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 21 

Rainfall is changing in intensity and abundance for much of the world as a result of global 22 

climate change. Rwanda has been negatively affected by a changing climate, exacerbated by 23 

human impact on land and water resources. In most parts of the country the rainfall pattern has 24 

changed over the last decades resulting in both enhanced flooding and water shortage / scarcity 25 

in much of the country, especially in the Capital City of Kigali and peripheries which is the 26 

main economic hub of the country with strong links to the East African region. Changes in 27 

precipitation have affected agricultural production, hydropower production, and water 28 

supplies, and has been a result of increased flash floods in the city. This study developed a new 29 

predictive model rainfall patterns in the City of Kigali (CoK) in the Republic of Rwanda using 30 

evolutionary methodologies that apply machine learning techniques of Fuzzy Inference 31 

Systems (FIS) trained via Genetic Algorithms, Neuro Network Systems and a comparative 32 

Support Vector Machine tool, and assessment downscaled climate change combinations with 33 

predicted rainfall patterns.  The models were calibrated and validated using measured rainfall 34 

data in the City of Kigali from 1991 through 2023. The model results show the developed Geno 35 

Fuzzy Inference System (GENOFIS) model performed better than the Adaptive Neuro Fuzzy 36 
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Inference System (ANFIS) and Support Vector Machine (SVM) models. The Coefficient of 37 

Efficiency (CE), and Root Mean Square Error (RMSE) were used as diagnostic measures for 38 

model performance evaluation.  Models generated with GENOFIS are therefore recommended 39 

for rainfall and related prediction pattern in the City of Kigali for climate change adaptation 40 

and resilience policy and planning. 41 

Keywords: Precipitation; Fuzzy Systems (FS); Support Vector Machine; Machine Learning; 42 

Climate change, Resilience. 43 

INTRODUCTION 44 

Water is the most abundant natural resource on earth (Nafi and Brans, 2019; Aboniyo et al., 45 

2017, Habonimana et al., 2015), but available fresh water resources used to sustain our 46 

existence is a small fraction that varies widely in space and time (UNDP, 2020; Ntirenganya, 47 

2018) through anthropogenic development has changed the distribution of available fresh water 48 

for production of hydropower and advancement of irrigation and agriculture engineering (Loh 49 

and Wackernagel, 2004).   Climate change has altered local weather patterns across the globe 50 

(Bridgman and Oliver, 2014).  In East Africa, El-Nino and La Nina effects impact weather 51 

patterns year to year, even though the anomalies originate from the southern Pacific Ocean 52 

(Schwing et al., 2002).  As well, very dry and hot air from the Sahara can influence weather in 53 

Northern Europe (Schwing et al., 2002). These shifting patterns of precipitation have affected 54 

East Africa, including Rwanda (USAID, 2014, Ntirenganya, 2018). Sectors such as renewable 55 

energy, irrigation, water supply and agriculture production have been impacted in many parts 56 

of the country (Karamage et al. 2016; NWRMP, 2013). Problems linked to rainfall scarcity 57 

have been seen in Rwanda, and especially in Eastern parts of the county which have been facing 58 

severe drought for the last decades (Ntirenganya, 2018, REMA, 2010). To adapt and mitigate 59 

to the climate change induced changes in precipitation in the City of Kigali, a robust and well-60 



 

 

trained rainfall prediction model is of crucial importance. This model will help define policy 61 

for more efficient allocation of water resources, and focus during periods of severe flooding 62 

and rainfall shortage, thereby guiding investment that will provide sustainable water 63 

management measures (Uwera, 2013; USAID, 2014, Theobald et al. 2018).  64 

 65 

There is a wealth of rainfall prediction models presented in the literature for Central and East 66 

Africa, however few research studies have been undertaken in Rwanda. Most of research 67 

studies that investigated rainfall fluctuation problems in East Africa (and especially in Rwanda) 68 

do not include the stochastic behavior of global climatology and rainfall patterns (Ntirenganya, 69 

2018, UNDP, 2020, USAID, 2014).  Recent studies have developed new and high-end 70 

approaches to this modelling challenge based on artificial intelligence (Altunkaynak, 2010; 71 

Altunkaynak, 2014 Altunkaynak and Nigussie, 2015; REMA, 2010, Rukundo and Dogan, 72 

2016). These methods were used successfully in many parts of the world, and the results have 73 

proved reliable when compared to conventional deterministic methods (Munyaneza et al. 74 

2013). In 2018 an extended study of the availability of clean water in many provinces of the 75 

republic of Rwanda was published by the Ministry of Infrastructure and its stakeholders 76 

(MININFRA, 2016). This study highlighted different modeling techniques used to map the 77 

availability of fresh water resources in Southern and Eastern Provinces of the country 78 

(MININFRA, 2016).  These were focused on deterministic models linked to Geographic 79 

