

PRAXIS OF URBAN MORFOLOGY

CONFERENCE PROCEEDINGS - PART II XXX CONFERENCE OF THE INTERNATIONAL SEMINAR ON URBAN FORM (ISUF2023) PRAXIS OF URBAN MORPHOLOGY

Belgrade 30thCONFERENCE

ISUF 2023: Praxis of Urban Morphology | 4th – 10th September 2023

ORGANIZED BY

University of Belgrade - Faculty of Architecture MorphoLab Research Unit, and

SNUM Serbian Network of Urban Morphology (SNUM)

EDITORS:

Vladan Djokić Aleksandra Djordjević Mladen Pešić Milica Milojević Aleksandra Milovanović

TITLE: ISUF 2023 PRAXIS OF URBAN MORPHOLOGY: Conference Proceedings Part II

PUBLISHER: University of Belgrade -Faculty of Architecture

FOR PUBLISHER: Vladimir Lojanica, Dean

DESIGN & LAYOUT: Aleksandra Đorđević, Mladen Pešić, Aleksandra Milovanović

PLACE AND YEAR OF ISSUE: BELGRADE

SUPPORTED BY

Република Србија министарство науке, технолошког развоја и иновација

Ministry of Science, Technological Development and Innovation (Serbia) COPIES 50

PRINT University of Belgrade - Faculty of Architecture

ISBN- 978-86-7924-342-3

CONTENTS

Willingness to Accept Densification and Urban Renewal Processes as a Function of Socio-	17
Economic Status: Results of VR Experiments	
Yulia Steenekamp, Dafna Fisher-Gewirtzman	
Developing the narrative: Urban renewal based on morphological research of the urban	28
form	
Martin Ebert	
A Review of "Garden Approach" in Historic Urban Landscape Enhancement in China: From	41
"Open Museum" to "Social Infrastructure"	
Dongqi Zhao, Laura Pezzetti	
A comparative study of public space forms inside and outside Beijing's Old City: taking the	53
area around Deshengmen as an example	
Kangfu Zhuo, Lanchun Bian	
Measuring the evolution of urban texture in historic districts: a quantitative urban	63
morphological approach	
Chengcheng Huang, Chengbi Duan, Yu Ye	
Decline or Growth? (Re) considering the Development Patterns of the Border Towns in the	75
Republic of North Macedonia	
Damjan Balkoski, Aleksandra Stupar	
Urbanpedia as an exploration to Identifying the common features of pedestrian-friendly	87
districts: A quantitative morphological approach	
Shanzhi Kang, Yongjie Cai, Yuxuan Liu, Yu Ye	
Spatial Morphology Analysis of Large Residential Communities in Shanghai: A Multi-Scale	99
Perspective	
Huaiqian JI, Yong He	
Wiener Straßendorf: a historical consideration of Vienna's pristine linear settlements	108
Susanne Tobisch, Daniel Löschenbrand, Angelika Psenner	
Assessment and evaluation of the sunlight quality of urban forms related to their	120
morphological characteristics	
Yuan Zhou, Wowo Ding	
Analysis of traditional village landscape wisdom and its humanistic connotation in the	135
perspective of "Three Realms"— A Case Study in Dangcheng village in northern Fujian	
Province	
Shuhu Liu, Zhichu Liang, Yongqi Peng	
Ecouter Le Feu – Understanding Wildfires	146
Peter Bosselmann, Catherine Rannou, Marc Dilet	
The Urban Morphology of Tiradentes / MG/ Brazil	152
Stael Alvarenga Pereira, Maria Cristina Teixeira, Gisela Barcellos De Souza, Maria Manoela	
Netto, Marina Salgado	
Green Spaces and Urban Fringe Belts: Exploring the Spatiotemporal Evolution of Urban Parks	162
in Terms of Urban Morphology, a case of Nanjing in China	
Zhe Liu, Shanghong Ai	
A Comparison of Consumer Services Clusters Between London and Beijing	173
Liang Yingya, Wu Mingbo, Wang Jili, Chen Yishan	
weasuring the unmeasurable: An evaluation method addressing urban texture harmony	187
Intelligently	

Changyu Chen, Xiaoyu Chen, Yu Ye

Evaluating and optimizing the functional composition of community centres: a data- informed approach assisting 15-minute community life circle	198
The urban form types of Athens as identified by an open data methodological framework:	210
Association to the validity and value of the results by expert focus group	210
Vannis Daraskevonoulos. Efthimios Bakogiannis	
Morphological insertion of parks into the urban fabric and walking behaviour of older adults	222
in Florianónolis	223
Vanessa Casarin, Fernanda Demarco, Eleonora D´Orsi	
A Case Study of Living-Spatial Pattern Evolution of Gaoguan House in Pudong from Land	236
Certificates	230
Shan Zhou	
Research on the Spontaneous Community Business Layout and Operation Condition: A Study	248
of Quvang New Village	
Chugiao Sun, Yong He	
Urban form and carbon emissions: an evaluation tool for computational urban design	258
Xiaoyu Chen, Changyu Chen, Xinghan Chen, Xinkai Zhang, Xing Shi, Jingkai Zhao, Yu Ye	
Assessing Green-Oriented Urban Development for Norman Creek Catchment, Brisbane,	269
Australia	
Nahal Khorrami, Kaan Özgün, Dorna Yousefzadeh Davani	
Evaluation of urban parks' layout based on big data and crowd behaviour simulation	281
Ziyu Tong, Sha Xu, Zhichao Yu	
Research on the Transformation Strategy of Historical and Cultural Districts Based on Sharing	291
Design	
_ Mengying Tang, Ming Yang	
Research on the Boundary Space of Urban Villages Based on Flexible Boundary Theory: A	303
Case Study in Shenzhen, China	
Keer Shangguan, Yong He	
The perception quality of pedestrian public space in TOD areas: Two case studies in Nanjing	313
Yanting Xu, Lian Tang	
Repairing the Organic System of Urban Villages from a Morphological Perspective: A Case	325
Study of Wang Village, Liyang	
Yan He, Zihe Deng	
The formation of the network of open public spaces in downtown Vitória, Brazil: from the	337
colonial morphogenesis to the 19th and 20th centuries modernist interventions.	
Michela Pegoretti, Eneida Mendonça	
Study on the morphological transformations of one historic area in Shenzhen, China	349
Kexin Che, Xiaoxi Li, Gang Yu	
Investigating the modification of Jansen's industrial zone in Ankara, Turkiye, through fringe-	361
beit analyses Durain Vilreen, Koss Desuanders, Nur Cašler	
Burgin Yilmaz, Kees Doevendans, Nur Çaglar	272
Chiestive Assessment Data	3/3
Vijelive Assessillelli Dala Vinting Gao, Weimin Zhuang	
A study on the quality of children's play space in community parks based on OLUNDY: Case	207
A study on the quality of children's play space in community parks based on QUINPT: Case studies from 12 community narks in Yangnu District Shanghai	307
Cognitive Method of the Mornhology and Narrativity of Chinese Historic Urban Space Based	400
on the Historical Laverings: Taking Naniing Mendong Area as an Fxamnle	400
Yiran Liu, Laura Anna Pezzetti	

