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Abstract — The conditions of various nuclear power plant facilities are regularly examined through manual 
inspections. Remote visual inspection is commonly applied and requires engineers to watch lengthy inspection 
footage and seek anomaly features therein. This is a labor-intensive process as anomaly features of interest 
usually only appear in very short segments of the original whole video. Therefore, an automated anomaly 
detection system is preferred to lessen the intensive labor cost in the inspection process. The detection process 
could also benefit from useful information that could potentially contribute to addressing reasoning traceability.

With a well-prepared training data set of the anomaly feature, a convolutional neural network (CNN) can be 
developed to automatically detect anomaly indications in the inspection video. However, false-positive detec
tions may occur and can be difficult to remove without seeking manual verification. To overcome this problem, 
we present a new automated video-level anomaly detection framework that utilizes the latency mechanism to 
effectively lessen false-positive occurrences, and therefore, increase detection accuracy. In this framework, 
a CNN-based anomaly classifier first performs initial scanning of the anomaly type of interest in every region of 
the sampled frames. Then our latency mechanism is applied to refine the initial scanning results by flagging up 
a region as an “anomaly” indication only when “anomaly” is detected by CNN in the current frame and also in 
a sequence of previous consecutive frames of the same region.

We present a case study of crack feature detection in superheater inspection videos to illustrate the 
performance of the proposed framework. The results show that the latency mechanism can effectively 
remove the original false-positive detections seen in the initial scanning. In order to provide a primary 
exploration of suggesting possible formats for addressing reasoning traceability, knowledge graphs of the 
reasoning process in the video-level detection framework are built to provide a better understanding of why 
a specific section of the video is flagged as anomaly contents by the video-level detection framework.

Keywords — Crack detection, deep learning, knowledge graph, nuclear power plant inspection, remote 
visual inspection support. 

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION

Inspections are routinely performed on a variety of 
nuclear power plant facilities to generate footage that can 
be analyzed to provide the status of the component struc
tural health condition. The anomaly types of interest to be 
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identified may differ depending on the facility type, such 
as cracks in nuclear reactor cores[1–4] and corrosion in 
nuclear waste fuel storage canisters.[5] The understanding 
of facility conditions contributes to reviewing the defect 
growth and foreseeing the remaining life of the compo
nents so that essential maintenance operations can be 
subsequently scheduled.

One common approach to providing such under
standing is through manual-based visual inspection and 
may involve reviewing real-time videos captured onsite 
depending on the inspection tools and procedures for the 
specific task. In spite of the procedural differences in 
conducting the inspection, one common challenge of the 
manual-based inspection is exposure to the excessively 
large volume of footage and the associated high level of 
constant and intensive concentration, resulting in a time- 
consuming and repetitive inspection process.

Taking crack feature detection in a superheater 
inspection[6] as background, a typical inspection video 
can last around 2 h, but may only contain short and 
intermittent crack feature video fragments of up to 
a few minutes. Therefore, manual inspection labor could 
be dramatically lessened if engineers only needed to 
review a summary of the suspected crack feature video 
segments (each lasting around 10 to 15 s) from the 
original footage and then make final informed decisions.

To realize this vision, autonomous anomaly feature 
detection is needed. In civil engineering, automated 
anomaly detection has been an intensive research field 
for assisting structural health monitoring of facilities 
with constraint access. For example, cracks in bridge 
deck surfaces,[7] steel beams,[8] and concrete[9] have 
been detected using image processing techniques. 
Recently, data-driven techniques have been widely uti
lized for automated anomaly detection. For example, the 
bag-of-visual-words approach was deployed to identify 
cracks on the graphite surface of a nuclear reactor 
core[3] and a classification system based on Haar-like 
features was trained to find cracks in wind turbine 
blades.[10]

Among a variety of data-driven techniques, the con
volutional neural network (CNN) technique from the 
deep learning family draws increasing focus, as a CNN 
automatically learns the feature of interest for decision 
making from the training data set. For instance, the appli
cations of CNN can be found in automated crack detec
tion in railway tracks[11] and concrete structures at the 
patch level[12] and the semantic segmentation level.[13] 

Crack detection performance comparison between the 
data-driven-based CNN and edge detectors from the 
image processing field was investigated in Ref. [14].