Information Systems (GIS) (Munyaneza et al., 2013; Rukundo and Dogan, 2016). In this study 80 

we present a novel evolutionary method that can be used for rainfall and pattern forecast in the 81 

city of Kigali.  The model is trained on observed data from the gauge station located at the 82 

Kigali International Airport. Geno Fuzzy Inference System (GENOFIS) (Bizimana and 83 

Altunkaynak, 2019), Adaptive Neuro Fuzzy Inference System (ANFIS) (Jang, 1993), and 84 

Support Vector Machine (SVM) (Jakkula, 2006) were compared.  While predictive models are 85 



 

 

always a challenge for future predictions, artificial intelligence and soft computing based-86 

methods are being adopted for the purposes of this study to evaluate the potential of this non-87 

deterministic approach.  To the best of the authors’ knowledge, the GENOFIS approach has 88 

not been used for rainfall prediction. The GENOFIS approach, as a modelling tool, has 89 

previously generated accurate prediction results (Bizimana and Altunkaynak, 2019, 2020), and 90 

is recommended for implementation to predict hydrological variables.   Here we compared it 91 

with widely used ANFIS and linear SVM models using observed rainfall data at Kanombe 92 

International Airport, in the City of Kigali. 93 

 94 

STUDY AREA 95 

Rwanda has no sea ports, but considerable lake boundaries being located in the great lakes 96 

region of East Africa. Countries neighboring Rwanda, are Tanzania in the East, Uganda in the 97 

North, Burundi in the South and Democratic Republic of the Congo in the West. The country 98 

has an area of 26,338 km2 and population estimated to be 13.4 million as of 2023. The annual 99 

population growth rate is estimated at 3.1%.  The country has water resources in abundance 100 

(rivers, lakes, and swamps).  Surface water resources cover 211,000 hectares an equivalent to 101 

8% of the total national land territory, with rivers covering an area of 7,270 hectares and also 102 

22.300 natural springs feeding rivers and lakes (NWRMP, 2013).   These incised rivers 103 

meander between hills and ridges found across Rwanda and is the reason why Rwanda is 104 

famously known as the “country of a thousand hills”.  Rwanda sits at the catchment boundary 105 

between the Congo and Nile river basins in the Western part of the country (Fig. 1). 106 



 

 

 107 

Fig. 1. National catchments of level 1 (NWRMP, 2013) 108 

The Congo basin occupies 33 % of the country and 10 % of water resources. The Nile basin 109 

occupies 67 % of the country and 90 % of water resources.  The Nile basin drains towards east 110 

where many small streams and rivers converge to the Akanyaru and Nyabarongo rivers. These 111 

meet in the southern part of city of Kigali to form the Akagera river that continues towards 112 

Lake Victoria. The annual average rainfall ranges from 700 mm to 1400 mm in the Eastern part 113 

of the country, to 1200 mm to 1400 mm in central plateau of the country where the City of 114 

Kigali is located, and between 1300 mm to 2000 mm in the high-altitude regions of the North. 115 

The country water resources is divided in 9 main catchments of level 1, namely, Mukungwa 116 

(NMUK), Muvumba (NMUV), NKIR, Lower Akagera (NAKL), Upper Akagera (NAKU), 117 

Lower Nyabarongo (NNYL), Upper Nyabarongo (NNYU), Akanyaru (NAKN), Rusizi 118 

(CRUS),and Kivu (CKIV) Fig. 1 adapted from the National Water Resources Master Plan 119 



 

 

(NWRMP) published in 2013. The City of Kigali is located in NNYL catchment, 120 

hydrologically called Lower Nyabarongo. 121 

 122 

THE CITY OF KIGALI 123 

This study was focused on the commercial and political capital of the Republic of Rwanda, the 124 

City of Kigali. The city has an area of 730 km2 with a population of more than one million 125 

inhabitants. The City of Kigali is located  at the center of the country and holds a status of a 126 

province being, one of the five provinces in the country. The City of Kigali lies within hilly 127 

landscapes spreading across wet valleys.   The city is rapidly expanding in terms of structures 128 

and modern buildings within its growing economy.  Not only is it Rwanda’s most dynamic and 129 

important business pivot, but also it is the main port of entry to the country via its international 130 

airport.  The city holds a moderate high-altitude climate that is associated with its tropical 131 

location (Mugiraneza and Ban, 2019; Nduwayezu et al., 2021). Fig. 2a shows the 132 

administrative boundaries of the City of Kigali.  133 



 

 

 134 

Fig. 2a: The city of Kigali Administrative boundaries 135 

 136 

Fig. 2b: The location of Kanombe Airport and rain gauge station 137 



 

 

The City of Kigali has three districts, Nyarugenge, Kicukiro and Gasabo (Fig. 2a). The city’s 138 

one of the long-term rainfall gauging station is at the Kanombe International Airport located in 139 

and its updated data has been used in this study. The maintenance and recording of rainfall data 140 

are managed and monitored by the Rwanda Meteorological Agency.  The city has an averagely 141 

temperature between 17–31oC with monthly wind speed ranging between of 4 m/s – 8 m/s 142 

