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Abstract
The total evaporation rate due to a volatile capillarity-dominated droplet diffusively
evaporating into the surrounding gas is a critically important quantity in industrial
and engineering applications such as Q/OLED screen manufacturing. However, the
analytical expression in terms of integrals in toroidal coordinates can be unwieldy in
applications, as well as expensive to compute. Therefore, simple yet highly accurate
approximate solutions are frequently used in practical settings. Herein we present
a new approximate form that is both accurate and fast to compute, but also retains
the correct asymptotic behaviour in the key physical regimes, namely hydrophilic
and superhydrophobic substrates, and a hemispherical droplet. We illustrate this by
comparison to several previous approximations and, in particular, illustrate its use in
calculating droplet lifetimes, as well as approximating the local evaporative flux.
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1 Introduction

In this short note, we consider the problem of a droplet of volatile fluid that evaporates
into the surrounding vapour. The liquid has density ρ̃ and vapour–liquid surface tension
coefficient γ̃ , where both are taken to be constant. The droplet is assumed to be
axisymmetric, with contact radius and contact angle given by R̃ and θc, respectively.
The droplet is assumed to be sufficiently small that the effects of gravity are negligible
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compared to capillarity, so that the Bond number Bo = ρ̃ g̃ R̃2/γ̃ � 1, where g is the
magnitude of acceleration due to gravity.

We assume that the droplet is evaporating in the diffusion-limited regime [1, 2], and
that the droplet is sufficiently small that the effects of convection in the atmosphere
may be neglected. Typically, this restricts us to sub-millimetric droplets, although
there is some variation depending on the liquid and vapour properties (see [3–5] for
a fuller discussion). Moreover, we shall assume that the timescale for the droplet to
fully evaporate is sufficiently slow compared to the rate at which vapour diffuses away
from the interface that we may model the evaporative process as quasi-steady: these
conditions aremetwidely formany different liquid, vapour and substrate combinations
(see, for example, [1, 2] for a discussion). In particular, this assumption combined with
the dominance of capillarity in the droplet leads to the droplet taking the form of a
spherical cap throughout the evaporative process [6, 7].

For a spherical cap droplet with radius R̃ resting on a flat substrate, wework relative
to cylindrical polar coordinates (r̃ , ψ, z̃), where the substrate is located at z̃ = 0 so
that r̃ = 0 is the axis of the droplet. In this coordinate system, the droplet interface
lies at z̃ = h̃, where [8]

h̃ = −R̃ cos θc −
√
R̃2 − r̃2, where R̃ = R̃ cosec θc. (1)

The local evaporative flux J̃ is given by Fick’s law as J̃ = −D̃n · ∇ c̃, where n is
the unit outward normal to the interface, D̃ is the diffusion coefficient, and c̃ is the
vapour partial density in the atmosphere, which satisfies Laplace’s equation, subject to
c̃ = c̃sat on the droplet interface, where c̃sat is the saturation concentration, ∂ c̃/∂ z̃ = 0
on the substrate, and c̃ → c̃∞ in the far field, where c∞ is the ambient concentration.
The focus of the present note is the integral flux F̃ from the surface of the droplet,
defined by

F̃ =
∫∫

�

J̃ dS, (2)

where � is the liquid free surface. Following [8], the system is non-dimensionalised
according to

x̃ = R̃0x, R̃ = R̃0R, c̃ = c̃∞ + (c̃sat − c̃∞)c, J̃ = D̃(c̃sat − c̃∞)

R̃0
J , (3)

F̃ = D̃(c̃sat − c̃∞)R̃0F, t̃ = ρ

2D̃(c̃sat − c̃∞)

(
3Ṽ0
2π

)2/3

t, (4)

where t̃ denotes time, x denotes the usual spatial position, and R̃0 and Ṽ0 are the values
of R̃ and the volume at the initial time t̃ = 0.