/112
412
430
453
466
480
492
504
511
521
532
F 4 4
544
EEE
555
567
307
579
591
603
615

Urs Primas

Exploring fringe belt vitality: opportunities of the integrated development (the case of	638
Siberian Cities, Russia) Irina Kukina, Elena Logunova	
Learning Architecture as a Tool for Urban Regeneration. Formal analogies between Urban	651
Structure and School Spaces	051
Helen Khanamirvan Taura Anna Pezzetti	
Toward a Mornhogenetic Strategy for the Redevelopment of Rust-Belt Areas in Late-	663
Socialist Cities: Understanding Heterogeneous Urban Landscape in Zhengzhou. China	003
Tianvi Wang, Manfredo Manfredini	
Architectural and Ground Rewriting: Design for Corso Matteotti and Palazzo Mascheroni at	682
Meda	
Laura A. Pezzetti	
The reconstruction of Homs. Principles, criticalities and contradictions.	694
Giuseppe Francesco Rociola	
Open spaces in the old town of Barcelona. A morphological reading to the map of the city	707
by Miquel Garriga i Roca (1856-1862)	
Eulàlia M. Gómez-Escoda, Mikel Berra-Sandin	
Theoretical and practical perspectives on cultural heritage interpretation: Insights to the	719
historic urban form of Antakya	
Mert Nezih Rifaioğlu	
Morphological comebacks. The problems of implementation in historical territories.	728
Russian experience.	
Vitaly Stadnikov	
Delimiting Renewal Units: A regeneration method for the hybrid district of Suzhou Old	739
Town	
Yi Cheng, Pingping Dou	
Technological innovation in architecture for urban agriculture towards the ecological	752
transition: a critical assessment of European best practices	
Marta Mazurkiewicz, Nadia Bertolino, Carlo Berizzi	
The urban project as a tool for the critical reformulation of settlement phenomena. The	764
case of the Europark district in Antwerp	
Antonio Vito Riondino	
Port, Piazza, and Gardens: The Morphogenesis and Reconfiguration of the Thirteen Hong	777
area in Canton (1757-1856)	
Wenwen Xiu, Jiang Feng	706
Transitional Morphology of Historical Urban Fabric in Malacca	796
Tun Sneng Lee, Li Bao	047
Method and Practice of Sustainable Community Form Based on DSR Model: A Case Study	817
of Dayanggou Housing Project in Nanjing	
Alarighting Zitalig, Li Dau	021
from the Perspective of Vulnerable Groups Behaviours	031
Vinui Chen, Vuhang Kong, Vang Chen, Angi Wang	
Construction and application of Spatial density evaluation model for Metro station: A case	8/17
study of Tianiin Metro Line 3	047
He Menglin Yan lianwei Du Lintao	
Integrated urban morphological method as input for artificial morphogenesis	860
Éva Lovra. Zoltán Bereczki	-000
Settlement pattern and living culture: an across scale morphological analysis of traditional	871
villages in Guangdong Province. China	071
Yuxuan Liu, Xiaovu Lin, Yushan Xie, Jiavu Fan	
· · · · · · · · · · · · · · · · · · ·	

Townscape Management Practices Guided by Urban Morphology Theory: Reflections and	882
Yuerai Chen, Feng Song	
The Secularization and Cultural Understanding of Sacred Space: An Analysis of Historical	803
Irban Form and Culture Characteristics in China	893
Vilvang Chen, Feng Song	
Spatial and Cultural Reproduction of Locality in the Context of Globalization: The Case of	906
Sanlitun	900
livan Lee Prof Song Feng	
Toward a Smart Mobility Framework on Oxford Boad	919
H Livanur Sen Mazin Al-Saffar	515
The physical and economic transformation of historical towns on the waterfront – case	931
studies from Zheijang Province. China	551
Xin Fang Oi Dong Xiaoling Dai	
Women's Preference and Public Spaces Quality: A Case Study of Public Spaces in Hong	946
Kong	540
Tongvun Zhu	
The Complexities of Townscape Evolution: From Academic Cognition to Planning Practice	958
lunyuan Lu Feng Song	550
Measuring The Built Environment in High-density City Based On Holistic Health	970
Cui Minyu Zhuang Vu	570
View Protection by Methods of Zoning Ordinance and City Regulation	988
Flizaveta Elkina	500
Study on the evolution of urban mornhology and influencing factors of the Unit C2 in Pearl	1003
Bay start-un area Nansha Guangzhou	1003
Vining Ving Vingvi Ivu Vimin Sun	
Research on craft street form over the nast and at present: Taking Zhoucheng Tie-dve	1015
Street as an example	1013
Lin Zhang	
Urban Morphological Investigation of Traditional Streets and Residences in Nanhuaxi.	1032
Guangzhou	
Qingyin Liu, Haohao Xu	
Urban and Rural Spatial Evolution under Game Theory: A Case Study of Urban Villages in	1041
Guangzhou, China	
Zijie Zhou, Feng Song	
Material and Experiential Measures of the Giga Morphological Contexts. Linking Mega	1054
Compact settings to a Human Centred Design Framework	
Gerhard Bruyns, Hee Sun (Sunny) Choi, Daniel Elkin	
Morphological Crossovers. Spatial Compression, Typologies and Artificial Intelligence in the	1069
Assessment of Vertical Settings	
Sunny Choi, Gerhard Bruyns, Daniel Elkin	
Morphological 'Spatial' Clouds. Harnessing LIDAR Approaches as Measure in Volumetric	1081
and Spatial Complexity.	
Gerhard Bruyns, Daniel Elkin, Sunny Choi	
The "Underspaces" within the Contemporary City. A morphological investigation of	1092
neglected flyovers in London for assessing residual urban areas	
Alessandra Di Cerbo, Kayvan Karimi, Sepehr Zhand, Merve Okkali Alsavada	
Can the Covid19 experience provide an advanced model of city operation to battle climate	1105
change?	
Katerina Christoforaki	