However, we see limited applications of CNN in the 
nuclear power generation sector compared to the civil 
engineering field (e.g., pavement and bridge surface 
inspections). Possible factors in the nuclear sector may 
include the constraint availability of anomaly types and 
the rigorous regulation of the traceability of automated 
decision making and the use of synthetic data. Currently, 
some application examples of CNN for anomaly inspec
tion in nuclear facilities can be seen in crack detection in 
reactor surface imitations,[15] crack-like feature detection 
in pressure vessels (e.g., superheaters[16]), and corrosion 
identification in nuclear fuel waste storage canisters.[5]

Note that the aforementioned research 
frameworks[5,11,12,15,16] mainly delved into accurate 
anomaly detection at the image level (or referred to as 
the frame level if extracted from inspection videos). 
Challenges remain in advancing the anomaly inspection 
from the frame level to accurate and efficient video-level 
detection. Specifically, the main purpose of video-level 
detection is to identify the video fragments containing 
anomaly indications in the original entire video. 
However, many current works have solely focused on 
further enhancing anomaly detection accuracy in single 
images, though spatiotemporal information of an anom
aly feature in consecutive frames could be utilized to 
improve detection accuracy in single frames.[15] 

Supported by video-level detection, inspection engineers 
only need to review and validate a collection of video 
fragments containing anomaly features, instead of watch
ing the entire length of the original video.

Furthermore, false-positive detections at the frame 
level may occasionally occur in autonomous anomaly 
detection. For instance, the strong edge features of tube 
holes in superheaters may be mistakenly detected as 
crack features. Such false-positive detections can be dif
ficult to correct using only single-frame analysis. By 
nature, video-level detection is useful for effectively 
removing false-positive detections using the prior infor
mation in consecutive frames.

On this basis, we first introduce a new video-level 
detection framework in this paper to facilitate the accu
rate and efficient capture of anomaly feature video frag
ments and the effective removal of false-positive 
detections. Under this framework, the frames extracted 
from the inspection video are first sampled intermittently, 
and each sampled frame is split into full-grid nonoverlap
ping regions. Initial scanning is then performed using 
a trained CNN of the anomaly type to check for anomaly 
indications in each region of the sampled frames. Next, 
the proposed latency mechanism is applied to rectify the 
false-positive detections in the initial scanning results.
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During the latency mechanism process, a region in 
a sampled frame is flagged as “anomaly” only when the 
following two conditions are satisfied: (1) anomaly indi
cations are identified in this region of the current frame 
and (2) the number of previous consecutive frames with 
anomaly indication detected at the same region is equal to 
or above a customized threshold. As a result, the false- 
positive decisions made in the initial scanning can be 
effectively rectified using this latency mechanism.

In practice, blurry frames from the video may not 
produce meaningful detection information and could 
cause interruption to the continuity of the frame content 
categories in adjacent frames. To solve this problem, we 
apply a sliding window technique after the latency 
mechanism process to continuously register the status of 
each frame as “anomaly feature” or “nonanomaly.” As 
a result, continuous anomaly feature fragments can be 
accurately detected from the remote visual inspection 
footage of nuclear power plant components.

Furthermore, due to the multiple parameters used in 
this decision-making system, it is beneficial to explore 
possible approaches to provide improvement in result 
traceability. This is because traceability is one of the 
key factors for addressing the trust and safety require
ments of the highly regulated nuclear industry. 
A knowledge graph[17] could be a potentially suitable 
approach for investigating its application for providing 
traceability of how the video-level detection system pro
duces a specific conclusion.

