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Abstract: Digital twins (DTs) are gradually employed in the maritime industry to represent the
physical systems and generate datasets, among others. However, the trustworthiness of both the
digital twins and datasets must be assured. This study aims at developing a framework to assure the
trustworthiness of marine engines DTs based on first-principle models. This framework considers
the phases of the DT development, progressivity, and trustworthiness assurance, the latter being
based on three steps, namely validation, verification, and robustness. Subsequently, a methodology is
applied to develop the DT of a marine engine for healthy conditions, which is extended to represent
a wider operating envelope considering systematically identified anomalies. The results demonstrate
that the developed DT trustworthiness is assured, as the validation step provided errors within ±3%,
the verification step provided sound trade-offs, whereas the robustness assessment step confirmed
acceptable uncertainty ratios. Subsequently, the DT is employed to generate datasets required for
developing a data-driven model for anomaly diagnosis, which exhibits an accuracy of 98.8% for
anomaly detection, 97.6% for anomaly identification, and 90.1–91.8% for anomaly isolation. This
is the first study addressing the trustworthiness of DTs for marine engines, and as such advances
concepts of the fourth industrial revolution to the shipping industry.

Keywords: digital twin; first-principle models; trustworthiness assurance; simulation-based dataset
generation; anomaly diagnosis; marine engines

1. Introduction

Intelligent technologies for managing machinery systems, which are of critical im-
portance to assure safe, efficient, and reliable ship operations, are relatively less advanced
compared to autonomous navigation and communication [1]. To retain the machinery
systems in appropriate conditions, conventional ships rely on maintenance activities carried
out by their crew. However, maintenance of crewless ship machinery systems requires
different strategies [2]. Crewless ships require intelligent systems to assess their machinery
health status during sailings and make decisions for effective maintenance at port [3,4].
The development of intelligent machinery systems addressing the functionalities of moni-
toring, diagnosis, prognosis, and health management is required for autonomous ships,
whereas it is expected that such systems will also benefit conventional ships.

Prognostics and Health Management (PHM) methods have been gradually employed
in the maritime industry [5]. The PHM systems monitor critical operating parameters,
assess the machinery’s health condition, and assist decision-making so that vessel machin-
ery system maintenance is managed effectively [6]. However, implementing data-driven
PHM methods and developing intelligent machinery systems require extensive datasets.
The datasets must cover a wide envelope of operating conditions to effectively represent
ship machinery systems. The quality of datasets is of paramount importance for the
effectiveness of data-driven approaches [7].

Acquiring appropriate datasets, which represent machinery conditions comprehensi-
bly, is an immense challenge attributed to the highly varying operating envelope of ship
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machinery [8]. Ship machinery operations are impacted by environmental conditions as
well as faults and degradation of their sub-systems. Typically, shipboard-measured datasets
represent only a limited operating envelope in healthy conditions [7,9] of well-maintained
machinery systems [10].

To extend the operating envelope of the acquired datasets, artificial data augmentation
methods are frequently employed for data-driven models [11,12]. However, these artificial
datasets cannot represent the complex behaviour of ship machinery systems appropriately.
The use of inappropriate datasets undermines the performance of data-driven models
regardless of the training process’s effectiveness.

A digital twin (DT), which is a virtual representation of a physical system [13], presents
an alternative approach for extending the operating envelope of the datasets. To develop
DTs, models (physical and/or data-driven) for the reference physical system components
must be developed and integrated, whereas their validity can be appraised based on
acquired datasets [14]. Moreover, DTs can be employed in health monitoring applications,
when reference physical system data for current conditions are provided [15]. The DT
is a useful tool for generating datasets that represent an extended envelope of operating
conditions. Simulations with DTs can complement expensive experimental campaigns,
facilitating the generation of synthetic datasets [16].

The following three types of modelling approaches are typically employed for ma-
rine machinery system simulations: physical models (PMs), data-driven models (DDMs),
and hybrid models (HMs). PMs are based on first principles (e.g., laws of thermodynamics)
and have the capability of adequately representing the machinery behaviours. However,
they require thorough physical knowledge and high computational effort. DDMs do not re-
quire prior knowledge of the machinery systems; instead, they rely on an extensive amount
of data. HMs combine PMs and DDMs to compensate for both methods’ drawbacks;
however, limited applications are reported in the pertinent literature [17].

Tsitsilonis et al. [15] employed a marine engine physical model to generate performance
parameters under both healthy conditions and current conditions, facilitating engine health
assessment. Altosole et al. [18] employed a marine engine physical model to generate
performance parameters considering ten degradation types, subsequently developing engine
anomaly diagnosis models. Djeziri et al. [19] applied data-driven augmentation methods
to simulate various potential pathways of transistor degradation and developed an offline
Remaining Useful Life prognosis model. Stoumpos and Theotokatos [20] employed a marine
engine physical model for simulating sensor abnormality and demonstrated a methodology
for sensor diagnostics and health management, including self-corrective actions.

Although the use of several simulation tools is reported in the pertinent literature,
the trustworthiness of the DT is only partially addressed. Trustworthiness is defined as the
ability to meet user’s expectations despite operational disturbances [21]. Validation and
verification are essential procedures to assure the trustworthiness of the DT [22]. Typically,
the validation is addressed by comparing simulation results against acquired measure-
ments [18]. However, due to the lack of measurements in specific anomaly conditions,
the validation of such simulation results has not been addressed in the pertinent literature.
Data-driven PHM models employing results derived by less trustworthy DTs fail to monitor
system behaviour in actual operations [23].