Business model for real estate production: Brazilian experience for affordable housing	1116
Anna Paula Cunha	
The Plan, the Plot and the Mantlepiece; Recent Impacts of Plot Truncation on the High	1128
Street	
Derry O'Connell	
Research on Micro Renewal Strategy of Old Campus Public Space from the Perspective of	1135
Everyday Life—Take the South College of Hebei University of Technology as an Example	
Hongling Liu, Rongling Liu, Ping Shu	
Can Path Dependence Explain the Evolution of the Interaction Between Industrial Structure	1148
and Urban Morphology? - A Case Study of Changsha Ancient City, China	
Yunlai Dai, Yi Shi	
Temporal and spatial patterns of education-driven return migration and county	1161
urbanization: A case study of Shou County, Anhui Province, China	
Dan Wei, De Wang	
Hypertopia. Challenging cemeteries idea: historical urban outposts between preservation	1172
and transformation	
Giovangiuseppe Vannelli, Angela D'Agostino	
Fringe Belt Areas in the Process of Being a Capital City: The Case of Ankara	1183
İrem Duygu Tiryaki, Ayşe Sema Kubat	
Perceptive landscape from memories and individuals identities	1195
Danilo Gomes Resendes, Andréa H. Pfützenreuter	
Methods to measure walkability and sensations of security on urban spaces	1205
Isabelle C. Luís, Andréa H. Pfützenreuter	
Integrative - qualitative and quantitative - urban planning methodology, a application case	1213
from Brazil	
Renata Cavion, Andréa H. Pfützenreuter, Christiane W. Nogueira, Silvia Tglialenha, Simone B.	
Lopes	
Noise Pollution as a Discomforting Factor Within Urban Open Spaces	1221
Youssef ELAssaly, Sepehr Zhand, Mrs. Merve Alsavada, Kayvan Karimi	
Urban Densification and Sustainability in the Contemporary Latin American City. The Case	1234
of Córdoba	
Felice De Silva, Guadalupe Muñoz	
Biking nodes. Shaping public space and urban fabrics for cycling infrastructure in European	1246
metropolitan landscapes	
Peio Royo Zabala, Eulalia Gomez-Escoda, Maarten Gheysen	
Housing Rehabilitation in the Context of Comprehensive Urban Renewal Programmes: A	1257
Comparison of Barcelona and Paris	
Mar Esteve-Güell	
Taxonomy and Potential of the Underground Public Parking facilities in Barcelona	1272
Rosina Vinyes Ballbé, Carles Crosas Armengol, Joan Solà Font	
Ready-made architectural processes: re-signification of reality as a solution	1284
Tiago Ascensão	
Preservation along with Transformation in Esfahan Urban Development	1292
Omid Omrani, Carles Crosas Armengol, Julian Galindo González	
The Morphogenesis of the Dutch Landscape: The Narrative of Dutch Cities' Medieval Core	1304
Merve Okkali Alsavada, Kayvan Karimi, Kimon Krenz	
Repairing the old as old or new — Qingguo Alley Historical and Cultural District Renewal	1319
Jianjian Song, Yichen Zhu, Zhenyu Li	

Quantitative review and feature recognition of informal streets – A case study of Taiping	1328
Town, Hantu New District, Chengdu	
Aueying Zhao, Wengjie Su, Haniu Gan, Yuyi Yang, Wenyong Tan	1240
Does the street network matter for the liveness of historical districts ? – Case studies from	1340
Zhejiang, China	
Hongyi Li, He Zheng, Xiaoling Dai	
Spatial and temporal analysis of the morphological factors affecting street vitality in "sub-	1355
new residential area": A case study of Nanhu Community in Nanjing	
Zhao Xinyu, Prot. Bao Li	1200
Morphological cognition and renewal planning decision of traditional settlements from the	1369
perspective of spatial configuration	
Yacheng Song, Zhiyu Pang, Zhenao Song	4070
Evaluation of the 1960s and 2000s of council housing in the context of spatial integration:	1379
the case of Nottingham, United Kingdom	
Ozlem Kurtulus, Florian Wiedmann	
Research on the relationship between urban morphology and land use function in urban	1387
center based on knowledge graph and digital quantitative model: A case study of Nanjing,	
China	
Yue Cao, Junyan Yang, Beixiang Shi	
Outdoor tourism as redefinition of the urban fringe	1409
Luca Trabattoni, Margherita Capotorto, Gaia Nerea Ferlicher	
Spatial-Structural Morphological Typology and Interactions in the Renewal of Pan-	1421
Residential Architecture - Taking the Renewal of Nanjing Xiaoxihu Historical Neighborhood	
as an Example	
Bao Li, Zhao Yuchang	
The multi-layered correlation between historic urban landscape and building type: A case	1442
study of DIAOYUTAI historic area in Nanjing, China	
Zhiyu Pang	
Research on the correlation between spatial form, density, and urban vitality in the old	1456
town of Nanjing	
Yan Jian, Bao Li	
Analysis of Community Public Service Facility Configuration Characteristics in Resource-	1472
Based Mountainous Urban Areas under the Influence of Urban Morphology: A Case Study	
of Benxi City in Northeastern China	
Yue Cheng, Yong He	
Type and Distribution: A Study of Mixed-use Characteristics Based on Block Form in	1484
Nanjing Old City Area	
Yiwen Huang, Zheng Wang	
Redevelopment of abandoned areas. The case of the Agricultural Consortium in Peraga,	1500
Italy	
Enrico Pietrogrande, Alessandro Dalla Caneva	
Altered planning as a mean for urban complexity. The case of Eixample Master Plan in	1512
Barcelona	
Diego Saez-Ujaque, DInés Aquilué Junyent	
Hazards and urban systems: An operational taxonomy	1524
Inés Aquilué Junyent, Javier Ruiz Sánchez	
Beyond Markets: Envision for Transforming the Markets Network in Barcelona	1536
Yuming Hou	