This motivates the second aspect of this paper, which 
is to deploy knowledge graphs to investigate the applica
tion of knowledge graph visualization for addressing 
result traceability. In this way, such an investigation 
attempts to provide useful information to address the 
reasoning traceability requirement to some extent. For 
our video-level detection framework, knowledge graphs 
are designed to capture useful information in each step of 
the reasoning pipeline, from frame sampling to sliding 
window smoothing operations. We can then query and 
visualize the knowledge graph to obtain a better under
standing of why a certain video segment is flagged as an 
anomaly by the video-level detection framework.

Overall, this paper first demonstrates a novel appli
cation of the proposed video-level detection framework 
for the inspection videos of superheaters (a type of steam 
cycle component in nuclear power plants), and then 
applies knowledge graphs to explore their potential appli
cation for contributing to the result traceability for the 
video-level detection process. Other inspection scenarios 
in pipes and vessels on nuclear sites could also potentially 
benefit from the proposed approach.

We organize the remainder of this paper as follows. 
Section II details our proposed video-level anomaly fea
ture detection methodology and provides a concise intro
duction to knowledge graphs. An application case study 
of superheater inspection videos is presented in Sec. III 
with results discussed. Section IV presents an illustration 
of the knowledge graph application for our detection 
framework and discusses how the presented knowledge 
graph visualization could be used to provide better under
standing of reasoning traceability in our detection frame
work. Section V summarizes the conclusions and outlines 
future work.

II. METHODOLOGY

The development of the proposed anomaly detection 
framework involves two main stages: (1) developing an 
anomaly feature classifier and (2) applying the classifier 
in the video-level detection process. A variety of data- 
driven techniques (such as in Refs. [15,18]) can be suc
cessfully applied to design an anomaly feature classifier. 
We deploy the deep learning technique in this paper.

II.A. Concise CNN Introduction

The deep learning technique family has been popular 
for developing autonomous anomaly detection systems 
based on representative training data sets and accurate 
training performance. Generally speaking, in 
a fundamental CNN structure, convolution layers are 
first deployed and followed by pooling layers to extract 
the anomaly feature of interest from the image. Then the 
fully connected and softmax layers are applied to obtain 
the classification result. Inside the convolution layer, 
filters are convolved with different sections of the 
image to produce feature maps. The feature maps are 
then processed by the pooling layer to reduce the feature 
map size and rearranged into an array as the input to the 
fully connected layer. The softmax layer turns the output 
of the fully connected layer into the scores of each 
category. The content in the image is classified as the 
category with the highest score. A detailed introduction to 
the CNN technique can be found in Ref. [19].

Preparing the training data set plays a vital role in 
developing a CNN classifier, as the correct features of 
interest can be learned for classification. However, man
ual labeling of data sets can be a labor-intensive process 
due to the large number of labeled images required for 
each category. To reduce the manual work of preparing 
data sets, we propose an automated labeling technique[6] 
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that is versatile for efficiently producing labeled images 
of a variety of anomaly features. Our research work in 
Ref. [6] has been advanced in this paper by performing 
video-level anomaly inspection via a trained CNN classi
fier. The GoogLeNet architecture, originally proposed in 
Ref. [20] to classify 1000 different object categories in 
ImageNet,[21] was chosen as the backbone of the CNN 
classifier in the scanning stage of the video-level classi
fication process in Fig. 1. The development process of 
our GoogLeNet-based classifier is outlined in Fig. 1a and 
detailed in Ref. [16].

II.B. Video-Level Detection

II.B.1. Frame Sampling

Video-level detection involves consecutive frame- 
level detections and the analysis of the frame-level detec
tion results. A full-grid scanning strategy is applied with 
a CNN classifier trained for the anomaly type to perform 
frame-level detection. Taking crack features in superhea
ters as the anomaly type, the CNN classifier takes in 
a patch with a resolution of 224 × 224 × 3 in RGB 
(red, green, and blue) format and classifies the patch 
content as crack feature or noncrack class. Taking the 
frame-level detection illustration in Fig. 2 as an example, 
each patch region in the full grid is first scanned using the 
CNN classifier. The patches classified as crack feature are 
flagged as potential crack regions to be confirmed with 
the latency mechanism.