The criteria for addressing the trustworthiness of DTs may vary depending on the
specific industry sector. For city automation, Wang and Burdon [24] proposed the following
three elements for assuring DTs’ trustworthiness: ability (functional quality), integrity
(conformity to industrial standards), and benevolence (information privacy). For manufac-
turing automation, Babiceanu and Seker [25] considered dependability and cybersecurity to
assure cyber-physical system trustworthiness. For systems and software engineering, de la
Vara et al. [26] employed system architecture, multi-concern dependability, interoperability,
and cross/intra-domain reuse to assure the trustworthiness of cyber-physical systems in
the development of the open-source platform.
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From the preceding literature review, the following research gaps are identified: (a) the
need for developing a systematic framework to develop trustworthy DTs; (b) the use of
comprehensive methods to design simulation scenarios for generating required datasets;
(c) a lack of methods/tools for comprehensively assessing the trustworthiness of the DT;
(d) a lack of investigations of combined anomalies (faults and degradations) and their
various severities replicating realistic operating conditions; and (e) a lack of simulation
studies considering realistic operating profiles (e.g., voyage profiles and unmanned engine
room operation). This study addresses the research gaps (a), (b), and (c).

This study aims at developing a framework to assure the trustworthiness of DTs based
on physical (first principle) models for marine engines. The framework provides system-
atic phases considering DT development, progressivity, and trustworthiness assurance.
Subsequently, an application methodology is introduced to develop the DT in an extended
operating envelope as well as anomaly conditions. The developed DT is employed to
generate datasets required for developing a data-driven anomaly diagnosis model.

To the best of the authors’ knowledge, this is the first study in the pertinent literature
to address the trustworthiness of marine machinery DTs. This study offers guidance to
develop trustworthy DTs for emerging technologies as well as for the power plants of smart
and autonomous ships.

The remainder of this study is organised as follows. The definition of trustworthi-
ness is provided in Section 2. The reference engine system and its DT are described in
Section 3. The systematic framework for developing trustworthy DTs and the application
methodology for both generating datasets and developing a data-driven anomaly diagnosis
model are presented in Section 4. Section 5 describes the employed methods and tools for
developing the DTs, assuring their trustworthiness, generating datasets, and developing
data-driven anomaly diagnosis models. Section 6 describes an overview of the case study.
Section 7 presents and discusses the results demonstrating the developed methodology
and tools. Section 8 summarises the main findings and concludes the study.

2. Trustworthiness Definition

Trustworthiness is a broad term, hence different users can interpret it differently [27].
This section defines “trustworthiness” in the context of this study. Connet and
O’Halloran [28] reviewed the trustworthiness definition from four perspectives: design,
behavioural, physical, and anomaly perspectives. The design perspective implies that
the system fulfils the set critical requirements. The behavioural perspective is related to
confidence in the similarity between expectations and the system behaviour. The physical
perspective implies that the trust pertains to the intended system functionality. The anomaly
perspective implies that the system maintains its functionality despite the presence of dis-
turbances/anomalies. Trustworthiness cannot be addressed in a single step; continuous
assessments are required during the system design, development, and operation phases.

Schneider et al. [21] argue that a trustworthy system should maintain its trustwor-
thiness regardless of constraints throughout the system’s lifetime. The trustworthiness
assessment of the developed DT is not a one-time occurrence, but it is performed iteratively
as the DT undergoes variations.

In this study, the trustworthiness of the DT for a marine engine is addressed through
three steps, which pertain to validation, verification, and robustness. The trustworthiness
decision criteria are defined based on the design perspective, and the assessment methods
are developed considering the behavioural, physical, and anomaly perspectives. The pro-
gressivity (non-regressivity) of the DT is also taken into account in the DT application.

However, trustworthiness criteria pertaining to data-driven models, such as explain-
ability and physical plausibility, are not considered in this study as the primary focus is
on DTs based on physical (first principles) models. The method for addressing the DT
trustworthiness is described in Section 5.
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3. Reference Engine System Description

This study employs the reference system of a marine engine along with the sub-systems
and components for its monitoring, control, and safety functions. The reference engine is
part of a generator set used in electric propulsion systems for generating electric power.
The reference system is the Wärtsilä 8L50DF engine, which is a four-stroke, turbocharged,
and intercooled dual-fuel engine [29], offering flexibility, as it can operate in diesel or gas
modes [30]. The main particulars of this engine are listed in Table 1, whereas the engine’s
sub-systems and components which may face anomalies during the engine’s lifetime are
listed in Table 2.

Table 1. Reference engine system technical specifications.

Engine Type 8L50DF
Maximum Continuous Rating (MCR) Power 7800 kW

Nominal Engine Speed 514 rev/m
Cylinder Bore 500 mm

Stroke 580 mm
Number of Cylinders 8

Turbocharger 1 TPL 76

Table 2. Reference dual-fuel generator engine along with sub-systems and components.

Combustion System Air Supply System Fuel Supply System Lubricating Oil
System Others

Fuel Injector Turbocharger Fuel Pump LO Pump Cooling Water System

Gas Admission Valve Waste Gate Valve Fuel Filter LO Cooler Safety and
Monitoring System

Intake Valve Air Cooler Fuel Rack and
Governor LO Filter Compressed Air

System
Exhaust Valve Air Filter (Control and Starting)

4. Framework and Methodology
4.1. Framework for Assuring Trustworthiness of Physical Model-Based Digital Twins

The framework for developing trustworthy physical model-based DTs is illustrated
in Figure 1. It consists of three phases (listed in numerical order), whereas each phase
includes several steps. The first phase focuses on the sub-model developments and their
integration to develop the DT. The DT is subsequently calibrated by adjusting the sub-model
coefficients/constants to achieve acceptable accuracy.