Drosscapes and new urban metabolism. New strategies and tools for sustainable and resilient regeneration Francesco Crupi	1546
Projects clusters in affordable housing production in Brazil	1559
Anna Paula Cunha	
Between Elbrus and Ararat: transformations in the urban form of the Caucasian cities	1569
Pina (Giusi) Ciotoli, Marco Falsetti	
Urban typologies in Hanoi and impacts on street-level urban design, pollution and walking	1580
Thanh Phuong Ho, Mark Stevenson, Jason Thompson, Tuan Quoc Nguyen	
Impacts of Urban Morphology on Distribution of Quality Catering Function $$ A	1591
Quantitative Research on Michelin Restaurants in Beijing	
Qiang Sheng, Jingyi Yang	
The Search for Common Spatiotemporal Patterns through Listening to Urban Form	1602
Nehir Bera Biçer	
Evolution of Landmarks in the Centripetal Spatial schema of Traditional Chinese Cities: A	1612
Case Study of the Old Quarters of Tianjin and Xi'an	
Wei Jia, Lijun Wang	
Methodological approaches in Research on Urban form	1627
Arathy Gopal	
Mongrel/Džukela urbanism – Morphological schools and eclectic urban design fusions	1639
Todor Stojanovski, Ivor Samuels	
Urban morphology and space colonisation – Lifepods and morphological structure of off-	1650
world settlements	
Todor Stojanovski	
Morphology and Urban Identity of Contemporary Metropolises: the case of Perth, WA	1661
Francesco Mancini, Tanja Glusac	
The resilient community. A morphological interpretation	1674
Nicola Marzot	
The Ukrainian Sequence. Patterns for Internally Displaced People and Refugees	1685
Hans Joachim (Hajo) Neis	
A Taxonomy of Liminality: Exploring Open Infrastructure Spaces in Post-Socialist Belgrade	1696
Nikola Mitrović	

Exploring the relationship between interface types and street centrality in Nova Zabudova (Kyiv, Ukraine)

Alessandro Venerandi¹, Petro Kvartsianyi², Alejandra Lizama Henríquez³, Ioana-Anca Dochie⁴

 $^{\rm 1}$ Urban Design Studies Unit, Department of Architecture, University of Strathclyde, UK,

alessandro.venerandi@strath.ac.uk

² Institut Méditerranéen du Risque, de l'Environnement et du Développement Durable (IMREDD), Université Côte d'Azur, France, petro.kvartsianyi@etu.univ-cotedazur.fr

³ Institut Méditerranéen du Risque, de l'Environnement et du Développement Durable (IMREDD), Université Côte d'Azur, France, alejandra.lizama-henriquez@etu.unice.fr

⁴ Institut Méditerranéen du Risque, de l'Environnement et du Développement Durable (IMREDD), Université Côte d'Azur, France, ioana-anca.dochie@etu.unice.fr

ABSTRACT

The configuration of buildings' facades and, in particular, of facades located at the ground floor is fundamental for urban vibrancy and pedestrian activity at the street level. Equally important is the relationship between the configuration of such facades (e.g. transparency, opaqueness, blank) and street centrality. Suboptimal combinations (e.g. blank facades in streets with high levels of centrality and thus potential through-passage) may undermine urban vibrancy and liveliness. While there exist studies on the relationship between street centrality and density of commerce and services, systematic assessments of the relationship between the configuration of ground floors and street centrality are very limited. In this work, we propose a mixed method to, first, classify ground floor facades in types and, second, analyse the relationship between the ratios of such types and three metrics of street centrality (i.e. betweenness, closeness and straightness) through correlation analysis. This approach is applied to Nova Zabudova, a historical neighbourhood located in central Kyiv, Ukraine. More specifically, first, ground floor facades pertaining to each building are mapped according to the methodology; second, ratios of interface types and centrality metrics are computed for each street in the study area; third, relationships are assessed statistically through correlation test. Coefficients are overall weak suggesting a feeble correspondence between interface types and street centrality metrics in Nova Zabudova. However, a clear trend is visible: more active interface types correlate with all the street centrality metrics considered while inactive interface types are inversely correlated with them.

Keywords: ground floors, street centrality, correlation, Kyiv

INTRODUCTION

Buildings, together with the streets and sidewalks within which they are located, provide local identity and, at the same time, influence transportation, network development, social cohesion, commercial interactions and, ultimately, democracy (Gehl, 2013; Orhan, 2018; Hassan et al., 2019; United Nations, 2022). In this regard, the ensemble of a ground floor and its pertinence space (usually a footpath) are extremely important as they constitute the main area of exchange between people, buildings and the nearby space (Gehl et al., 2006; Gehl, 2013). In fact, it can be considered as a transitional zone

between architectural forms and the public space as they connect indoor and outdoor areas, where social and economic activities take place (Özyörük, 1995; Dovey and Wood, 2015). Related to this, Gehl (1987) and Gehl et al. (2006) describe ground floor facades as "soft", when a certain degree of transparency makes them social, permeable, active, or "hard", when they are blank or impermeable and less interactive for pedestrians. Other authors highlighted the importance of the design of ground floor facades for creating dynamic and liveable public spaces. For example, their design and configuration may enrich or not the public space, affecting the perception and experiences of pedestrians, as well as activities and interactions that can happen around them (Carmona, 2003; Joyce and Guaralda, 2013).