Performing video-level detection by analyzing all the 
frames in the video can be computationally intensive. In 
practice, adjacent frames typically share a large level of 

redundant information. For this reason, we introduce 
frame sampling as the first step in the video-level detec
tion workflow in Fig. 1b to reduce computation cost and 
accelerate the process. In this paper, frame sampling rate 
is defined as the index interval between two analyzed 
frames. Taking a frame sampling rate of 3 as an example, 
only the first, fourth, seventh, and 11th (and so forth) 
frames are analyzed via the full-grid scanning by the 
classifier.

II.B.2. Latency Mechanism

After the full-grid scanning of the sampled frames, 
we apply the latency mechanism to the initial scanning 
results, as outlined in Fig. 1b. The latency mechanism 
leverages the prior information about the nature of 
a video inspection (as opposed to a single frame) to 
enhance detection performance. Specifically, the false- 
positive classifications in the initial frame-level classifi
cation results can be effectively filtered out using 
a latency threshold value.

We register a patch region in a sampled frame as 
anomaly only if the CNN classifier detects anomaly feature 
in the same region across the current and previous (latency 
threshold value–1) sampled frames. For example, let us 
assume the index of the superheater inspection frame in 
Fig. 2a is 1000th in the video, with frame sampling rate = 3 
and latency threshold value = 3. The patch at (location 
index: 2) the 1000th frame is registered as crack feature 
only when the CNN detects crack feature at the patch region 
(index: 2) in the 994th, 997th, and 1000th frames. One 
assumption of the latency mechanism is that the anomaly 
features remain in the same patch region during the short 

Fig. 1. Overall framework: (a) development of the CNN classifier and (b) video-level detection process.
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latency time window. This assumption is usually true in 
most cases, but may require customized tuning for 
a suitable latency threshold value for a specific task.

In general, the moving speed of the inspection cam
era influences the choice of the latency threshold value to 
ensure that the potential anomaly feature stays in the 
target patch region during the latency period. For exam
ple, a large latency threshold value corresponds to a long 
time window and may omit the registering of anomaly 
features that only last for a very short duration in the 
inspection footage. Now we register each initially 
scanned frame as a potential anomaly frame if any 
patch region in this frame is registered as an anomaly 
feature by the latency mechanism; otherwise this frame is 
registered as a potential normal frame.

II.B.3. Sliding Window Process

Note that the video-level detection result is still dis
crete after the latency mechanism process. This is 
because the initial scanning of some blurry frames may 
not produce meaningful information of the frame con
tents. The blurriness in the frames could be induced by 
swift camera movement and dark lighting conditions. As 
a result, we need to apply a sliding window technique to 
smooth out the discontinuity in the frame-level detection 
results and obtain continuous anomaly feature video seg
ments for engineers to review.

In this step, we apply a sliding window with 
a specific window duration (referred to as the sliding 
window length) to go through the frames processed by 
the latency mechanism. If the number of analyzed frames 
registered as potential anomaly in the sliding window is 
larger than or equal to a user-defined sliding window 

threshold, we perform the following two steps: (1) all 
the frames (both analyzed frames and unsampled frames 
in between) in this window interval are registered as 
anomaly and (2) a 3-s period is attached to the beginning 
and end of the sliding window to attempt the capture of 
camera moving toward and away from the anomaly 
region.

This step may generate a very large number of short 
anomaly feature clips. In practice, it is highly plausible 
that neighboring anomaly clips may refer to the same 
anomaly indication. Therefore, the adjacent anomaly fea
ture clips (including the gap in between) apart by less 
than 10s are merged to sensibly reduce the number of 
summary clips for engineers to cross validate. In total, 
there are four tunable parameters used in the video-level 
anomaly detection framework, listed as frame sampling 
rate, latency threshold value, sliding window length, and 
sliding window threshold.

II.C. Knowledge Graph Concise Background

Knowledge graphs are a useful means of representing 
information due to their inherent flexibility and applic
ability across diverse domains.[22,23] Fundamentally, 
a knowledge graph is comprised of entities, portrayed as 
nodes, interconnected through relationships, depicted as 
edges. This straightforward graph structure offers 
a robust and intuitive framework for organizing and pre
senting information. The key advantages to employing 
knowledge graphs as a medium for storing and reasoning 
about the data in a system are as follows.