Phase 2 deals with the progressivity (otherwise called non-regressivity) of the DT.
This phase includes three options: (a) extending the operating envelope, (b) modify-
ing/replacing existing sub-models, and (c) adding sub-models. Option (a) enables simula-
tion of engine anomaly conditions or/and varying ambient conditions. The ranges of input
operating parameters are set considering the acquired reference operating data. Option (b)
deals with the modification or replacement of the initially employed sub-models. Option (c)
caters for new sub-model additions, such as component degradation sub-models or/and
auxiliary system sub-models. Options (b) and (c) require re-calibration of the DT to achieve
acceptable accuracy.

In Phase 3, the trustworthiness of the DT is assured through three steps: validation,
verification, and robustness. The validation step employs error metrics to calculate the
accuracy of the DT outputs against experimental data. If the estimated errors exceed
predefined thresholds, the DT re-calibration and reassessment are required. The verification
step estimates the performance and emissions parameters trade-offs, and assesses their
soundness by qualitatively comparing to the reference trade-offs. When the estimated
trade-off is not sound, the DT redesign is required, followed by repeating the verification
step. The robustness step calculates the uncertainty ratio between the DT output and input
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parameters, using input parameter reference profiles. When the estimated uncertainty ratio
exceeds predefined thresholds, the DT redesign and repetition of the robustness step are
required. When the DT re-calibration and redesign activities do not result in improved
trustworthiness, it is advisable to stop the trustworthiness assurance phase and return to
the DT development phase.

Completing these three steps assures the DT’s trustworthiness for the considered
operating envelope. In cases where the validation, verification, and robustness criteria
are partially fulfilled (e.g., only for specific performance parameters), partial assurance of
the trustworthiness should be indicated. In cases where the DT version (Phase 1) fulfils
all steps criteria, the operating envelope extension option (Phase 2-A) does not require
repetition of the validation step (Phase 3-A).

Figure 1. Systematic framework for assuring the trustworthiness of physical model-based DT.
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4.2. Application Methodology in Marine Engine Anomaly Diagnosis

This section describes the application methodology for marine engine anomaly diag-
nosis, which employs the developed trustworthy DT framework (described in Section 4.1).
This methodology consists of four stages (stages are used in this section to differentiate from
the phases employed in the previous section), as illustrated in the flowchart of Figure 2.

Figure 2. Application methodology in engine anomalies employing the trustworthy DT develop-
ment framework.

Stage 1 deals with digital twin management. The reference engine particulars are em-
ployed, and the investigated engine DT is developed according to Phase 1 of the framework
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(physical model-based DT development). The engine particulars include geometrical infor-
mation, turbocharger component performance maps, and measured engine performance
parameters. To extend the engine operating envelope, which accommodates anomaly con-
ditions and a wide range of ambient conditions, a reference engine anomaly summary table
and reference engine operating data are employed. The anomaly summary table provides
critical components for investigating anomalies and outlines their functions within the
physical model. This information is provided as input to Phase 2-A of the framework
(progressivity).

Stage 2 deals with DT trustworthiness management according to Phase 3 of the
framework (DT trustworthiness assurance). Engine experimental data are employed for
the validation step, reference trade-offs for the engine performance parameters are used
for the verification step, whereas an input parameter reference profile is employed for the
robustness step.

Stage 3 focuses on the dataset generation. Simulation scenarios are designed corre-
sponding to the application of the generated datasets, considering the engine operating
envelope, anomalies, and environmental conditions. Simulation runs are performed to
estimate the engine performance parameters for these scenarios. The simulation results are
integrated to generate datasets.

Stage 4 deals with the development of an anomaly diagnosis data-driven model
using the simulation-generated datasets. Additionally, this application test assures the
suitability of the generated datasets for anomaly detection, identification, and isolation
tasks. The reported accuracy from pertinent diagnosis model studies is employed to
compare with data-driven models developed herein. In cases where these models accuracy
is not acceptable, the redesign of the data generation scenarios is required. Otherwise, it
denotes the applicability of the simulation-generated datasets for their intended application.

5. Methods and Tools
5.1. Physical Model-based Engine Digital Twin

The physical model-based engine DT development was carried out in the GT-SUITE
v2022 software, which provides a 0D/1D simulation interface with libraries for the system
components and sub-models [31]. The DT is developed based on the author’s previous
studies [32,33]; however, in this study, the DT was extended by the inclusion of the mod-
elling of sensors and their dynamics for the engine performance parameter measurements.
The sensor sub-model monitors and collects virtual signals from the simulations repre-
senting the sensors deployed in engine operations. The layout of the modelled engine
components, along with the sensors and monitoring system block, is illustrated in Figure 3.

Figure 3. Marine engine components and sensors modelled in the developed DT.
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The engine DT includes several sub-models for representing the engine components.
The Woschni equation [34] is employed for representing the in-cylinder heat transfer
process, whereas the single Wiebe function [35] is used for modelling the combustion pro-
cess. The air and exhaust gas manifold sub-models employ one-dimensional approaches,
which consider the fluid momentum, mass, and energy conservation equations. The en-
gine control sub-models for the fuel supply systems and the wastegate valve employ
Proportional-Integral-Derivative (PID) controllers. Detailed descriptions of the employed
sub-models are provided in the author’s previous studies [30,32,33].

In addition, the monitoring system was developed, including sensor sub-models and
safety sub-models. The sensors were modelled using the additive noise model [36], which
employs the Gaussian random process, along with appropriate time constants for capturing
the sensor dynamics. The safety sub-model monitors if the input and output parameters
remain within their specified ranges, whereas it terminates the simulation run when the
parameters exceed their set thresholds.