(Henninger, 2013a, b; Loknath et al. 2015). 143 

 144 

MODELLING METHODS 145 

Geno Fuzzy Inference System Model  146 

The Geno Fuzzy Inference System Model (GENOFIS) is a hybrid evolutionary technique 147 

proposed by Bizimana and Altunkaynak (2019).  GENOFIS is an improvement of the 148 

conventional and widely accepted Sugeno Fuzzy Inference System, and is a robust compromise 149 

between computational complexity and high accuracy.  With the Sugeno-ANFIS structure, for 150 

n inputs and f membership functions, k input parameters that are given to each input and 151 

membership function, should have the total number of fitting parameters equalized to F(n,f,k) 152 

= nf.k + fn. (n+1). Bizimana and Altunkaynak (2019) proposed in detail the advantages and 153 

disadvantage of the GENOFIS versus conventional Sugeno Adaptive Neuro-Fuzzy Inference 154 

System (ANFIS) approaches.  GENOFIS was developed combining the method proposed by 155 

Jovanovic (2004) and a technique to represent the consequent part of the Sugeno Fuzzy 156 

Inference System as any favorable type of mathematical function, and if required, a 157 

combination of two or more of them. Sugeno FIS is a conventional approach that utilizes 158 

constant or linear functions, never a combination. The GENOFIS technique defines the total 159 

number of fitting parameters as G (n, f, k) = n x f x k + n x f (n+1) = n x f x (n+k+1). This 160 

approach increased accuracy and reduced computation complexity for linear problems 161 



 

 

(Bizimana and Altunkaynak, 2019,2020a, 2020b).  IF/THEN rules for evolutionary GENOFIS 162 

approach were introduced by Bizimana and Altunkaynak (2019) as follows; 163 

 164 

Rule 1: If 𝑄𝑖 ∈ [1991 − 1995] then  𝑄𝑖𝑛 = 𝑎1(𝑄𝑖)𝑛   + 𝑏1(𝑄𝑖 ∗)𝑛−1 + 𝑐1(𝑄𝑖)𝑛−2 + 𝑑1(𝑄𝑖)𝑛−𝑛 + 𝑒1 165 

Rule 2: If 𝑄𝑖  ∈ [1995 − 2000] then  𝑄𝑖𝑛 =  𝑎2(𝑄𝑖)𝑛   + 𝑏2(𝑄𝑖)𝑛−1 + 𝑐2(𝑄𝑖)𝑛−2 + 𝑑2(𝑄𝑖)𝑛−𝑛 + 𝑒2 166 

Rule 3: If 𝑄𝑖 ∈ [2000 − 2023] then  𝑄𝑖𝑛 =  𝑎3(𝑄𝑖)𝑛   + 𝑏3(𝑄𝑖)𝑛−1 + 𝑐3(𝑄𝑖)𝑛−2 + 𝑑3(𝑄𝑖)𝑛−𝑛 + 𝑒3 167 

  168 

where 𝑄𝑖𝑛 and 𝑄𝑖  define the normalized rainfall data and the rainfall records, respectively. The 169 

Genetic Algorithms (GAs) technique was applied to optimize parameters, a1, b1, c1, d1, e1, a2, 170 

b2, c2, d3, e3, a3, b3, c3, d3, and e3 as consequent parameters. Details on the optimization process 171 

of the novel GENOFIS models are found in Bizimana and Altunkaynak (2019). 172 

 173 

 Adaptive Neuro Fuzzy Inference System 174 

 175 

Fig. 3: Neuro-Fuzzy Inference System structure 176 

The Adaptive Neural Fuzzy Inference System (ANFIS) is based on the Takagi-Sugeno Fuzzy 177 

Inference System (FIS) (Sugeno and Kang, 1988). The Neuro-fuzzy approach was proposed 178 

by Jang (1992) who utilized two inputs and generated one output by using two fuzzy if-then 179 

rules as follows; 180 



 

 

Rule 1: If x is A1 and y is B1 then fi=p1x+q1y+r1 181 

Rule 2: If x is A2 and y is B2 then f2=p2x+q2y+r2 182 

As shown in Fig.3, five structure layers of the ANFIS approach are defined as follows: 183 

Layer 1: Every node available in this layer has a node function 184 

𝑂İ1 =  µ𝐴𝑖(𝑋)   𝑓𝑜𝑟 𝑖 = 1,2  or; 185 

𝑂𝑖1 =  µ𝐵𝑖−2 (𝑌)    𝑓𝑜𝑟 𝑖 = 3,4        186 

In the formulae above,  𝑋  and 𝑌  are the inputs to node i, and Ai  and ( Bi-2 ) stand for the 187 

linguistic label (Great, little, Far, close, etc.) together with the node function. The function 188 

depicts the magnitude to which 𝑋 (and 𝑌) reaches the quantifier A, (or Bi-2) and also named as 189 

the membership function of Ai and (Bi-2), respectively. The FIS provides considerable freedom 190 

in representing the type of membership functions in accordance to one’s needs in terms of 191 

simplicity, speed, efficiency, and convenience. Takagi and Sugeno (1985) showed the only 192 

condition that should be met is that a membership function has to vary between 0 and 1. In 193 