However, the material configuration of ground floors is only one side of the coin. Street centrality, an aspect of the street network's configuration, is the other side of it. Indeed, it has been identified as a significant driver of the capacity of urban areas to promote diversity and intensity of city uses and users over time, strengthening informal surveillance and community capacity. Studies on these topics date back to the end of the 20th century with the seminal work by Hillier (1996) (Space Syntax) and later developments (Multiple Centrality Assessment) by Porta et al. (2006). While showing some technical differences, both tools mainly rely on two metrics of street centrality: closeness (integration) and betweenness (choice). The former simultaneously quantifies the level of proximity and interconnectedness of street segments. The latter measures the level of potential movement through streets. While these metrics were found to be positively correlated with density of commerce and services at the ground floors in different cities (Porta et al. 2009; Porta et al. 2012), much less is known on the relationship between the configuration of ground floors and street centrality. Remali et al. (2015), to a certain extent, did investigate such a relationship. However, only one indicator (openness), capturing the level of transparency of ground floor facades, was accounted for.

Existing literature suggests that specific configurations of ground floor facades are associated with more pedestrian interactions, flow, and use. However, systematic studies assessing such a relationship are missing, except for the one study mentioned above which, however, only tested one specific aspect (i.e. transparency). The aim of this study is to systematically assess whether the configuration of ground floor facades (called interfaces from hereon) correspond to different levels of pedestrian activity. To do so, we propose a mixed qualitative/quantitative methodology that, first, defines a taxonomy based on 5 intuitive interface types (i.e. inactive, dull, in-between, friendly, and active) which simplifies a previous categorisation attempt (Dovey and Wood, 2015), affording better replicability. Second, it uses free software to map interface types in a study area. Third, it assesses the relationship between ratios of interface types at the street level and three metrics of street centrality (i.e. betweenness, closeness and straightness), through correlation analysis. The mixed methodology was tested on Nova Zabudova, a historical neighbourhood close to the city centre of Kyiv (Ukraine).

METHODOLOGY

A taxonomy of interface types

As previously mentioned, Dovey and Wood (2015) provided a categorisation of interfaces in Australian cities (Brisbane, Sydney and Melbourne) based on five primary types articulated in accordance with the criteria of transparency, access and setback: impermeable/blank, direct/opaque, direct/transparent, pedestrian setback, and car setback. This indeed provides a systematic way to categorise urban interfaces, however, accessibility and presence/absence of setbacks may not be that straightforward to assess. For example, facade recesses may be small at times (1 or 2m), making the classification dubious. Furthermore, the complexity of such a categorisation might hamper its

replicability in other contexts and use by people with different backgrounds and education levels. We thus propose a novel taxonomy of interface types which is inspired by the work mentioned above but that, at the same time, tries to bridge the gap between technical jargon and everyday language. By doing so, the proposed taxonomy aims to empower ordinary individuals to participate in discussions about their city and foster a broader dialogue about urban planning and design. We propose the following five interface types:

- Inactive interface (Figure 1, A): inactive interfaces are typically unresponsive to the surrounding urban context. They lack visual or physical interactions with the street and pedestrians. Buildings with inactive interfaces may have solid walls or barriers without any windows or doors. Inactive interfaces can create a sense of detachment and disconnection, leading to less vibrant and dynamic urban spaces.
- Dull interface (Figure 1, B): dull interfaces are characterised by lack of visual interest or architectural detailing. These interfaces may have windows and doors, however, often appear monotonous, repetitive or uninspiring. Dull interfaces can create a sense of monotony and may contribute to a less engaging urban environment.
- In-between interface (Figure 1, C): in-between interfaces are a balance between active and inactive interfaces. They may possess some visual interest and engage with the urban environment but not as vigorously as active and friendly interfaces. In-between interfaces can include a mix of window sizes and architectural elements while maintaining a reserved or restrained appearance.
- Friendly interface (Figure 1, D): friendly interfaces are designed to be visually appealing and welcoming to pedestrians, however, they tend not to be particularly transparent. These interfaces often incorporate elements that engage people and create a sense of human scale. They may feature varied textures, colours, materials, and architectural details like balconies, awnings or ornamentation. Friendly interfaces contribute to a positive urban experience and may encourage social interaction.
- Active interface (Figure 1, E): active interfaces are highly engaging for pedestrians. They create a strong connection between buildings and public space. They often have large windows, transparent or permeable surfaces and storefronts that allow to see from the outside to the inside and vice versa. They may incorporate public amenities such as seating areas, art or greenery. Active interfaces contribute to a vibrant street life and encourage pedestrian activity.

Data collection and processing

Data on interface types is collected through NextGIS (<u>https://nextgis.com</u>), i.e. an app that allows gathering different types of georeferenced geometries (e.g. points, lines and polygons) on top of a geolocalized background map, together with photos and comments. During field work, interfaces are mapped through lines representing portions of ground floors with stylistic continuity. When such a continuity is interrupted (for example, due to a changing facade composition), a new line representing the next interface is created. Further information, such as the photo of the interface and the label of the type, should also be added as attributes for later use. Then, the data is exported in GeoJSON format and imported in QGIS software (https://qgis.org/en/site/), where interface types are mapped by categorising the field with labels of interface types added during the field work.

(E) Active interface

Figure 1. (A) Inactive interface. Source: Google Street View. (B) Dull interface. Source: Google Street View. (C) Inbetween interface. Source: Petro Kvartsianyi. (D) Friendly interface. Source: blackfield.coffee. (E) Active interface. Source: coffee shop's Facebook page

Ratios of interface types and street centrality metrics

Since the centrality metrics are computed for street segments, interface types are aggregated for these spatial units by adding the lengths of each interface type on both sides of each street and dividing this value by the length of the street they face, ultimately resulting in a ratio. In terms of street centrality analysis, the first step consists in gathering the georeferenced street network for the case study under examination and a buffer area of 800m around it to avoid edge effects in the computation of the centrality metrics. Such data can nowadays be easily retrieved from multiple open sources, for example, Geofabrik (<u>http://download.geofabrik.de/</u>), or the data hub of official mapping agencies, for example, from the UK Ordnance Survey (<u>https://osdatahub.os.uk/downloads/open/OpenRoads</u>).