5.2. Anomaly Summary Table

An anomaly summary table collects the necessary information to model the compo-
nents required for extending the DT to represent anomaly conditions. The anomaly table
is developed by employing identification and analysis processes as presented in Table 3.
The identification process employs the Failure Mode, Effects, and Criticality Analysis
(FMECA) method to identify the failure modes, failure causes, failure effects, as well as the
criticality of these failures [37]. The anomaly criticality is evaluated by the Risk Priority
Number (RPN), which is derived by the multiplication of occurrence level (O), severity
level (S), and detectability level (D), according to the following equation [38]:

RPN = O S D (1)

The following parameters are determined: anomaly control parameters (DT input),
dependent parameters (DT output), manufacturer’s limits, ranges of the pertinent input
parameters, and steps; the latter is derived from the manufacturer’s limits, ranging from
healthy to severe anomaly conditions.

Table 3. Anomaly summary table format.

Anomaly Identification Process with FMECA Anomaly Analysis for Simulation Design

FMECA Output DT Input parameters DT Output parameters
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5.3. DT Calibration and Design of Experiments

The DT sub-models are calibrated by employing an optimisation method, which uses
the reference performance parameters and calculates the optimal values for the sub-model
constants to achieve the lowest value of an objective function [15,39]. GT-SUITE software
provides the Advanced Direct Optimiser (ADO) that employs the Non-dominated Sorting
Genetic Algorithm NSGA-III [40]. In this study, the ADO optimises turbocharger turbine
mass flow and efficiency coefficients at 75% load using an objective function (weighted
sum of errors) associated with three performance parameters (turbocharger shaft speed
and turbine inlet and outlet temperature). An example for calibrating the turbocharger
turbine model is shown in Table 4.
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Table 4. Example of using the advanced direct optimiser to calibrate the turbocharger turbine model.

Factors Responses

Parameter
Turbine Mass

Flow Scale
Factor [–]

Turbine
Efficiency Scale

Factor [–]
Parameter TC Shaft

Speed [rev/m]

Exhaust Gas
Temperature

Upstream
Turbine [K]

Exhaust Gas
Temperature
Downstream
Turbine [K]

Search Range 0.8–0.99 1.0–1.12
Target Value 16,690 749 594

Optimal Value 0.9354 1.0753

To explore the whole engine operating envelope and effectively identify the required
simulation scenarios, a design of experiments (DOE) method [41,42] is employed. This
study employs the GT-SUITE DOE tool [31] and the Latin hypercube method to define
the required number of samples for sufficiently representing the considered operating
envelope [43].

For selecting anomaly simulation scenarios, anomalies severity of the engine cylinder
valve leakage range of 0–1.0 mm are investigated. The DOE results define that the valve
leakage is noticeable between 0.2 mm and 0.3 mm, and thus the anomaly simulation steps
are determined as acceptable level (0.1 mm), weak leakage (0.3 mm), and severe leakage
(0.5 mm).

5.4. Trustworthiness Assurance

This study develops a comprehensive method for assuring the trustworthiness of
the marine engine DT, considering the following three steps: validation, verification,
and robustness. Each step partially ensures the trustworthiness of the DT due to limited
data and information; however, the integration of these steps provides comprehensive
assurance. Pre-set decision criteria for each step are decided based on the DT requirements,
which are described in the following subsections.

5.4.1. Validation

The validation step depends on available measured data, which are expected to be
limited. For marine engines, the engine shop tests (or factory acceptance tests) and ship
trials provide the engine performance parameters under healthy conditions at limited
operating points. Shipboard data acquisition systems are a recent trend in the maritime
industry; however, their use is limited. The limited data restrict the validation, and
thereby the validation ensures the trustworthiness of the developed DT only within the
limited operating envelope where the measured dataset are available. The validation of
the DT is based on the comparison between the predicted performance parameters and
available measured datasets. The criteria employed for the validation step involve the
percentage errors between the predicted and measured parameters, as calculated by the
following equation:

E =
OP − RD

RD
100 (2)

where E denotes the percentage error, OP is the output parameter, and RD is measured
value of the same parameter.

The acceptance limits for the error of performance parameters (pressure, temperature,
rotational speed, and fuel flow) are based on the guidelines from the ISO standards appli-
cable to engine testing measurements [44]. If the estimated percentage error is smaller than
the guideline’s allowance, the DT is considered validated. For cases where validation of
only specific parameters is achieved, the DT is considered partially validated.
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5.4.2. Verification

The verification step deals with identifying the DT behaviour considering several
engine operating conditions. However, access to extensive measurements under specific
operating conditions is limited. Instead, the evaluation is based on consistency with
expected trade-offs from the pertinent literature. The verification step is based on sensitivity
analysis to evaluate the influence of the input parameter changes on the output parameter
variations [45]. The Spearman rank correlation coefficient [46,47] is employed to quantify
the strength and the direction of the relationship (trade-off) between the input and output
parameters. This coefficient is calculated by Equation (3), which results in a range from
−1 (strong reciprocal correlation) to +1 (strong direct correlation) with 0 representing
negligible correlation.

rs = 1 − 6Σ(R(Xi)− R(Yi))
2

N(N2 − 1)
(3)

where rs denotes the Spearman’s coefficient, X is the input parameter values, Y is the output
parameter values, N is the number of samples, and R denotes the ranked variables.

This study takes into account varying operating conditions for ambient temperature
as well as the anomalies of exhaust and intake valve leakages. The Latin hypercube
method samples the combinations of these three parameters. The DOE tool of the GT
SUITE is employed to perform the simulations and predict the trade-offs of performance
parameters for each combination of input parameters. If the estimated trade-offs for the
DT performance parameters match the trade-offs from the pertinent literature, the DT
verification is assured.