First, knowledge graphs can be used as general 
knowledge bases. Their flexible structure means a wide 
variety of domain knowledge can be encoded without 

Fig. 2. Full-grid anomaly scanning strategy illustration. The patch footer represents its region index in the frame. (a) Example of 
full-grid scanning for crack features at different locations (patch size: 224 × 224 × 3 in RGB channels) in a superheater inspection 
frame and (b) classified patches as potential crack feature regions by the CNN.
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needing rigid schema. This feature makes knowledge 
graphs ideal for consolidating distributed data into one 
unified data resource that can be queried.[24]

Second, knowledge graphs can be used to facilitate 
complex inferences by incorporating the embedded infor
mation in the knowledge graph. By analyzing how the 
entities within the knowledge graph are related, complex 
deductive reasoning can be performed.

Furthermore, knowledge graphs could be 
a potentially promising approach for contributing to 
addressing the need for explainable artificial intelligence 
(AI). This is because knowledge graphs allow for captur
ing expert knowledge, which could be interpreted even
tually in a human-readable and machine-legible way. This 
feature could drive the promising progress to reveal the 
AI reasoning process. This potential benefit could parti
cularly coincide with addressing the strict requirement of 
AI decision-making traceability in the nuclear industry 
sector.

In our study, we used the reasoning rules of the 
decision-making process in Sec. II.B to build the knowl
edge graphs of the video-level detection process. 
Specifically, the knowledge graphs were used to store 
and visualize the status of each patch location in every 
sampled frame along the video-level detection pipeline. 
The results, discussed in Sec. IV, investigate the potential 
benefit of knowledge graph application in revealing result 
traceability.

III. CASE STUDY: SUPERHEATER CRACK FEATURE 
DETECTION

III.A. Superheater Inspection Introduction

We demonstrate the proposed video-level detection 
methodology through a case study of superheater inspec
tion. A superheater is a thermal component used in the 
steam cycle to overheat steam in nuclear power plants. 
Remote visual inspection is routinely conducted to ensure 
the safe continued operation of superheaters. In the 
inspection process, an endoscope is sent into the super
heater through the access point to examine the existence 
and growth of crack-like features in the bottom circum
ferential area (also referred to as the tube plate upper 
radius) of the superheater.

An inspection video is generated from this process 
and reviewed to record the identified observations of 
crack features. Figure 3 presents a schematic of the super
heater structure in the context of this paper. Our aim is to 
automatically identify the short clips of crack features 

from the original video through the proposed video- 
level anomaly detection workflow without missing 
crack feature observations. Therefore, engineers only 
need to review a small number of short summary clips 
instead of going through the entire inspection video, thus 
lightening the associated manual labor cost.

III.B. Case Study Results

A CNN classifier based on the GoogLeNet 
structure[20] was developed, with the data sets prepared 
via the automated labeling technique in Ref. [6]. The 
training, validation, and testing data sets accounted for 
60.5%, 15.5%, and 24% of the total 800 crack feature 
patches and 800 noncrack patches, respectively. Each 
data set was balanced, and there was no data leakage 
between any data sets (i.e., the data from a specific 
video was solely in one of the three data sets). 
A training process of 30 epochs via transfer learning[25] 

resulted in a precision of 94.59%, a recall of 91.15%, 
a F1-score of 92.84%, and a total accuracy of 92.97% for 
the testing data set. A detailed introduction of this CNN- 
based crack feature detector for superheater inspection 
can be found in Ref. [16].

