of∼3% improvement, with
calibrated positional data achieving∼4% improvement in cross section classification. Common bile duct
and gall bladder classification were the largest sources of error in both image-only and positional tracked
networks. The maximum achieved network accuracy was 97.5% for image only, 98.5% for no normalisation,
98.7% one point of normalisation, 98.3% for two points of normalisation and 97.5% for 3 points of
normalisation.

While there is a overall improvement in classification accuracy when using IR sensor tracking with
normalisation, a single factor ANOVA test showed that there is insufficient statistical significance (F-value
0.3521, P-value 0.7038) in the results to distinguish between 1, 2 and 3 points of normalisation. This is likely
due to a limitation of this study as there is insufficient difference in the size of the abdominal cavity to
confirm efficacy of normalisation.

A comparison of the accuracy of the 50 trained networks (figure 7) shows that while overall accuracy was
improved, there was increased training variance in comparison to optical IR. Despite an increase in overall
accuracy, networks trained with positional data with no normalisation saw in increase in training variance by
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Table 2. Optical IR tracking average accuracy results of 50 neural networks.

Image only Optical IR tracking Accuracy improvement Training variance Comparative P value

Left kidney 97.7% 99.6% 1.9% 19.6% 0.0104
Right kidney 96.2% 99.2% 3.0% 29.7% 0.0033
Aorta 95.1% 96.9% 1.8% 14.7% 0.2436
Bile duct 85.2% 91.6% 6.4% 15.4% 0.0019
Gall bladder 85.2% 90.0% 4.8% 35.1% 0.0298
Portal vein 89.3% 97.1% 7.8% 23.6% 0.0003
Average 91.5% 95.8% 4.3% 23.0% 0.0482

Figure 5. Accuracy variance image-only vs optical IR tracking classification of abdominal cross sections over 100 neural networks.

Figure 6. Confusion matrix for highest accuracy networks: (a) image-only vs (b) optically tracked.

5.3%, compared to improvements of 21.7% for one-point normalisation, 18.6% for two-point, and 15.4%
improvement for three-point normalisation. Accuracy values were also lower than image-only results for 12
out of the 50 no normalisation networks, as this also occurred in a number of calibrated networks this is
most likely due to training variance. This notably did not occur in the more accurately calibrated optically
tracked networks.

When comparing the confusion matrix for the IR tracking networks (figure 8), the gall bladder and bile
duct are the most confused classifications. This result is directly comparable to that seen in figure 6.
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Table 3. IR positional tracking average accuracy results of 50 neural networks.

Image only No normalisation
1-point

normalisation
2-point

normalisation
3-point

normalisation

Left kidney 96.5% 98.2% 99.5% 99.3% 99.5%
Right kidney 96.7% 99.1% 99.0% 98.9% 99.0%
Aorta 95.4% 95.7% 95.6% 95.3% 92.6%
Bile duct 81.1% 86.6% 87.1% 85.2% 85.8%
Gall bladder 78.7% 84.9% 82.7% 88.2% 85.8%
Portal vein 89.8% 91.7% 97.7% 95.4% 97.0%
Average 89.7% 92.7% 93.6% 93.7% 93.3%

Figure 7. Accuracy variance in image-only vs IR positional tracking classification of abdominal cross sections over 250 neural
networks.

4. Discussion

This paper demonstrates the use of positional data to improve classification of abdominal ultrasound cross
sections on an ultrasound phantom using both optical IR and Sensor-based IR tracking systems. On average
neural networks trained on optical IR tracking data provided the highest accuracy network, followed by IR
Sensor tracking, and standard image-only classification.

4.1. Study limitations
While the phantom was designed to provide an accurate representation of ultrasound cross sections for
clinical training purposes, it is an idealised representation of a human abdomen and cannot fully represent
the difficulties usually encountered during image acquisition in ultrasound scanning such as:

• Shadowing is limited as phantommaterials do not have the same density range that would reduce amplitude
and obscure ROI.

• Attenuation changes from different tissue thicknesses or densities present in the anterior abdominal wall are
not represented in the phantom.

• Image artefacts common in ultrasound such as those from the digestive tract are not present in the phantom,
as these artefacts, such as gas pockets are not represented in the phantom.

• The phantom is of fixed size and as such cannot represent different sized abdominal cavities, however this
does not reduce clinical applicability as while the scale would change, in a high proportion of cases the
position of cross sectional landmarks would remain the same in relation to one another, and as such can
still be used for positional identification.