Fig.3 the ANFIS architecture is depicted as suggested by Jang (1992). 194 

 195 

The membership function is a function of its parameters, as a result changing its parameters 196 

modifies the membership function shape. Parameters represented in the first layer define the 197 

premise (antecedent) parameters. In Jang (1993) and Bizimana and Altunkaynak (2019), the 198 

fabrics and functionality of the ANFIS have been explained in details.   199 

                   200 

To reach best performance, Adaptive Neuro Fuzzy Inference System utilizes the least-square 201 

optimization approach to find the consequent parameters and back-propagation technique to 202 

generate the antecedent (premise) parameters. The learning process is informed by two steps: 203 

(1) calibration data set is utilized as the input, the antecedent or boundary parameters are 204 



 

 

considered as stationary values and the optimized consequent parameters are calculated by an 205 

iterative least-square approach, and (2) designs are spread, but in this step the consequent 206 

variables are assumed to be fastened and back-propagation is used to modify the antecedent 207 

parameters. Adaptive Neuro Fuzzy Inference System (ANFIS) represents the optimized 208 

consequent output only as a linear or constant function whilst many problems behave to a great 209 

extent as irregular functions.  As a result, a novel and evolutionary technique called GENOFIS 210 

was used to predict rainfall time series data. This approach is specified as an integration of the 211 

optimized Genetic Algorithms (GAs) and Sugeno FIS (Bizimana and Altunkaynak, 2020). 212 

Furthermore, the novel GENOFIS technique allows the characterization of the consequent part 213 

as a linear, non-linear and constant functions or combination of all simultaneously. The novel 214 

GENOFIS also provides the optimized consequent parameters via generated Genetic 215 

Algorithms (GA) (Bizimana and Altunkaynak, 2020).  216 

 217 

Support Vector Machine  218 

The Support Vector Machine (SVM) is utilized in machine-learning-based systems (Jakkula, 219 

2006).  SVM works as a supervised machine learning algorithm for classification and/or 220 

regression defiance (Jakkula, 2006).  SVM performs this task via direct control of noise and 221 

advanced propagation to large dimensional data, offering advanced integrity. Fig. 4 depicts the 222 

SVM hyperplane. 223 

 224 



 

 

 225 

Fig.4 Support Vector Machine hyperplane 226 

 227 

 SVM increases the margins between categories by generating hyperplanes (Huang et al., 228 

2018). The most optimal result of r which the coefficient of correlation is reached by 229 

lessening the cost function between the nearest calibration data points, and the hyperplane as 230 

follows; 231 

Reduce: 
12  ∥ 𝜔 ∥2+ 𝐶 ∑ 𝜉𝑖𝑛𝑖=1                                                                                                         (1) 232 

Subject to 𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏)3  ≥ 1-𝜉𝑖, 𝜉𝑖  ≥ 0                                                                                     (2) 233 

Where  𝜔𝑇, 𝑥𝑖 ∈ 𝑅2 and b ∈ 𝑅1,  ∥ 𝜔 ∥2 = 𝜔𝑇 , 𝜔 is defined as the training weight, C is the 234 

tradeoff parameter between noise and margin, ξi is the measure of calibration data, and yi is the 235 

class label for the ith specimen. The adaptive advantage of SVM is that it can be used for linear 236 

as well as nonlinear data classification. To generate a greater accuracy in predicting rainfall 237 

precipitation in the City of Kigali, a nonlinear classifier (Sern et al., 2020) was utilized in this 238 

study.  This classifier operates with a third-order kernel function (Said et al., 2015). 239 

 240 

 241 



 

 

MODEL PERFORMANCE EVALUATION CRITERIA 242 

 243 

The evaluation criteria Coefficient of Efficiency (CE), proposed by Nash-Sutcliffe (1970) and 244 

used by Bizimana & Altunkaynak (2019) and Altunkaynak & Kartal (2019), was used to 245 

measure the prediction performance of the GENOFIS, ANFIS and SVM models. The root mean 246 

square error (RMSE) was used to assess the prediction error generated by the aforementioned 247 

models in predicting the rainfall availability in the City of Kigali.  According to Moriasi et al. 248 

(2007), if CE is greater than 0.5, the performance of a model is acceptable. Donigan & Love 249 

(2003) and, Altunkaynak & Nigussie (2019) detailed all the acceptable ranges for CE where 250 

CE values greater than 0.85 indicate high accuracy of a predictive model. 251 

 252 

RMSE = √1𝑛 ∑ (𝑄𝑖𝑛(𝑜) − 𝑄𝑖𝑛(𝑝))2𝑛𝑖=1                                                                                               (3)                                                253 