5.4.3. Robustness

The last step of the trustworthiness assurance deals with the evaluation of the DT’s
robustness, which is based on the predicted performance parameter uncertainty consider-
ing anomaly conditions and varying environmental conditions (ambient temperature in
this study).

Uncertainty analysis is employed to measure the probability of unexpected event
occurrences [48]. This study employs the variance for quantifying the uncertainty [49]
and uses the Monte Carlo (MC) method [50] to estimate the variance of the DT output
performance parameters. The input (valve wear and ambient temperature) and the output
(predicted performance parameters) are both normalised within the range of [0, 1] (to
eliminate scale differences between parameters) by employing the min-max scaling method
according to the following Equation (4) [51]:

X̃l =
Xi − min(X)

max(X)− min(X)
(4)

where X̃l denotes the normalised value of the ith sample, Xi is the value of the ith sample,
min(X) is the minimum value of the samples, and max(X) is the maximum value of
the samples.

The variances of the input and output parameters are calculated according to the follow-
ing equation:

S2 =
∑n

i=1(Xi − X̄)

n − 1
(5)

where S2 denotes the variance, n is the sample number, Xi is the value of the ith sample,
and X̄ is the mean value of the samples.
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The uncertainty ratio between the input and output parameters is calculated using the
following Equation (6):

Rm =
S2

m

S2
in

(6)

where Rm denotes the uncertainty ratio, S2
m is the variance of the mth predicted performance

parameter, and S2
in is the variance of the input parameter.

The acceptance criteria for the DT robustness are established based on a requirement
that the DT should not introduce additional uncertainty or propagate the uncertainty
(from input to output parameters). This requirement implies that the uncertainty of the
normalised output parameters should not exceed the uncertainty of the normalised input
parameters. Hence, uncertainty ratio values below 1 indicate that DT robustness is assured.

5.4.4. Trustworthiness Assurance Table

From the results of these three steps, the calculated metrics are summarised in a tabular
format, as presented in Table 5. The trustworthiness table provides an intuitive assessment,
this supporting decision making.

Table 5. Trustworthiness assurance table.

Steps Acceptance Criteria
Trustworthiness Checks

Environment Conditions Anomaly Conditions

Validation Acceptable Errors Pass/Fail

Verification Trade-off Soundness Pass/Fail Pass/Fail

Robustness Uncertainty Ratio Pass/Fail Pass/Fail

5.5. Data-Driven Anomaly Diagnosis Model

For testing the application suitability of the simulation-generated datasets, the gener-
ated datasets are employed to develop a data-driven anomaly diagnosis model. The di-
agnosis model includes sub-models for anomaly detection, identification, and isolation.
The anomaly diagnosis is based on the following steps: (a) the anomaly detection model
determines the engine condition as either healthy or abnormal; (b) the identification model
categorises the anomaly types (intake valve, exhaust valve, or both); (c) the isolation model
determines the anomaly location (engine cylinder) with the categorised anomaly type.

All these sub-models employ the same input parameters, specifically the turbocharger
speed, exhaust gas temperature upstream turbine, maximum cylinder pressure, charge air
pressure and temperature, and mass fuel consumption. The outputs of the sub-models
are anomaly condition labels, which are allocated for each data sample before training the
data-driven models corresponding to the diagnosis tasks.

The anomaly diagnosis model is developed using Support Vector Machines (SVM)
with the Radial Basis Function (RBF) kernel, which demonstrated generalisation capability
and advantageous performance with small datasets [52]. The SVM learns decision hyper-
planes, which have minimum overall error [53] and estimates classes of new data with
the trained hyperplanes [12]. However, the kernel function, which transforms nonlinear
data into linearly separable data, is additionally required since the SVM was originally
designed for linear problems [54]. The RBF kernel [55] is employed herein as it requires
the calibration of only one parameter (σ), according to Equations (7) and (8). The grid
search with five-fold cross-validation [56] is employed to tune the hyperparameters, and the
one-versus-one method [57] is employed for multi-classification of anomaly identification
and isolation.
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κ(x1, x2) = exp

(
−∥x1 − x2∥2

2σ2

)
(7)

where κ denotes the kernel function of two-dimensional inputs (x1, x2) and σ is the width
of the kernel.

F(x) =
n

∑
i=1

wiκ(x, xi) (8)

where F denotes the multidimensional kernel function, n is the number of dimensions,
and w is the weight of dimensions.

The performance of the anomaly diagnosis models is characterised by employing
the confusion matrix, whereas the model accuracy is calculated according to Equation (9).
The confusion matrix [58] illustrates the distribution of true and false predictions over all
classes in the tabular format shown in Table 6.

A =
TN + TP

TN + TP + FN + FP
100 (9)

where A denotes the accuracy percentage, TN is the number of true negative samples, TP
is the number of true positive samples, FN is the number of false negative samples, and FP
is the number of false positive samples.

Table 6. Example of a multi-classification confusion matrix for class 2.

Predicted Class

Tr
ue

C
la

ss Class 1 Class 2 Class 3

Class 1 TN FP FN

Class 2 FN TP FN

Class 3 FN FP TN

6. Case Study Description

The considered marine engine DT must represent a wide envelope of engine conditions
considering various engine loads, anomaly conditions, and environmental conditions. This
study employs ambient temperature variations as representative of ship environmental
conditions. The ambient temperature range was considered 15–45 ◦C according to the
manufacturer’s guidelines [29]. Table 7 provides the overview of the considered operating
conditions, whereas Table 8 lists the simulated case studies, each accompanied by its
corresponding application methodology step and scope.