The use of a single subject (the phantom) has caused image-based accuracy results to be inflated despite use
of a holdout test set and variation in probe position during collection, there is still a high level of similarity
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Figure 8. Confusion matrix for highest accuracy IR positional tracking networks. (a) No normalisation, (b) 1-point
normalisation. (c) 2-point normalisation, (d) 3-point normalisation.

due to the structures of the phantom being identical in all scans. This does not however prevent comparison
of image-only and positional performance as the same subject and image set is used therefore any bias is
present in both control and experimental tests. In this case, overfitting would favour an image-based
solution, however, results clearly indicate that positional tracking has provided a significant improvement to
abdominal cross section classification, strongly suggesting that positional tracking merits further study.

Figures 5 and 7 show significant accuracy variance, in order to reduce overfitting strict early stopping was
applied during training, which has led to underfitting of some classifiers, resulting in increased variance than
would normally be seen. While this is a study limitation, the reduced variance in networks augmented with
positional data is highly indicative that this is improving classification accuracy.

The use of normalisation did increase overall accuracy by∼4%, but there is very little difference between
1, 2 and 3 points of normalisation. This is due to a limitation of the experimental setup, because the
phantom is a fixed size, once a fixed point on the abdomen is located, no additional variation in abdomen
shape or volume is required to be taken into account. In a human trial the abdomen could potentially have
much greater levels of variation and therefore the requirement of additional normalisation points should not
be discounted in future experimental trials. The networks using positional data with no normalisation had
the most variance in accuracy result, achieving the worst performing network at 73.3%, but still
outperforming the image-only networks on average. This is likely partially due to the error rotatory angle
data [a, b, c] being much smaller than that of positional [x, y, z] data. This would be particularly useful in the
recognition between left and right kidney, which maintained accuracy comparable to calibrated trained
networks despite providing positional [x, y, z] values that were likely incompatible with those already seen by
the network during training.

4.2. Accuracy
While accuracy has been used as the main metric throughout this paper, examining the harmonic mean for
the highest accuracy neural networks (table 4) confirms high precision and recall for all methodologies used.
This is due to the limited subject matter available with using only one phantom. Despite using a single
phantom, overfitting has been sufficiently reduced using variation in the image capture technique, early
stopping, small batch size and experimental repetition to provide indicative results, there is a distinct
correlation between the use of positional information when training a neural network and the improvement
of classification result.

When comparing the image-only accuracy results between tables 2 and 3, there is a significant drop in the
average classification accuracy of the gall bladder and bile duct between networks trained on the optical
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Table 4. F-1 score for highest accuracy neural networks from optical and IR experiments.

Image only Optical tracking IR No normalisation IR 1-point IR 2-point IR 3-point

Left kidney 1 0.99 1 1 0.99 0.99
Right kidney 0.99 1 1 1 1 0.99
Aorta 0.99 0.99 1 1 0.99 1
Bile duct 0.94 0.98 0.97 0.96 0.97 0.96
Gall bladder 0.91 0.98 0.96 0.95 0.96 0.92
Portal vein 0.96 1 0.98 1 0.99 0.98

Figure 9. Bile duct cross section with gall bladder present in image, gall bladder (GB), bile duct (BD), inferior vina cava (IVC),
portal vein (PV), aorta (AO).

set alone vs those trained with additional images from the IR sensor dataset. This is not however reflected by
the level of accuracy achieved by the highest performing image-only networks with the optical image-only
achieving 96.34% compared to 97.5% with the addition of images from the IR dataset. There was also
significantly more variance in training result in the IR image-only networks, with the lowest network result
being 79.5%, which is 1.8% lower than achieved by the worst performing optical image-only network. It is
important to note that image-only results would be likely be lower with a larger sample size, imagery would
also lack the same level of clarity in human trials, where body shape and differences in thickness and density
would cause changes to attenuation properties that that would have to be considered.

4.3. Accuracy variance
While use of positional tracking significantly improved overall accuracy and reduced training variance, the
causes for this variance should be examined to ensure the validity of the results. Training variance was a
significant factor in poor performance. Networks trained on the same dataset split produced similar class
accuracy results with networks trained using positional data achieved consistently higher accuracy than their
image-only counterparts trained on the same dataset split. Use of a small batch size produced more weight
updates per epoch allowing faster convergence but also added additional training noise causing variance.
Training was restrained to a maximum of 5 epoch to reduce overfitting but this has also led to significant
variance in image-only and positional models with the lowest accuracy due to poor training performance.