Once this data is obtained, the Multiple Centrality Assessment (MCA) (Porta et al., 2006) (<u>http://docs.momepy.org/en/stable/user_guide/graph/centrality.html</u>), a set of Python scripts that measure centrality in street networks, is applied to the street network of the case study under examination. More specifically, 3 centrality metrics are considered:

- *Betweenness*, which is based on the concept that a node (street intersection) is central if it lies on many of the shortest paths linking couple of nodes in a street network.
- *Closeness*, which quantifies to what degree a node is near to all the other nodes in a network along the shortest paths.
- *Straightness,* which is based on the concept that being central means to be more directly reachable by all other nodes in the street network.

Closeness centrality is computed for 3 different radii, i.e. 200m, 400m and 800m, corresponding to a submultiple (200m) and a multiple (800m) of the edge of the "sanctuary area" (400m), an urban sub-space usually made up of few blocks surrounded by main streets, typical of walkable urban fabrics (Mehaffy et al., 2010). Since this approach focuses on the relationship between interface types and street centrality in sub-spaces within a city, the radii used in the computation of closeness do not go beyond 800m, i.e. a measure widely adopted for the neighbourhood scale (e.g. in New Urbanist schemes).

Correlation analysis

Both ratios of interface types and centrality metrics tend to be skewed. For example, it is possible that a specific interface type is rare in a study area, thus only few streets will have a value while the remaining ones will be 0. Centrality metrics tend also to be skewed, especially betweenness centrality (Barthelemy, 2004; Jiang, 2009). For this reason, Spearman correlation (Corder and Foreman, 2014) is preferred to Pearson correlation since the former, by assessing a monotonic relationship based on ranks rather than continuous values, is better suited and more robust in case of skewed distributions. The outputs of the Spearman correlation test are a coefficient (r_s) varying between -1 (i.e. perfect negative relationship) and 1 (i.e. perfect positive relationship) and a p-value providing information on the statistical validity of the tested correlation.

ANALYSING INTERFACE TYPES IN NOVA ZABUDOVA

The case study

Nova Zabudova (Hoba 3aбудова), is a neighbourhood of Kyiv, Ukraine (Figure 2). It is situated in the central part of the city and holds significance in terms of history, urban development and socioeconomic composition. Nova Zabudova originated in the 1830s and 1840s when it was designated as a settlement area for residents displaced from the Pechersk neighbourhood due to the construction of the New Pechersk Fortress (Figure 3, bottom right). In the late 19th and early 20th centuries, Nova Zabudova witnessed notable urban expansion, both in terms of ordinary buildings, such as tenement blocks (Figure 3, top right), and special ones, such as the Saint Nicholas Roman Catholic Church (Figure 3, left). As a centrally located neighbourhood, it attracts diverse population, including residents from different social and economic backgrounds. The area has a mix of residential, commercial, and institutional spaces, contributing to a vibrant urban environment. Overall, Nova Zabudova stands as a historically significant neighbourhood that has undergone several development phases over time. Its location in the city centre and historical context makes it an intriguing area with cultural, architectural, and socioeconomic diversity.

Figure 2. Left map: Nova Zabudova and the city limits of Kyiv. Right map: zoom in Nova Zabudova and immediate surroundings. Source of basemap: Google Satellite

Figure 3. Left St. Nicholas Roman Catholic Church. Top right: Tenement block building. Bottom right: New Pechersk Fortress. Source: Wikipedia

Mapping interface types

The distribution of the interface types in Nova Zabudova reveals intriguing disparities. Remarkably, the proportion of active and friendly interfaces stands at a mere 5.54% and 5.58%, respectively, while percentages of in-between, inactive, and dull interface types are 9.96%, 31.47%, and 47.19%, respectively (Figure 4). This contrast emphasises the prevalent presence of dull interfaces throughout the neighbourhood, followed by inactive facades – a juxtaposition that seems somewhat incoherent for a central neighbourhood. However, upon a more meticulous analysis, the preponderance of dull interfaces becomes more comprehensible since a significant portion is located in secondary and tertiary streets mainly characterised by residential and/or institutional functions. Inactive interfaces

are notably prevalent along Korolensivska St, as well as on Fitzcultury St and Antonovycha St, particularly within the western sector of the neighbourhood. These streets are marked by an amalgamation of former industrial sites, underutilised land and construction sites. Furthermore, a concentration of inactive interfaces is evident in the eastern side of the Olympic Stadium and on some primary streets. In-between, friendly and active interfaces are evenly distributed throughout the neighbourhood. However, the latter two also distinctly cluster in the area of Velyka Vasylkivska St., i.e. a central hub of Kyiv, characterised by the intersection of two metro lines and several main landmarks, including the Pinchuk Art Center, the Basarabian Market, and the Sportyvna Square.

Figure 4. Interfaces of Nova Zabudova colour coded according to the 5 types considered in this study.

Street centrality analysis

The street network of Nova Zabudova and a buffer area of 800m is downloaded from Geofabrik and consists of 8,530 street segments, subdivided in 17 categories of streets (such as, primary, secondary, tertiary, cycleway, track). Since the MCA focuses on the configuration of the main structure of street networks, only key street categories (i.e. primary, secondary, service, tertiary, residential) are kept in the analysis, resulting in a dataset of 4,252 main street segments. The 5 centrality metrics presented

in the Methodology are computed for such data and displayed in Figure 5. The outputs of the computations of each centrality metric are discussed next.