For the anomaly simulations, the engine cylinder valve leakage faults based on the
valve clearance error are investigated, which affects the engine output parameters. For large
intake valve clearance, the engine performance is degraded due to the reduced air supply
and delayed valve open timing. For small intake valve clearance, the engine performance
is also degraded due to the early valve opening, air leakages, and a loss of compression
pressure [59]. As the valve and seat wear is unavoidable over time, the valve clearance
must be checked and adjusted regularly to avoid valve leakage. The engine manufacturer
recommends checking the valve clearance every 2000 operating hours to prevent engine
performance degradation.

The conventional method to monitor the valve clearance and leakage conditions
relies on shipboard manual measurements, which cannot be carried out during the engine
operation. However, intelligent health monitoring systems employing data-driven models
developed herein, could monitor the valve clearance and leakage conditions by analysing
the engine performance parameters without operational interruption. To overcome the lack
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of valve clearance data and develop anomaly diagnosis models for valve leakage anomalies,
the developed data generation methodology is employed.

Table 7. Overview of the considered engine operating conditions.

Condition Engine Load [%] Anomaly
Location [–]

Anomaly
Severity [mm] Amb_T 4 [◦C]

Healthy 25; 50; 75; 100 – – 15–45
EV_Leak 1 25; 50; 75; 100 Cyl 3 1–8 0.1; 0.3; 0.5 15–45
IV_Leak 2 25; 50; 75; 100 Cyl 1–8 0.1; 0.3; 0.5 15–45

1 IV_Leak: Intake Valve Leakage [mm]. 2 EV_Leak: Exhaust Valve Leakage [mm]. 3 Cyl: Cylinder Number [–].
4 Amb_T: Ambient Temperature [◦C].

Table 8. Overview of the simulated case studies.

Code Simulated Case Study Methodology Step Scope

H1 Healthy
(4 Loads, 1 Amb_T)

DT Management
and Trustworthiness

(Validation)

Model calibration/comparison to
measured data for DT validation check

H2
Healthy

Ambient Temperature Variation
(4 Loads, Amb_T: 15–45 ◦C)

Trustworthiness
(Verification)

Sensitivity analysis to confirm the
predicted parameters trade-offs under

ambient temperature variation

A1

Anomaly
EVLeak or IVLeak

(4 Loads, 1 Location,
3 Severities for each anomaly)

Trustworthiness
(Verification)

Sensitivity analysis to confirm the
predicted parameter trade-offs under

various anomaly conditions

A2

Anomaly
EVLeak or IVLeak

(4 Loads, 1 Location,
Severities of anomaly: 0.1–0.5 mm,

Amb_T: 15–45 ◦C)

Trustworthiness
(Robustness)

Uncertainty analysis based on Monte
Carlo simulations to check predicted

parameter variances

DG1

Healthy and Anomalies
EVLeak or IVLeak

(4 Loads, 1 Location,
3 Severities for each anomaly,

Amb_T 25–35 ◦C)

Data generation
Multiple simulations to generate the
datasets required for the data-driven

anomaly detection models

DG2

Healthy and Anomalies
EVLeak or/and IVLeak

(4 Loads, 1 Location, 42 Severities
with combined anomalies,

Amb_T: 25–35 ◦C)

Data generation
Multiple simulations to generate the
datasets required for the data-driven

anomaly identification models

DG3

Healthy and Anomalies
EVLeak or IVLeak

(4 Loads, 8 Locations,
2 Severities for each anomaly,

Amb_T: 25–35 ◦C)

Data generation
Multiple simulations to generate the
datasets required for the data-driven

anomaly isolation models

DD Healthy and Anomalies
EV or/and IV leakage Application test

Developing data-driven models for
anomaly diagnosis;

check with the data-driven models’ accuracy

7. Results and Discussion
7.1. DT Management and Trustworthiness Management

The summary table of engine cylinder valve anomalies is provided in Table 9. The en-
gine cylinder valve seat wear causes valve stem clearance reduction. If this reduction
exceeds the manufacturer’s allowance, the valve does not fully close and causes air/gas
leakages, leading to engine efficiency deterioration. To simulate these anomalies, the valve
lift profile and the valve lash were determined based on the manufacturer’s allowances
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for the valve stem clearance (0.147–0.199 mm). Hence, the following four severity levels
were considered: No Leakage, Acceptable Clearance, Weak Leakage, and Severe Leakage.
The engine performance parameters with the greater impact from these anomalies as well
as their trade-offs were identified based on the pertinent literature [60,61].

The DT trustworthiness assurance was based on the outcomes of the validation, verifi-
cation, and robustness checks, which are summarised in the trustworthiness decision table.
In the validation step, the performance parameter predictions were compared with the respec-
tive reference engine shop trial data. The estimated percentage errors for six performance
parameters are presented in Table 10. The maximum absolute percentage error was identified
as 3% for the fuel oil consumption at 100% load. Nonetheless, all the predicted parameters (at
all loads) satisfied the acceptance criteria (allowable errors), which appear in the right column
of Table 10. Hence, it is deduced that the DT passed the validation check.

In the verification step, the trade-offs of the DT-generated performance parameters
were compared with the trade-offs reported in pertinent experimental studies. The sensitiv-
ity analysis results (derived trade-offs) are presented in Table 11, whereas the comparisons
of the trade-offs with pertinent studies are presented in Table 12 for the ambient temper-
ature variations and Table 13 for the anomalies, respectively. The ambient temperature
trade-offs were compared with the trade-offs reported by Whitehouse et al. [62], Serrano
et al. [63], MAN [64], whereas the anomaly condition trade-offs were compared to those
reported by Kowalski [60]. From these tables, it is deduced that the predicted trade-offs are
sound corresponding to the reported ones. Therefore, it is deduced that the developed DT
passed the verification test.