The integral flux is a quantity of some importance. It dictates droplet lifetimes
[9] which can be crucial in everything from vapour phase deposition control [10] to
COVID risk [11], and is a necessary precursor to predicting other phenomena such as
multi-droplet interactions [12, 13].
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However, while the result for a flat droplet (θc ∼ 0) has been known since at
least [14] (F = 4R), the result for spherical cap droplets (the default shape for small
droplets where capillarity dominates) was not established until the works of [15], [7]
and [1], who find that the integral flux is given by

F

R
= π

[
tan

θc

2
+ 8

∫ ∞

0

cosh2 θcτ

sinh 2πτ
tanh((π − θc)τ ) dτ

]
. (5)

However, (5) relies on having access to a quick, accurate and reliable numerical
integration package for practical implementation. Unfortunately, a commercial soft-
ware license is not always readily available, and moreover, depending on the target
use case, even then the calculation may be too slow for practical purposes. For exam-
ple, modern ultra-high definition screens are manufactured using a printing process
involving O(108) pixels [16]. At this scale, speed of computation is crucial.

As a result, a variety of approximations have come to be used in engineering and
practical applications. Picknett & Bexon [17] suggested

Fpick =
{
Fp,thin, 0 ≤ θc < 0.175,

Fp,thick, 0.175 ≤ θc ≤ π,
(6)

R−1Fp,thin = cosec θc

(
4θc + 0.60262θ2c − 0.386039θ3c

)
, (7)

R−1Fp,thick = cosec θc (0.000562785 + 3.97914θc

+ 0.728849θ2c − 0.557821θ3c + 0.0649053θ4c
)

, (8)

based on polynomial fitting to exact values of F (determined from an infinite series
alternative to (5)). Bourges & Shanahan [18] used a simplified model of a droplet of
spherical cap shape as in fact being a sphere to determine the approximation

R−1Fbour = −2π
cot θc

log(1 − cos θc)
, (9)

while Hu & Larson [7] use a fitting to FEM calculations to yield

R−1Fhula = π(1.30 + 0.27θ2c ). (10)

Hu et al. [19] employed a model approximating a droplet of arbitrary contact angle as
an equivalent droplet with the same surface area but contact angle θc = π/2 to yield
the estimate

R−1Fhuwu = 2π√
1 + cos θc

. (11)
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Fig. 1 The relative error in the integral flux compared to the exact solution (5) for Fp,thin and Fp,thick (8)
(7) (thick, solid curves), Fbour (9) (dotted curve), Fhula (10) (thick, dashed curve), Fhuwu (11) (dash-dotted
curve), Fbhar (12) (thin curve) and Flest (13) (thin dashed curve)

Bhardwaj [20] gave an approximation based again on matching to FEM, but using a
more sophisticated ansatz, resulting in the formula

R−1Fbhar = tan
θc

2

(
4.28 + 6.11 exp

[
−0.45θ2c

])
. (12)

Finally, Lebedev-Stepanov & Savenko [21] recently suggested the approximate form,

R−1Flest = 2π log 2

cos(θc/2)
. (13)

These are compared with the exact solution (5) in Fig. 1. Note that they all suffer
substantial deviations (> 1%) in large portions of the domain, or deviate sub-
stantially at important points, where the asymptotic behaviour is well known (e.g.
θc = 0+, π/2, π−).

We give here a brief note resolving these issues for a variety of use cases. In Sect. 2,
we discuss the asymptotic properties of the exact solution in three key scenarios and,
in particular, illustrate the deficiencies of previous estimates in the thin-droplet limit,
θc → 0+. We construct our new approximation in Sect. 3 and compare it to existing
models in Sect. 4. We then illustrate its effectiveness in the particular application of
evaluating droplet lifetimes in Sect. 5.1, and for approximating the local flux in Sect.
5.2. We conclude with a summary and discussion in Sect. 6. Finally, we note that,
except in Sect. 5.1, we take R ≡ 1.