Betweenness centrality

The study area is traversed by one main N-S axis (Velyka Vasylkivska St) with very high levels of betweenness centrality (Figure 5, top left). Secondary axes with medium to high levels of betweenness, connecting with Velyka Vasylkivska St, are located south (in E-W direction, Ivana Fedorova St and, in NE-SW direction, Vasylia Tiutiunnyka St) and north of the study area (in E-W direction, Lva Tolstoho St). Two further axes with medium to high levels of betweenness are located at the eastern and western edges of the study area (Lesi Ukrainky Blvd and Korolenkivska St, respectively). Nova Zabudova shows the configuration of traditional/bottom-up neighbourhoods (Strano et al., 2012) with a main backbone traversing its centre, several secondary streets connected to it and several less connected streets, mainly tertiary roads and cul-de-sac.

Straightness centrality

In terms of straightness centrality (Figure 5, top right), Nova Zabudova does not present high levels in its core but, mainly, N and S of it, at the interface with nearby neighbourhoods. Streets with medium to high levels of straightness centrality are Lva Tolstoho St in the north and Yevhena Konovaltsia St and Ivana Fedorova St in the south. This is likely because nearby neighbourhoods present more continuous grid layouts, typically characterised by 4 main parallel streets going roughly in N-S direction and several secondary streets crossing them at right angles. Conversely, the study area has only 2 main parallel streets due the presence of large infrastructures (e.g. the National Sports Complex "Olympiyskiy") and the slightly curved nature of the site.

Closeness centrality

The highest levels of closeness at 200m (Figure 5, middle left) correspond to local systems characterised by a main street and several access roads connecting to it (see, for example, Shota Rustaveli St and Pushkinska St) or by short and very well-connected streets within blocks (see, for example, the small-scale local street system around the Royal Tower). In terms of closeness at 400m (Figure 5, middle right), two main centralities emerge from the analysis: one is located around L'va Tolstoho Square where the street layout changes orientation, while a second one corresponds to a dense and well-connected street system located in the western side of the case study, where Zhylianska St crosses Volodymyrska St. At the neighbourhood scale (800m) (Figure 5, bottom left), such two centralities merge, creating a larger street system characterised by well-connected streets near each other, hinting at a potential neighbourhood core.

Figure 5. The five centrality metrics computed in Nova Zabudova (in grey) and surrounding buffer area. Red corresponds to the highest centrality. Blue corresponds to the lowest centrality.

Correlating ratios of interface types and street centrality

The Spearman correlation test is applied to all pairwise combinations of ratios of interface types and centrality metrics (Figure 6). Overall, the former tends to be weakly correlated with the latter (with

correlation coefficients varying between 0.09 and 0.3), indicating a feeble relationship between the configuration of ground floor facades in Nova Zabudova and the centrality metrics. In terms of ratios of active facades, these are positively correlated with all the tested centrality metrics and, in particular, with closeness at 800m (r_s =0.3), hinting at a suitable placement of such facades in the neighbourhood core. Active facades are also correlated, although to a lesser degree, to streets with more straightness centrality (r_s=0.2), corresponding to rectilinearly better-connected places. Finally, a very weak relationship is observed with betweenness centrality ($r_s=0.1$), indicating that the active facades of Nova Zabudova might not benefit as much from the potential pedestrian throughmovement generated within the neighbourhood. In terms of ratios of dull facades, we observe a positive relationship (with r_s varying between 0.1 and 0.2) with all centrality metrics except betweenness centrality (no correlation), suggesting a dubious positioning of such interfaces in the neighbourhood. Friendly facades show positive correlations, although weaker than those observed for active facades (with r_s varying between 0.09 and 0.2), with most of the centrality metrics, except closeness at 200m (no correlation). In-between facades are positively associated with three out of five centrality metrics (straightness, closeness at 800m and betweenness), with r_s varying between 0.1 and 0.2. Finally, in terms of inactive facade, we observe inverse correlations (r_s =-0.2) with all closeness centrality metrics and no correlation with straightness and betweenness, indicating that this interface type tends to be located outside local cores and, at the same time, does not show a relationship with central streets in terms of connectivity through Euclidean paths and potential through passage.

Figure 6. Correlation analysis between ratios of interface types and street centrality metrics. Red corresponds to the strongest correlation. Blue corresponds to the weakest correlation. Blank squares represent non statistically valid correlations (p-value>0.05). The black outline highlights the main results of this study.

DISCUSSION

The correlations found in this study are overall aligned with previous qualitative theories suggesting that more active ground floor facades are associated with more pedestrian activity (Gehl et al., 2006; Gehl, 2013). This is evidenced by the correlations found for the "extreme" interface types (active and inactive). More nuanced behaviours were instead observed for friendly and in-between interfaces. This is likely because such types mix characteristics of both active and inactive facades and are thus located both on central and less central streets. Conversely, the result for dull facades was counterintuitive since they were found to correlate with all centrality metrics except betweenness, suggesting a non-optimal placement of such interfaces in the neighbourhood under examination.

The overall weak results may indicate either that previous theories are imprecise (active interfaces, pedestrian activity and street centrality go hand in hand but the landscape of ground floor facades is much more varied/heterogeneous than assumed) or the case study under examination has some design fallacies (wrong interface types are placed in streets with a high potential of through passage). Replicating the methodology proposed in this paper in different geographic contexts, eventually at the city scale, may help to address this conundrum. Nonetheless, the results of this study can still inform the decision-making process in case the interfaces and streets of Nova Zabudova will be subject to redesign.

While the taxonomy of interface types was simplified to make it more accessible and replicable, it still relies on personal observations, which are subject to potential biases. A plausible way to address this issue would be to i.) have several people mapping the interfaces of a study area separately (not to be affected by predominant opinions); ii.) bring them together to discuss the mapping exercise guided by a facilitator (who will make sure that everyone has his/her say) and iii.) propose a final mapping for the case study under examination.

Future work might investigate scaling up the methodology proposed in this paper through machine learning techniques. More specifically, a machine learning model can be, first, trained on street view pictures with manually categorised interface types and, second, used to predict types in streets where no data is present. If the model proves to perform well, the proposed methodology can be scaled up at the city level, regional level and beyond.