4.4. Dataset variance and overlap
As seen in the results for both optical IR and IR sensor experiments, the largest source of error for all models
was between gall bladder and common bile duct. As this was consistent across both network types it is
important to rule out an error within the dataset itself. Analysing the images where this error had occurred
revealed that in adjusting the probe position to add variation to the dataset, a number of the images capture
both gall bladder and bile duct (figure 9). These images still contain the target features but also cover the
other anatomical structure as well. This overlapping visual information is the exact type of edge case that was
targeted during cross section selection and exists within a number of real clinical protocols. There was a
significant improvement in accuracy suggesting that probe angle information is making a significant
difference in the classification of cross sections where the target ROI overlaps.

4.5. Clinical practicality
Optical IR tracking was the most precise position tracking used, providing a 99% accurate neural network
with the average accuracy result being∼95%, but this was achieved using an expensive Vicon measurement
volume with an external calibration software, and required additional hardware attached to the ultrasound
probe to maintain line of sight with the camera rig. A fixed camera set up would significantly reduce the
mobility of the ultrasound system, which is one of the core benefits of ultrasound over other medical
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imaging technologies, a mobile camera setup would require a substantial amount of space to ensure good
visibility of the patient from multiple angles, as well as precise calibration, potentially blocking access in a
busy clinical area. While excellent at validating positional data as a viable method of improving neural
network recognition of abdominal cross section views, optical IR tracking is not clinically practical outside of
specialist facilities. Sensor-based IR tracking while being less accurate overall, still achieved∼98% accuracy
using simple normalisation techniques with an average of∼93%, higher than that achieved by image-only.
The IR tracking system still required line of sight but was compact with the base station able to be easily
mounted to the screen arm, although in many tight clinical areas it could still be a challenge to ensure that
the base station is far enough back to fully cover the ROI and could potentially be blocked by the patient or
clinician during the scan causing no positional data to be collected. The HTC VIVE tracker was small enough
not to interfere with scanning, initially the strap holding the tracker in place would slip from the probes
ergonomic design, but this problem was easily solved with adhesive which ensured a tracker position on the
probe was maintained throughout data collection. During collection of IR scans, the position of the base
station relative to the phantom was initially a full 360 degree loop with the base station moved after each set
of scans, but due to the use of a single base station, and the fact no tracker was attached to the phantom, it
was not possible to fully localise the positional data, scans taken with the base station in an anterosuperior
position were mirrored in comparison to the optical IR tracking data. As such all anterosuperior scans were
excluded from the IR dataset instead of manually adjusting these values and potentially adding additional
human error to the training set. Ideally a sensor system that does not require line of sight such as
electromagnetic sensors should be used to track the probe although these too would have to be carefully
considered to ensure they do not interfere with other medical equipment.

5. Conclusion

This paper highlights the potential of positional sensor information as an additional data source when
training neural networks on diagnostic cross sections that may be hard to differentiate using image alone.
Optical IR positional tracking was highly accurate and substantially increased classification accuracy. Mobile
sensor-based IR tracking provided a less accurate, but more practical example of applying positional
information to machine learning for clinical use cases but also highlighted a number of difficulties that
would need to be overcome before such technologies could be used. Contextualising cross section imagery
that are in close proximity, or where there is a high level of visual similarity is no longer a challenge when the
position of the probe is known in relation to other scans.

The collection and use of use of positional information as part of an ultrasound scan will allow a neural
network to know the position of the probe relative to the patient, opening up many exciting opportunities
for future research. Immediate future work should focus on increasing the sample size using a cadaver study
to further test data and normalisation requirements. Electromagnetic sensors will be tested as a method of
probe tracking as this technology does not require line of sight. Neural networks that can localise the probe
to the position on the abdomen can provide feedback to the sonographer to assist in the positioning and fine
tuning of the probe for the collection of potentially higher quality ultrasound cross sections that fully capture
the required anatomical structures as mandated in the clinical protocol. It would also allow a more
experienced user to sweep the probe over the ROI with the neural network selecting and potentially
annotating the required cross sections automatically, speeding up scan times and reducing workload.
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