2 Asymptotic properties of the integral flux

In this section,we consider three particular contact angles that are important in applica-
tions, namely a droplet on a superhydrophobic substrate (θc → π−), a hemispherical
droplet (θc → π/2) and a droplet on a hydrophilic substrate (θc → 0+). Note that
the final case may also be viewed as the thin-droplet limit frequently used in studies
of topics such as particle deposition and the coffee ring effect in evaporating droplets
(see, for example, [22] for a discussion of the thin-droplet limit).
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Performing an asymptotic expansion of (5) in the superhydrophobic limit, we find
that the integral flux has the asymptotic expansion

F = 4π log 2

π − θc
+ O(π − θc) (14)

as π − θc → 0+.
Similarly, when the contact angle is close to π/2, the expansion for the integral flux

satisfies

F = 2π + π(θc − π/2) + O((θc − π/2)2) (15)

as θc − π/2 → 0.
Finally, we turn to the hydrophilic limit. In particular, expanding in θc inside the

integral in (5) and integrating term-by-term suggests the expansion

F = 4π

θc
log

(
π

π − θc

)
+

∞∑
j=1

L(2 j)
∞∑

i=2 j

(−i)2 j−1

(
θc

π

)i

(16)

as θc → 0+, where (·)α denotes the falling factorial;

L( j) = (−1) j/2(2 j−1 − 1)25−2 j ζ( j)2

π j
; (17)

and ζ( j) is the zeta function. The inner sum in (16) is

∞∑
i=2 j

(−i)2 j−1

(
θc

π

)i

= π
(
π−2 j (π − θc)

2 j − 1
)

(π − θc)
−2 jθ

2 j−1
c �(2 j)

(18)

as θc → 0+, where �(α) is the Gamma function. Hence, for practical computational
purposes, an approximation of the integral flux is given by truncating the series as

F = 4π
θc

log
(

π
π−θc

)
+ ∑N

j=1(−1) j (22 j−1 − 1)25−4 j ζ(2 j)2

π2 j−1

× (
(1 − θc/π)2 j − 1

)
(π − θc)

−2 jθ
2 j−1
c �(2 j) (19)

as θc → 0+. In particular, we note that

F = 4 + 2
π
θc +

(
1
9 + 4

3π2

)
θ2c +

(
1
π3 + 1

6π

)
θ3c

+
(
− 7

2700 + 4
5π4 + 2

9π2

)
θ4c + O

(
θ5c

)
(20)

as θc → 0+, which, at leading order, recovers the expected Weber result for a flat disk
[14].
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Fig. 2 Logarithmic relative error
of different approximations to
the exact solution (5). The two
best previous approximations for
thin droplets are displayed,
namely Fp,thin (7) (dashed
curve) and Fhula (10) (dotted
curve) alongside the first few
truncations N = 0, 1, 2, 3 (solid
curves) of the exact asymptotic
solution as θc → 0+. The arrow
indicates direction of increasing
N

As two representative approximations from the literature, Fp,thin (7) and Fhula (10)
are compared against appropriate truncations of (19) in Fig. 2 (note that other approx-
imations discussed previously perform substantially worse in this hydrophilic limit).
We see clear evidence that the previous approximations perform poorly as θc → 0+,
with relatively few terms of the truncated asymptotic series needed to outperform both
for even moderately large values of θc.

3 Derivation of a new approximation to (5)

Despite good performance near θc = 0, (19) can converge quite poorly for larger
values of θc. This can be remedied in part via the use of Padé approximants, three
representative examples of which are

F1,1 = 72π − 4
(
3 + π2

)
θc

18π − (
12 + π2

)
θc

≈ 4 − 0.910338θc
1 − 0.38674θc

, (21)

F2,2 ≈ 4 − 1.32178θc + 0.155932θ2c
1 − 0.4896θc + 0.0553538θ2c

, (22)

F3,3 ≈ 4 − 1.87553θc + 0.347231θ2c − 0.0234791θ3c
1 − 0.628038θc + 0.125212θ2c − 0.00846695θ3c

. (23)

We examine the behaviour of these approximants compared to the models (7)–(13)
in Fig. 3. Despite the poor behaviour of the naïve expansion at θc = π−—which we
discuss further presently—the Padé approximants perform significantly better over a
wide range of θc. Indeed, they outperform almost all approximations until close to
θc = π−.