 254 

CE = [1 − ∑ (𝑄𝑖𝑛(𝑜)−𝑄𝑖𝑛(𝑝))2𝑛𝑖=1∑ (𝑄𝑖𝑛(𝑜)−𝑄𝑖𝑛(𝑎𝑣))2𝑛𝑖=1 ]                                                                                                         (4)                                                255 

where, 𝑄𝑖𝑛(av) defines the average rainfall depth observed at a gauge station, 𝑄𝑖𝑛(𝑜), 𝑎𝑛𝑑 𝑄𝑖𝑛(𝑝) 256 

are observed rainfall and predicted rainfall at Kanombe Airport station. 257 

 258 

Modeling Data 259 

For this study, rainfall records from 1991 through 2023 recorded at Kanombe International 260 

Airport’s gauging station in the south of the City of Kigali (Fig.2b) were used as inputs to 261 

GENOFIS, ANFIS and SVM models (Table 1 – 4). Observed rainfall data were divided into 262 

three periods, [1991-1995], [1995-2000] and [2000-2023].  These periods were chosen to 263 

optimize uncertainty and scattering in the rainfall records by utilizing short periods and 264 

avoiding stochastic abnormalities in the datasets (e.g. jump and trends). The normalized 265 



 

 

observed rainfall data were used as outputs of those models. The normalization was performed 266 

as follows; 267 

𝑄𝑖𝑛 = 0.8 𝑄𝑖−𝑄𝑖𝑚𝑖𝑛𝑄𝑖𝑚𝑎𝑥−𝑄𝑖𝑚𝑖𝑛 + 0.1                                                                                               (5) 268 

Table 1: ANFIS-based If-Then rules and parameters 269 

 Rule no. Antecedent Consequent 

  𝑄𝑖  𝑄𝑖𝑛 

ANFIS (𝑄𝑖 ∈ [1991 − 1995]) 1 L1 𝑄𝑖𝑛 = 0.22(𝑄𝑖)- 0.12 

 2 L2 𝑄𝑖𝑛 = 0.04(𝑄𝑖)- 0.08 

 3 L3 𝑄𝑖𝑛= 0.12(𝑄𝑖)- 0.04 

 4 T1 𝑄𝑖𝑛 = 0.02(𝑄𝑖)- 0.004 

 5 T2 𝑄𝑖𝑛 = 0.0035(𝑄𝑖)- 0.02 

 6 T3 𝑄𝑖𝑛= 0.048(𝑄𝑖)- 0.001 

 7 R1 𝑄𝑖𝑛 = 0.05(𝑄𝑖)- 0.002 

 8 R2 𝑄𝑖𝑛 = 0.06(𝑄𝑖)- 0.003 

 9 R3 𝑄𝑖𝑛 = 0.11(𝑄𝑖)- 0.014 

ANFIS (𝑄𝑖 ∈ [1995 − 2000]) 1 L1 𝑄𝑖𝑛 = 0.025(𝑄𝑖)- 0.11 

 2 L2 𝑄𝑖𝑛 = 0.16(𝑄𝑖)- 0.10 

 3 L3 𝑄𝑖𝑛= 0.18(𝑄𝑖)- 0.04 

 4 T1 𝑄𝑖𝑛= 0.06(𝑄𝑖)- 0.004 

 5 R1 𝑄𝑖𝑛 = 0.064(𝑄𝑖)- 0.004 

ANFIS (𝑄𝑖 ∈ [2000 − 2023]) 1 L1 𝑄𝑖𝑛= 0.14(𝑄𝑖)- 0.038 

 2 L2 𝑄𝑖𝑛 = -0.17(𝑄𝑖)+ 0.51 

 3 L3 𝑄𝑖𝑛= -0.12(𝑄𝑖)- 0.15 

 4 T1 𝑄𝑖𝑛 = -0.20(𝑄𝑖)- 0.13 

 5 T2 𝑄𝑖𝑛 = 0.025(𝑄𝑖)- 0.0065 

 6 T3 𝑄𝑖𝑛 = 0.0068(𝑄𝑖)- 0.008 

 7 R1 𝑄𝑖𝑛 = - 0.086(𝑄𝑖)+ 0.046 



 

 

 270 

271 

 8 R2 𝑄𝑖𝑛= 0.018(𝑄𝑖)- 0.06 

 9 R3 𝑄𝑖𝑛 = 1.6x10-7(𝑄𝑖)+ 4.9.10-7 



 

 

Table 2: GENOFIS-based If-Then rules and consequent parameters 272 

 Rule 

no. 