In the robustness step, 524 operating points were employed to perform an uncertainty
analysis of the predicted engine performance parameters. The uncertainty ratios are
presented in Table 14. The DT in the various ambient conditions and anomaly conditions
satisfied the robustness acceptance criteria as the uncertainty ratios of all the predicted
performance parameters are below 1. Hence, it is deduced that the developed DT satisfies
the robustness acceptance criteria. The outcomes of the three steps are summarised in
Table 15, from where it is confirmed that the developed DT is considered trustworthy.
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Table 9. Anomaly summary table.

Component Function Failure
Mode

Failure
Causes

Failure
Effects

Detection
Method O S D RPN

Simulation Input Simulation
Output

Name Manufacturer
Limit Input Range Simulation Steps Name

Intake
Valve

Supply
intake air

into a
cylinder

The
valve is
not fully
closed

Valve
seat wear

Intake air
leakage
→ Engine
efficiency

deterioration

Manual
measurement
of clearance

4 5 6 120 Valve remained
lift and lash [mm]

Normal
clearance:

1.0 mm (cold)
Wear limit:

0.147–0.199 mm

Valve remained
lift: 0–0.75 mm

Valve lash:
0.25–1.0 mm

(4 steps of clearance)
0 mm—No leakage

0.1 mm—Acceptable
clearance/No leakage

0.3 mm—Slight leakage
0.5 mm—Severe leakage

TC_RPM 1

Exh_T 2

Pmax 3

CA_P 4

CA_T 5

FOC 6

Exhaust
Valve

Releases
burned
gases

from a
cylinder

The
valve is
not fully
closed

Valve
seat wear

Exhaust gas
leakage
→ Engine
efficiency

deterioration

Manual
measurement
of clearance

4 5 6 120 Valve remained
lift and lash [mm]

Normal
clearance:

1.5 mm (cold)
Wear limit:

0.147–0.199 mm

Valve remained
lift: 0–1.0 mm

Valve lash:
0.5–1.5 mm

(4 steps of clearance)
0 mm—No leakage

0.1 mm—Acceptable
clearance/No leakage

0.3 mm—Slight leakage
0.5 mm—Severe leakage

TC_RPM
Exh_T
Pmax
CA_P
CA_T
FOC

1 TC_RPM: Turbocharger Shaft Speed [rev/m]. 2 Exh_T: Exhaust Gas Temperature [K]. 3 Pmax: Maximum In-Cylinder Pressure [bar]. 4 CA_P: Charge Air Pressure [bar]. 5 CA_T: Charge
Air Temperature [K]. 6 FOC: Fuel Oil Consumption [g/kWh].
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Table 10. Validation results—percentage errors.

Load [%] 100 75 50 25 Acceptable Error

TC_RPM 0.2 0.0 −1.3 −1.2 ± 2
Exh_T −2.9 −2.0 0.0 −1.1 ±5 (±25 K)
Pmax 1.0 0.9 0.4 −1.1 ±5
CA_P 1.7 −1.4 −1.0 0.9 ±2
CA_T 0.1 −0.5 −0.1 −1.1 ±1.2 (±4 K)
FOC −3.0 −1.6 −0.5 −0.3 ±3

Table 11. Sensitivity analysis results.

Input Parameters
Spearman’s Coefficient [–]

TC_RPM Exh_T Pmax CA_P CA_T FOC

Ambient Temperature 0.19 0.84 −0.23 −0.58 0.58 0.35
Exhaust Valve Leakage 0.92 0.15 −0.31 0.61 0.76 0.43
Intake Valve Leakage 0.36 0.56 −0.95 0.40 0.37 0.85

Table 12. Verification results—ambient temperature variation trade-offs.

Output Parameters
Low Temperature High Temperature

Reference
DT Reference DT Reference

TC_RPM ↓ ↓ ↑ ↑ [63,64]
Exh_T ↓ ↓ ↑ ↑ [64]
Pmax ↑ ↑ ↓ ↓ [64]
CA_P ↑ ↑ ↓ ↓ [64]
CA_T ↓ ↓ ↑ ↑ [62]
FOC ↓ ↓ ↑ ↑ [64]

Table 13. Verification results—influence of anomaly trade-offs.

Output Parameters
Exhaust Valve Leakage Intake Valve Leakage

Reference
DT Reference DT Reference

TC_RPM ↑ ↑ ↑ ↑

[60]

Exh_T ↑ ↑ ↑ ↑
Pmax ↓ ↓ ↓ ↓
CA_P ↑ ↑ ↑ ↑
CA_T ↑ ↑ ↑ ↑
FOC ↑ ↑ ↑ ↑

Table 14. Robustness results—uncertainty ratio.

Input
Load [%]

Uncertainty Ratio [–]

Parameters TC_RPM Exh_T Pmax CA_P CA_T FOC

Amb_T

100 0.001 0.162 0.005 0.006 0.622 0.007
75 0.001 0.151 0.004 0.006 0.605 0.008
50 0.000 0.211 0.003 0.005 0.427 0.010
25 0.000 0.125 0.000 0.001 0.729 0.009

EV_Leak

100 0.004 0.055 0.054 0.009 0.573 0.028
75 0.005 0.025 0.030 0.010 0.750 0.024
50 0.004 0.034 0.014 0.004 0.374 0.032
25 0.002 0.060 0.005 0.000 0.082 0.045
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Table 14. Cont.

Input
Load [%]

Uncertainty Ratio [–]

Parameters TC_RPM Exh_T Pmax CA_P CA_T FOC

IV_Leak

100 0.001 0.207 0.009 0.127 0.071 0.028
75 0.001 0.156 0.004 0.139 0.068 0.024
50 0.000 0.084 0.001 0.179 0.105 0.032
25 0.000 0.036 0.000 0.073 0.129 0.045

Table 15. Trustworthiness decision results.