In order to remedy the behaviour at θc = π− by preserving the correct singular
behaviour, we posit an ansatz for the integral flux based on two-point Padé approxi-
mants of the form

123



A novel asymptotically consistent approximation... Page 7 of 14     4 

Fig. 3 Logarithmic relative error of different approximations to the exact solution (5). Black curves are
existing approximations from the literature in the same line styles as in Fig. 1, while the red curves are the
three Padé approximants discussed in Sect. 3, with the arrow indicating the direction of increasing order of
approximation

Fa = a0 + a1θc + a2θ2c
(π − θc)(1 + b1θc + b2θ2c )

. (24)

The five constants are fixed by imposing the leading-order behaviour at θc = 0+, π/2
and π−, and the first-order behaviour at θc = 0+ and θc = π−. This yields

Fa = 2π

(π − θc)

[−2
(
π + (4 + π) log2(2) − π log(8)

)
θ2c +

π(4 − 5 log 2)(π − 4 log 2)θc + 2π2(π − 4 log 2)(log 2 − 1)
]

[
π2(π − 4 log 2)(log 2 − 1)+

π(3 − 4 log 2)(π − 4 log 2)θc/2 + (−4 + π − 4 log2 2 + log(16)
)
θ2c

]

(25)

≈ 4π

π − θc
· 1 − 0.2771 θc + 0.0358 θ2c

1 − 0.1180 θc + 0.00683 θ2c
. (26)

Forms of these suited for import into Mathematica are given in Appendix A. Both
(25) and (26) are in absolute error compared to the exact solution (5) by � 0.05%
across the entire range of contact angles, while also retaining the desired asymptotic
properties at θc = 0+,π/2 andπ−. These approximations are compared to the existing
models discussed in Sect. 1 in Fig. 4.

The approximation (25) generally gives substantially better agreement with the
exact answer, other than at isolated values of θc, where (6) is superior. Indeed, despite
somewhat awkwardly being composed of two functions for different ranges of θc, the
approximations of [17] hold up very well, with the only substantial differences in the
superhydrophobic limit, θc = π− and in the gradient F ′(θc) in the hydrophilic limit,
θc = 0+.

4 Performance in key asymptotic limits

The asymptotic behaviour of solutions in certain limits is of significant theoretical and
practical interest. In particular, even seemingly small quantitative errors can prove
critical in limits, where the flux becomes large (e.g. θc → π−) and the resultant abso-
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Fig. 4 Logarithmic relative error of different approximations to the exact solution (5). Black curves are
existing approximations from the literature in the same line styles as in Fig. 1,while the red curve corresponds
to the approximation (25)

Table 1 A comparison of the asymptotic behaviours of the various models at key contact angles: the
hydrophilic limit θc = 0+, the hemispherical droplet θc = π/2 and the superhydrophobic limit θc = π−

Dark shading corresponds to exact agreement with the true asymptotic value, while light shading indicates
numerical agreement to within 1%

lute error can be substantial. Qualitative errors, such as incorrect scaling behaviours in
relevant limits, can mean that models are inappropriate even in the coarsest approxi-
mations. We therefore explore the accuracy of all the approximate solutions discussed
herein in more detail in Table 1. In particular, we compare the leading- and first-order
behaviours at θc = 0, π/2 and π to the exact value. Dark shaded boxes correspond to
exact agreement, while light shaded boxes correspond to numerical agreement within
1%.

In general, the models that exhibit the strongest agreement numerically across the
full range (see, for example, themodel of [17] Fpick (6)) exhibit theweakest asymptotic
properties, and vice versa (see, for example, the model of [21] Flest (13)). The model
(25) exhibits exact agreement in all limits except first-order behaviour at θc = π/2;
even in this latter case, the error is within 1%. Thus, there is a strong indication that its
use may be acceptable even in asymptotic calculations for θc ≈ π/2, where accuracy
may be critical.
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5 Applications

While there aremultiple applications of the integral flux and, thus, the new approxima-
tion (25), we illustrate its accuracy and asymptotic veracity for two particular example
applications. The first is an example that has practical considerations, but for which
calculation using the exact solution (5) is somewhat cumbersome, namely calculation
of droplet lifetimes in Sect.5.1, and the second is the calculation of the local flux J in
Sect.5.2.