Antecedent Consequent  

  𝑄𝑖 𝑄𝑖𝑛 

GENOFIS (𝑄𝑖 ∈ [𝟏𝟗𝟗𝟏 − 𝟏𝟗𝟗𝟓]) 1 1991-1992 𝑄𝑖𝑛= a1(𝑄𝑖)6 + b1(𝑄𝑖)5 + c1(𝑄𝑖)4 + d1(𝑄𝑖)3 +e1(𝑄𝑖)2 +f1(𝑄𝑖) + g1 

 2 1992-1994 𝑄𝑖𝑛 = a2(𝑄𝑖)6 +b2(𝑄𝑖)5 + c2(𝑄𝑖)4 +d2(𝑄𝑖)3 + e2(𝑄𝑖)2 +f2(𝑄𝑖) + g2 

 3 1994-1995 𝑄𝑖𝑛  = a3(𝑄𝑖)6 + b3(𝑄𝑖)5 +c3(𝑄𝑖)4 + d3(𝑄𝑖)3 +e3(𝑄𝑖)2 + f3(𝑄𝑖) +g3 

GENOFIS (𝑄𝑖 ∈ [𝟏𝟗𝟗𝟓 − 𝟐𝟎𝟎𝟎]) 1 1995-1997 𝑄𝑖𝑛  = b1(𝑄𝑖)5 + c1(𝑄𝑖)4 + d1(𝑄𝑖)3 +e1(𝑄𝑖)2 +f1(𝑄𝑖) + g1 

 2 1997-1998 𝑄𝑖𝑛  = a2(𝑄𝑖)6 + b2(𝑄𝑖)5 +c2(𝑄𝑖)4 + d2(𝑄𝑖)3 +e2(𝑄𝑖)2 + f2(𝑄𝑖) +g2 

 3 1998-2000 𝑄𝑖𝑛  = a3(𝑄𝑖)6 + b3(𝑄𝑖)5 +c3(𝑄𝑖)4 + d3(𝑄𝑖)3 +e3(𝑄𝑖)2 + f3(𝑄𝑖) +g3 

GENOFIS (𝑄𝑖 ∈ [𝟐𝟎𝟎𝟎 − 𝟐𝟎𝟐𝟑]) 1 2000-2010 𝑄𝑖𝑛  = f1𝑄𝑖+ g1 

 2 2010-2017    𝑄𝑖𝑛 = e2(𝑄𝑖)2 +f2𝑄𝑖  + g2 

 3 2017-2023 𝑄𝑖𝑛  = d3(𝑄𝑖)3 +e3(𝑄𝑖)2 + f3𝑄𝑖  +g3 

 273 

 274 

 275 

 276 



 

 

Table 3: Consequent parameters for the GENOFIS model 277 

Rainfall 
records 

 
      [1991-1995] 

 
      [1995-2000] 𝑄𝑖 ∈   

a1 b1 c1 d1 e1 f1 g1 a2 b2 c2 d2 e2 f2 g2 

 
[1991-1995] 

 
0 

 
0 

 
0 

 
0 

 
0 

 
-0.016 

 
0.14 

 
0 

 
0 

 
0 

 
0 

 
0.3 

 
-0.31 

 
0.41 

 
[1995-2000] 

 
0 

 
-0.03 

 
0.01 

 
0.11 

 
-0.05 

 
0.1 

 
0.53 

 
-74.2 

 
23.1 

 
-132.5 

 
145.8 

 
630.5 

 
195.15 

 
-192 

 
 
[2000-2023] 

 

-0.021 

 

5.10-5 

 

0.12 

 

0.21 

 

-0.34 

 

-0.03 

 

-0.07 

 

28.14 

 

-107.02 

 

27.72 

 

54.8 

 

410.23 

 

58.1 

 

105 

 278 

 279 

      Table 4: Consequent parameters for the GENOFIS model (continued) 280 

Rainfall 
records 

            
           [2000-2023] 𝑄𝑖 ∈ a3 b3 c3 d3 e3 f3 g3 

        

[1991-1995] 0 0 0 0.013 -0.063 0.145 -5.45 

[1995-2000]           75 23.8 -2.18 45.07 53.5 38.43 84.5 

[2000-2023] 63.14 161.7 5.4.104 4.1.107 102 104 7.5.102 

281 



 

 

The fuzzy Inference System rules are shown in Table 1 and 2 respectively for the ANFIS and 282 

GENOFIS models, and the consequent parameters for the ANFIS and GENOFIS models are 283 

provided in Table 3 and 4, respectively.  284 

Climate Change Projections Downscaled on the City of Kigali 285 

Climate Change Projections  286 

NEX-GDDP-CMIP6 287 

The NEX-GDDP-CMIP6 dataset was used to analyse future trends in terms of temperature and 288 

precipitation for Rwanda. Thrasher et al. (2022) have discussed in details the NEX-GDDP-CMIP6 289 

data set. The NEX-GDDP-CMIP6 dataset is comprised of global downscaled climate scenarios 290 

derived from the General Circulation Model (GCM) runs conducted under the Coupled Model 291 

Intercomparison Project Phase 6 (CMIP6) and across four greenhouse gas emissions scenarios 292 

known as Shared Socioeconomic Pathways (SSPs). The dataset compiles climate projections from 293 