CONCLUSIONS

This work enables the systemic investigation of an understudied topic in urban planning, that of the relationship between interface types and potential pedestrian activity computed through metrics of street centrality. While previous works assumed a relationship between active/transparent ground floor facades and more pedestrian activity (Gehl et al., 2006, Gehl, 2013), such an assumption has hardly been tested quantitatively. In this work, we proposed a mixed methodology consisting of an intuitive taxonomy based on 5 interface types and correlation analysis to investigate the relationship between ratios of interface types in each street and centrality metrics. The application of the methodology to Nova Zabudova, a central neighbourhood of Kyiv, outputs overall weak correlations indicating a feeble correspondence between interface types and centrality metrics. This, in turn, might be a signal of possible fallacies in the design of the ground floor facades of the neighbourhood. Nonetheless, there are several statistically valid correlations which are aligned with the results of previous studies in the urban design domain. More specifically, active interfaces are the most positively correlated ones. Dull interfaces, by being positively correlated with most centrality metrics, show a counterintuitive behaviour as one would expect them to be in less central places. The

methodology and results presented in this work can inform the debate on how to improve existing places or design new ones that support pedestrian activity through the correspondence between specific interface types and street centrality levels.

ACKNOWLEDGEMENTS

This work was supported by the Axel and Margaret Ax:son Johnson Foundation as part of "The Urban Form Resilience Project" at the University of Strathclyde.

REFERENCES

- Barthelemy, M. (2004) Betweenness centrality in large complex networks. *The European physical journal B* 38(2): 163-168.
- Carmona, M.; Heath, T.; Oc, T.; Tiesdell, S. (2003) *Public Places Urban Spaces: The Dimensions of Urban Design*. Boston, MA: Architectural Press.
- Corder, G. W., and Foreman, D. I. (2014). *Nonparametric statistics: A step-by-step approach*. Hoboken, NJ: John Wiley & Sons.
- Dovey K. and S. Wood (2015) Public/private urban interfaces: type, adaptation, assemblage. *Journal of Urbanism: International Research on Placemaking and Urban Sustainability* 8(1): 1–16.
- Gehl, J. (1987) Life Between Buildings. New York, NY: Van Nostrand Reinhold.
- Gehl, J., L. Johansen, and S. Reigstad (2006) Close Encounters with Buildings. *Urban Design International* 11: 29–47.
- Gehl, J. (2013) Cities for People. Washington, DC: Island Press.
- Hassan, D., Moustafa, Y. and El-Fiki, S (2019) Ground-floor façade design and staying activity patterns on the sidewalk: A case study in the Korba area of Heliopolis, Cairo, Egypt. *Ain Shams Engineering Journal* 10(3): 453-461.
- Hillier, B. (1996) *Space is the machine: A configurational theory of architecture*. Cambridge: Cambridge University Press.
- Jiang, B. (2009) Street hierarchies: a minority of streets account for a majority of traffic flow. *International Journal of Geographical Information Science* 23(8): 1033-1048.
- Joyce, T. and M. Guaralda (2013) Life on the edge: the effects of building façade three dimensionality on public social behavior. *In_Bo: ricerche e progetti per il territorio, la citta e l'architettura* 4(1): 158-173.
- Mehaffy, M., Porta, S., Rofe, Y., and Salingaros, N. (2010) Urban nuclei and the geometry of streets: The 'emergent neighborhoods' model. *Urban Design International* 15: 22-46.
- Orhan, M. (2018) The Impacts of the building and street interface relationship on urban space quality. In book: 4th International Conference on New Trends in Architecture and Interior Design Proceedings Book (pp.187-191).
- Özyörük, İ. (1995) The Interface of Architectural Built Form and Urban Outdoor Space. Master thesis. Graduate School of Natural and Applied Sciences. METU, Ankara.
- Porta, S., P. Crucitti and V. Latora (2006) The network analysis of urban streets: A primal approach. *Environment* and Planning B: Planning and Design 33(5): 705–25.
- Porta, S., V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato, V. Iacoviello and r. Messora (2009) Street centrality and densities of retail and services in Bologna, Italy. *Environment and Planning B: Planning and Design* 36(3): 450–65.

- Porta, S., V. Latora, F. Wang, S. Rueda, E. Strano, S. Scellato, A. Cardillo, E. Belli, F. Cardenas and B. Cormenzana. 2012. Street centrality and the location of economic activities in Barcelona. *Urban Studies* 49 (7): 1471–88.
- Remali, A. M., Porta, S., Romice, O., Abudib, H., and Vaughan, L. (2015). Street quality, street life, street centrality. *Suburban urbanities: Suburbs and the life of the high street*, 104-129.
- Strano, E., Nicosia, V., Latora, V., Porta, S., and Barthélemy, M. (2012). Elementary processes governing the evolution of road networks. *Scientific reports* 2(1): 296.

United Nations (2022) The Sustainable Development Goals Report 2022. New York, NY: UN DESA.

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

711.4.01(082)(0.034.2) 711.4:005.591.6(082)(0.034.2)

INTERNATIONAL seminar on urban form. Conference (30; 2023; Beograd) Praxis of urban morphology [Elektronski izvor] : conference proceedings.
Part 2 / XXX conference of the International seminar on urban form (ISUF2023), 4th-10th September 2023.; [editors Vladan Djokić ... [et al.]]. -Belgrade : University of Belgrade, Faculty of Architecture, 2024 ([Belgrade] : University of Belgrade, Faculty of Architecture). - 1 USB fleš memorija : ilustr.; 6 x 2 x 1 cm

Sistemski zahtevi: Nisu navedeni. - Nasl. sa naslovne strane dokumenta. -Tiraž 50. - Napomene i bibliografske reference uz tekst. - Bibliografija uz svaki rad.

ISBN 978-86-7924-342-3

а) Урбанистичко планирање -- Зборници б) Градови --Мултидисциплинарни приступ -- Зборници

COBISS.SR-ID 136864521

Belgrade 2023