5.1 Application to droplet lifetimes

We aim to reproduce the droplet lifetime results of [9] without using numerical quadra-
ture. These results give the extinction time of an evaporating droplet in three critical
regimes: a constant contact radius droplet (CR), corresponding to a pinned contact
line; a constant contact angle droplet (CA), corresponding to a sliding contact line;
and a combination stick–slip droplet (SS), where the current mode depends on the
current contact angle and the value of the receding contact angle. We introduce the
notation θ0 to denote the initial contact angle, and θ∗ to denote the angle at which the
droplet switches from CR to CA behaviour when evaporating in the SS mode. The
stick–slip mode is particularly cumbersome using the exact solution (5), but becomes
a triviality with the new approximation (25).

To this end, we define the function

g(θc) = (1 + cos θc)
2F(θc)

πR
(27)

so as to coincide with that defined in Eq. (2.2) of [9]. With (25) available this is of
course simple to write down. However, the integrals to be computed are analytically
challenging due to the mix of rational and trigonometric functions. We therefore use
a simple rational polynomial approximation

(1 + cos θc)
2 ≈ 0.0410637+0.0355073θc+0.00719019θ2c

1−0.408889θc+0.184809θ2c −0.0390888θ3c +0.00580674θ4c

×(π − θc)
4, (28)

which is accurate up to a relative absolute error of approximately 0.004%.The integrals
then become analytically tractable.

Following the notation above, the droplet lifetimes ti in the three modes i =
CR,CA,SS are given by [9]

tCR =
(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3 ∫ θ0

0

2 dθ

g(θ)
, (29)

tC A =
(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3
sin θ0(2 + cos θ0)

g(θ0)
, (30)
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Fig. 5 An illustration of the accuracy and utility of our approximation (25), where we recreate figure 3 of
[9]. The lifetime of a droplet evaporating in the SS mode, tSS is plotted as a function of the initial contact
angle θ0 for θ∗ ∈ {π/64, π/16, π/8, 3π/16, π/4, 5π/16, 3π/8, 7π/17, π/2} together with the CA and
CR lifetimes tCA and tCR plotted as the thick dashed and solid lines, respectively

tSS =
(

2(1 + cos θ0)
2

sin θ0(2 + cos θ0)

)2/3 [∫ θ0

θ∗
2 dθ

g(θ)
+ sin θ∗(2 + cos θ∗)

g(θ∗)

]
, (31)

where the integrals may be computed explicitly using the forms (25) and (28) in (27).
The results, as shown in Fig. 5, are indistinguishable from those shown in [9] but have
required no numerical quadrature at any stage.

In addition to the computational advantages, the approximation (25) has distinct
advantages over the existing approximations in the literature introduced in Sect. 1.
Indeed, while some suffer from a lack of accuracy, with some at best in error by a
few percent (e.g. [21]), others suffer from having incorrect asymptotic properties in
particular limits, withworst-case scenarios leading to non-integrable singularities (e.g.
[20]).

We note that the next best accuracy for lifetimes is given by (8) [17], the results of
which are indistinguishable from those given in Fig. 5. This is perhaps surprising given
the divergence of the integral flux in the small contact angle limit, where Fp,thick ∼
θ−1
c . However, in this approximation, the convergence of the droplet lifetimes to zero
as θc → 0+ is so rapid that this divergence is obscured in a lifetime plot.

5.2 Application to approximate local flux

An additional application of (25) is to determine a suitable approximate form for the
local flux J (r). In particular, the well-known form of the singularity at the contact line
[6] suggests a flux of the form

J (r) ∝ (1 − r2)−
π−2θc
2π−2θc . (32)
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Fig. 6 A comparison of the local flux J as predicted by the exact solution (solid line), J1 ((34), dashed line)
and J2 ((36), dotted line) for (a) θc = π/6, (b) θc = π/3

Access to (25) gives a suitable way to determine the constant of proportionality; in
particular, we set

J1(r) = Fa
(1 − r2)−

π−2θc
2π−2θc

∫ 1
0

∫ 2π
0 (1 − r2)−

π−2θc
2π−2θc r

√
1 + h2r dθ dr

(33)