35 CMIP6 GCMs and four SSP scenarios, for the period 2015-2100, as well as the historical 294 

experiment for each model, for the period 1950-2014. Each of these climate projections is 295 

downscaled to a spatial resolution of 0.25 degrees x 0.25 degrees. 296 

 297 

Two SSP scenarios (SSP2-4.5 and SSP5-8.5) are analysed to provide a range of future climate 298 

projections (Nazarenko et al. 2021). SSP2-4.5 represents a “stabilisation scenario”, in which 299 

greenhouse gas emissions peak around 2040 and are then reduced. Although often used as 300 

‘business as usual’, the SSP5-8.5 is above the business-as-usual emission scenarios and designed 301 

as a worst-case scenario. We include this scenario as an upper limit to the possible future climate. 302 

These scenarios are selected as they represent an envelope of likely climate changes and hence 303 

https://doi.org/10.7917/OFSG3345


 

 

cover a plausible range of possible future changes in temperature and precipitation relating to 304 

project implementation. Fig. 5 depicts the projected changes in climatic means in Rwanda. 305 

 306 

 307 

Fig. 5. Projected temperature (max and min) and precipitation changes for Rwanda derived from NEX-308 

GDDP-CMIP6.  309 

 310 

A 20-year window was selected as appropriate for deriving average climate changes, effectively 311 

considering interannual variations in temperature and precipitation, and robust comparison.  312 

 313 

- Reference period [2015]: 2000 – 2019. 314 

- Future period [2050]: 2040 – 2059. 315 

 316 

From Fig. , temperature and precipitation trends for Rwanda can be summarised, as derived from 317 

the ensemble mean of the considered GCMs. Under both SSP scenarios (SSP2-4.5 and SSP5-8.5), 318 

precipitation is expected to vary considerably across individual GCMs, but the ensemble mean 319 

indicates that precipitation is to increase by 2.4% to 7.6%, respectively. Mean temperatures are 320 

expected to increase on average by about 1.1 °C to 1.4 °C, respectively.  321 

 322 



 

 

Climate projection for Rwanda under CMIP5 323 

 324 

Meteo-Rwanda regional climate projections were used to provide an analysis of future trends for 325 

temperature and precipitation. The dataset, provided by Meteo-Rwanda, was obtained from the 326 

Coordinated Regional Climate Downscaling Experiment (CORDEX Africa 0.44), and based on 327 

CMIP5. The data is available from 2021 to 2070 and downscaled to 0.22 km pixel size. All data 328 

were bias-corrected, set to standard calendar. Table 5 provides an overview of the GCM and RCM 329 

model combinations used to derive the data. For each variable the Representative Concentration 330 

Pathways (RCP) 4.5 and 8.5 was used for the analysis. 331 

 332 

Table 5. Details Meteo-Rwanda regional climate projections 333 

 334 

 335 

Coupling Rainfall Modelling with Climate Change Projections 336 

 337 

Using trained and calibrated GENOFIS, ANFIS and SVM models, the results for predicted rainfall 338 

were analysed for the two projected climate scenarios, RCP 4.5 and 8.5. To quantify the impact, 339 

the baseline scenario was used as a reference to obtain relative and/ or absolute changes directly. 340 

The results thus present the change in monthly average from the baseline period (1991 – 2023), to 341 

the future period (2040 – 2059). 2020 and 2050 are selected as representative years for both 342 

baseline, and future projections, respectively. 343 

 344 

Results and Discussion 345 

Our aim was to provide a more robust and accurate prediction for Kigali rainfall data.  The model 346 

calibration results against the observed rainfall records from 1991 to 2009 (obtained from the 347 

Variable GCM RCM 

Precipitation MPI REMO 2009 

Tasmax MOHC CCLM 4-8-17 

Tasmin ICHEC CCLM 4-8-17 



 

 

Rwanda Meteorological Agency) corresponding to 60% of all rainfall records for the GENOFIS, 348 

ANFIS, and SVM models are shown in Figure 5.  349 

Model parametric results for the three models are depicted in Table 6.  A relatively good agreement 350 

was found between the results of the GENOFIS model and observed rainfall data when compared 351 

to those of the ANFIS and SVM (Fig. 5).  The model and parametric results of the ANFIS and 352 

SVM performed with nearly the same prediction error during calibration (Fig. 2). 353 

 354 

 355 

Fig. 5: Model results of GENOFIS, ANFIS and SVM during training and calibration for the baseline  356 
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 357 

Fig. 6: Model results of GENOFIS, ANFIS and SVM during testing for the baseline 358 

The GENOFIS, ANFIS and SVM models were validated with observed rainfall data from 2010 359 

through 2023, corresponding to 40% of the rainfall records (Fig. 6).  Once again, the GENOFIS 360 

model outperformed the other models for fitting of rainfall variation.  361 

The calculated RMSE and CE values of GENOFIS, ANFIS and SVM models for calibration 362 