Steps Acceptance Criteria
Trustworthiness Checks

Environment Conditions Anomaly Conditions

Validation Acceptable Errors Pass

Verification Trade-off Soundness Pass Pass

Robustness Uncertainty ratio Pass Pass

7.2. Data Generation and Application Test

Following the assurance of the developed DT trustworthiness, 79,980 data samples
were generated within the considered operating conditions. Each sample contained several
engine performance parameters (TC_RPM, Exh_T, CA_T, CA_P, FOC, Pmax for each cylinder).
The generated datasets were randomly split for training and testing data-driven models.

The results of the anomaly diagnosis model parts for detection, identification, and
isolation in confusion matrices as well as the corresponding percentage errors as shown
are presented in Figure 4. The anomaly detection model exhibits an accuracy of 98.8%
with 2000 test datasets. The anomaly identification model exhibits an accuracy of 97.6%
with 3000 test datasets. The anomaly isolation model exhibits an accuracy of 90.1% for
determining the location (cylinder number) of the exhaust valve leakage and an accuracy
of 91.8% for determining the location (cylinder number) of the intake valve leakage with
2400 test datasets.

The application test results indicate that the generated datasets are suitable for devel-
oping data-driven models. This is supported by the fact that the accuracy of the anomaly
diagnosis models closely matched the values reported in the pertinent literature [65,66],
which are in the range of 91.7–99.5% employing actual measurement data for binary and
multi-classification with SVM.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. Anomaly diagnosis results. (a) Anomaly detection. (b) Anomaly identification. (c) Anomaly
isolation (exhaust valve leakage). (d) Anomaly isolation (intake valve leakage).

7.3. Discussion

To address the challenge of limited datasets in the maritime industry, this study
proposed a framework for assuring trustworthiness of physical model-based DT. This
framework is expected to be a useful tool for developing trustworthy marine engine
DTs considering lifetime updates (extension, modification, and addition). Although the
framework was developed for marine engines, it can be extended for other marine systems,
including mechanical, electrical, and hybrid components. In addition, the framework can
be extended to accommodate data-driven or hybrid DTs by including the characteristics of
explainability, robustness to adversarial noise, and physical plausibility.

The framework includes limitations in the selection of the thresholds used to charac-
terise the verification and robustness of the DT. To enhance this aspect, further improvement
can be achieved through extensive application and testing of the framework across diverse
ship systems. Despite its limitations, the framework is valuable in facilitating the devel-
opment of intelligent machinery monitoring and health management systems, which are
necessary systems for smart and autonomous ships.

The framework was employed as part of a methodology aimed at generating ap-
propriate datasets for a data-driven diagnosis model. The methodology was effective in
extending the DT operating envelope considering the most critical anomalies, as identified
by FMECA. This study focused on cylinder valve anomalies and ambient temperature
variations; however, future studies can include anomalies of other components, environ-
mental conditions, and their combinations. This study generated around 80,000 datasets,
which required considerable computational effort for the simulation runs. A challenge
that needs to be addressed in the future pertains to the computational efforts to generate
datasets throughout the lifetime of the investigated system. The developed methodology
can be further customised and extended for generating datasets of other machinery sys-
tems, including electric-battery propulsion systems, alternative fuel engine systems, and
innovative technologies. This study employed only datasets from the engine shop trials.
Future studies can also use acquired datasets during the lifetime of the system, along with
their management, to improve both the quality of the DT and generated datasets.

8. Conclusions

This study developed a framework to assure the trustworthiness of a physical model-
based DT for marine engines considering three phases, namely DT development, pro-
gressivity, and trustworthiness assurance. Subsequently, an application methodology was
implemented, which employed the trustworthy DT framework to generate datasets for
developing a data-driven anomaly diagnosis model. A marine four-stroke engine was used
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to demonstrate the developed framework and methodology. The main findings of this
study are summarised as follows.

• The trustworthiness of the developed DT was assured as the validation step resulted
in errors within ±3%, the verification step resulted in sound trade-offs, and the
robustness step confirmed the uncertainty was not propagated.

• The trustworthy DT generated 79,980 data samples representing a wide engine op-
erating envelope. The generated dataset included ambient temperature variations
and cylinder valve anomalies, making it suitable for training and testing anomaly
diagnosis models.

• The accuracies of the anomaly diagnosis models were 98.8% for anomaly detection,
97.6% for anomaly identification, and 90.1–91.8% for anomaly isolation. These results
demonstrated that the simulation-generated datasets can serve as viable alternatives
to measurement datasets provided that the employed DT trustworthiness is appropri-
ately assured.

This study provides insights towards DTs development and their trustworthiness
management, Hence, it advances the use of tools from the fourth industrial revolution
within the shipping industry, and addresses challenges pertaining to datasets generation
required for developing data-driven models.

This study limitations pertain to the testing of the developed data-driven models using
actual sensory data due to a lack of such information. The application of the generated
datasets can be extended to prognostics and decision making cases. Future studies could
consider to extend the proposed framework for data-driven and hybrid DTs as well as a
wider envelope of engine operating conditions and anomaly combinations.
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0D/1D 0-Dimensional/1-Dimensional
ADO Advanced Direct Optimiser
DD Data Driven
DOE Design of Experiments
DT Digital Twin
FMECA Failure Mode, Effects and Criticality Analysis
HM Hybrid Model
ISO International Organisation for Standardisation
LO Lubricating Oil
MC Monte Carlo



J. Mar. Sci. Eng. 2024, 12, 595 20 of 22

PHM Prognostics and Health Management
PID Proportional-Integral-Derivative
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RPN Risk Priority Number
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