= Fa
(1 − r2)−

π−2θc
2π−2θc

2 (π − θc) 2F1
(
1
2 , 1; 1 + π

2π−2θc
; sin2 (θc)

) , (34)

where the dimensionless form of (1) is

h =
√
cosec2 θc − r2 − cot θc, (35)

Fa is as given in (25) and 2F1 is the hypergeometric function. This is exact at θc = 0
and θc = π/2 and retains both the correct integral flux (to within 0.05%) as well
as the correct singularity away from the contact line. In addition, comparison with
the numerical form due to [1] reveals that the formula is never in error by more than
14.4%.

However, this can be improved by using the approximation of [7], who showed via
fitting to FEM results that, for a flux of the form J ∝ (1 − r2)−λ, a more suitable
value of λ in the bulk of the droplet is λ = 1/2 − θc/π . Using this form, we instead
find

J2(r) = Fa
(1 − r2)1/2−θc/π (π + 2θc)

2π2
2F1

(
1
2 , 1; θc

π
+ 3

2 ; sin2 (θc)
) . (36)

While this will have a diverging difference from the exact solution at the contact line, it
has an error of at most 4% for 0 ≤ r ≤ 0.8, 0 ≤ θc ≤ π/2 (compared to 14% for (34)).
As expected, J2 (36) performs quite well in the bulk of the domain and, despite the
inaccuracy in its singularity, may prove helpful for approximate formulations. While
there are numerous possible options to improve agreement with the exact solution—
such as using a composite of (34) and (36)—these are beyond the scope of the present
note.
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6 Conclusions

In this note, a new approximation (25) has been presented for the integral flux for a
volatile droplet evaporating diffusively into the surrounding gas. This approximation
is a simple rational function, which affords it significant computational benefits over
the cumbersome exact solution (5), while having the advantage over previous itera-
tions in the literature due to retaining the correct asymptotic behaviour in three key
regimes: hydrophilic droplets (θc → 0+); hemispherical droplets (θc = π/2); and
superhydrophobic droplets (θc = π−).

The resulting form is highly robust and suffers from no singularities or spurious
blow-ups across the whole range of possible contact angles and is highly accurate,
exhibiting errors of no more than 0.05% across the whole domain. It is more accurate
than all known previous approximations aside from near a handful of isolated points
and, as stressed above, unlike previous approximations, retains the correct asymptotic
behaviour in key regimes.

The applications of this approximation extend beyond droplet evaporation. Since
the integral flux (5) is found by solving a classical mixed boundary value problem
for Laplace’s equation, there are analogues in multiple other physical fields, such as
the capacitance of a hemispherical cap in electrostatics [23] or the growth rate of ice
crystals [24].We anticipate similar benefits in terms of computational speed combined
with asymptotic accuracy in such applications.
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Appendix A: Mathematica form of fluxes

Herewe give the present approximations (25) and (26) in aMathematica-friendly form
for people wishing to use this in applications. For ease of use, we use x as notation
for the droplet contact angle.

asymptoticFlux=Uncompress["1:eJzVUs0OgjAMRhnGo6/g+\
3ggxBfAhJkl6BKn0XeXoLRlkW4VDDc5ENp9fyvdHmyh0yRJXNa
99uZUOb30ZW7v1YVKBWV\
9cw6q3HwwSDGv7nGLrnzgJyl6TgiGvtdR/\
AiRqMNtkRPqPMEJwA7sdvaI9NH4lC7iUHvF5RvocbE+NcGDI7r9
ZIIvA2xGcs2+\
UDptLIw5ApJt7IF35btDi9ALMMZaGAzLZwCuMyEdUIvyauy5rBElTXn
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4a8QNSoUNkqc+f+\
BS+ihh+x/LoxiyGfxXyf23ZWHtjbd6A9t0Gfk="];

approximateFlux=ToExpression[
"\\frac{4\\pi}{\\pi-x}

\\frac{1-0.2771 x+ 0.0358xˆ2}
{1-0.1180 x+0.00683x ˆ2}",TeXForm,HoldForm];
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