(training) and validation (testing) phases are presented in Table 6.  For the calibration phase, 363 

RMSE values of GENOFIS, ANFIS and SVM models were calculated as 2.3 x 10-4, 6.8 x 10-3, 364 

and 9.3 x 10-3, respectively. It can be seen that the GENOFIS has a smaller prediction error than 365 

ANFIS and SVM.  During the validation (testing) phase of the modeling, the RMSE values for the 366 

GENOFIS, ANFIS and SVM models were 1.9 x 10-4, 3.8 x 10-3, and, 7.3 x 10-3, respectively. 367 

Again, the RMSE of the GENOFIS model was less than those of ANFIS and SVM.   Table 6 shows 368 

the CE values of GENOFIS, ANFIS and SVM prediction results were 0.98, 0.93, and 0.95 for the 369 
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calibration (training) phase and, 0.96, 0.91 and 0.93 for the validation (testing) phase, respectively. 370 

According to Donigan and Love (2003) and Altunkaynak (2019), if the CE value is greater than 371 

0.85, the model performance good.  All models have reproduced the rainfall data variance, but it 372 

is clear the GENOFIS model outperformed the others.  373 

       Table 6: Parametric modeling results 374 

 

MODELS 

Calibration Validation 

   

ANFIS 

    

GENOFIS 

 

SVM 

   

ANFIS 

    

GENOFIS 

 

SVM 

Number of 

inputs 

1 1 1 1 1 1 

Processing time       586          936 N/A      476          742 N/A 

IF-THEN rules 9 3 N/A 5 3 N/A 

RMSE   6.84x10-3      2.33x10-4 9.33x10-3 3.77x10-3      1.93x10-4 7.33x10-3 

CE       0.93          0.98          0.95      0.91          0.98 0.95 

                              *RMSE is dimensionless and *Processing time is in seconds 375 

 376 

Figures 7 and 8 present the GENOFIS, ANFIS and SVM model values with the observed rainfall data 377 

during calibration and validation.   These results are plotted against the 1:1 line.  It is obvious the GENOFIS 378 

model prediction results followed the corresponding observed rainfall data more closely than those of the 379 

ANFIS and SVM models.   In summary, both the calculated values of diagnostic measures RMSE and CE 380 

show an increased accuracy when matching rainfall variation using the GENOFIS model when compared 381 

with ANFIS and SVM models, and therefore increases confidence is using these results as input to 382 

hydrologic models to manage urban flooding and sediment transport challenges. 383 

 384 

 385 



 

 

 386 

Fig. 7: 450 exact model (1:1) line for rainfall modeling results in calibration process for the baseline 387 

 388 

Fig. 8: 450 exact model (1:1) line for rainfall modeling results in validation phase for the baseline 389 

 390 



 

 

Predicted rainfall with GENOFIS was evaluated using RCP 4.5 and 8.5 models, and  Error! 391 

Reference source not found. shows the expected relative changes in average precipitation under 392 

both climate scenarios in all main catchments of the country.  Under RCP 4.5 the predicted 393 

precipitation trends are quite comparable across the nine catchments, precipitation is expected to 394 

remain relatively stable though a decrease by about -1.2% is expected (range between -4.2% 395 

decrease and 2.3% increase) taking 2050 year as the representative projection year.  Under RCP 396 

8.5, there is more variability expected in predicted precipitation changes. Looking at the national 397 

picture, the highest decreases in precipitation are expected for Lake Kivu catchment (CKIV, -398 

16.8%) and Upper Nyaborongo (NNYU, -10.7%) catchments. In contrast, the highest increases in 399 

precipitation are expected for Lower Akagera (NAKL, 5.1%) and Muvumba (NMUV, 3.7) 400 

catchments. On average, the Meteo-Rwanda regional climate projections foresee an average 401 

decrease in precipitation of about 5%. The NNYL which is Lower Nyabarongo within which the 402 

City of Kigali is located will display a stable climate by 2059 but is most likely going to be 403 

influenced by micro climate that could affect Northwest and Central region of the country, and the 404 

Upper Nyabarongo, where much of increased intensity of rainfall will be observed. 405 

 406 

 407 

Fig. 91. Monthly average precipitation for RCP 4.5 and RCP 8.5 for the period 2040 – 2059. 408 

 409 

 410 



 

 

CONCLUSIONS AND RECOMMENDATIONS 411 

The results of the enhanced GENOFIS prediction model using the incomplete rainfall data in the 412 

city of Kigali can now be used as a continuous input function for evaluation of hydrologic 413 

challenges such as flooding and sediment transport affecting key flood hotspots in the City of 414 

Kigali. Novel GENOFIS coupled with climate change projections with RCP 4.5 and 8.5 have 415 

revealed accurate prediction of the future rainfall trends, and this is a tangible tool that can be 416 

integrated in Climate Smart National Water Resources Management as the country and the region 417 

keep building a more climate change resilient environment. 418 
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