Figure 4 demonstrates the performance of the latency 
mechanism on removing false-positive detections in 
a testing video. Specifically, the frames in the testing 
video were extracted and full-grid scanned with the CNN 
classifier at frame sampling rate = 1 (i.e., every frame was 
analyzed). Figures 4a through 4d and Figs. 4i through 4l 
present the initial scanning results, while Figs. 4e through 
4h and Figs. 4m through 4p are the corresponding counter
parts processed by the latency mechanism at latency thresh
old value = 3. As can be seen, the rich textural features in the 
frames (due to discoloration, welding, etc.) could trick the 
CNN classifier into making false-positive detections, which 
can be challenging to rectify without utilizing the prior 
information between neighboring frames. However, such 
false-positive detections can be effectively reduced using 
the latency mechanism.

Comparing the counterparts between Figs. 4a and 4e, 
Figs. 4i and 4m, and Figs. 4b and 4f, we can see that the 
false-positive detections due to intensive discoloration of 
edge features and tube hole edges are precisely removed 
through the latency mechanism while preserving the true- 
positive detections. Figures 4j and 4n, Figs. 4c and 4g, 
Figs. 4k and 4o, and Figs. 4d and 4h provide further 
examples of removing false-positive detections triggered 
by tube hole contours, welding, strong lighting reflection, 
and outlet contours, respectively. Note that the false- 
positive detections made in blurry frames can also be 
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removed through the latency mechanism, as exemplified 
in Figs. 4l and 4p.

The detected crack feature patch number before and after 
the latency process in each frame of the testing video (com
prising 5551 frames recorded at 25 frames/s) is shown in 
Fig. 5 and matched against the ground-truth contents at dif
ferent times. Manual review of the video contents was per
formed to obtain the ground-truth starting and ending frame 
indices of the noncrack and crack feature segments. Figure 5a 
shows the number of crack feature patches detected only 
using the initial full-grid scanning. As can be seen, genuine 
crack features in the anomaly sections of the video are accu
rately detected. Although false-positive detections occur at 
the noncrack sections, the number of these misclassifications 
in the frames within the noncrack sections is generally small.

As shown in Fig. 5b, detection performance was further 
enhanced using the latency mechanism with latency thresh
old value = 3. Comparing Fig. 5a with Fig. 5b, the number 
of frames with false-positive detections (highlighted by 
green boundaries) is reduced by 91% (from 376 to 35). 
Therefore, it is clear that the latency mechanism is effective 
in filtering out the false-positive detections in the noncrack 
sections, thus improving detection performance. Note that 
the frame blurriness may obstruct the decision making of 
the CNN classifier, resulting in no regions of interest 
flagged in some blurry frames.

Next, we performed the sliding window process intro
duced in Sec. II.B.3 to obtain crack feature summary clips 

with the final registration status of each frame. Figure 6 
shows the crack feature summary clips obtained using the 
proposed video-level detection framework at different para
metric settings. As can be seen in Fig. 6a, the anomaly 
summary clips obtained at a frame sampling rate of 3, 
a latency threshold value of 2, a sliding window length of 
15, and a sliding window threshold of 6 are a good match 
with the ground-truth crack feature segments in the video, as 
all the recorded crack features in the official inspection 
report have been successfully captured.

There is a discrepancy in the duration between the 
automatically generated summary clips and the correspond
ing ground-truth anomaly sections in Fig. 6a due to the 
blurriness in some frames caused by the swift endoscope 
movements. The parametric setting in Fig. 6a was used as 
the benchmark to illustrate the effect of parametric tuning 
on video-level detection, as shown in Figs. 6b through 6e. 
By comparing between Figs. 6a and 6b and between Figs. 
6a and 6c, it can be seen that reducing the sliding window 
threshold or increasing the sliding window length relaxes 
the criteria of flagging a crack feature segment.

Such parametric tuning is more inclined to trigger false- 
positive detections, such as the false-positive detections at 
the start of the testing video in Fig. 6b and between the crack 
feature sections (i.e., 2 and 3) in Figs. 6b and 6c. On the 
other hand, as can be seen by comparing Figs. 6a and 6d, 
increasing the latency threshold value could toughen the 
criteria of flagging a crack feature section, resulting in the 

Fig. 3. Superheater schematic: (a) cross-section view and (b) top view of the tube plate.
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crack feature segment (i.e., 2) being missed in the detection 
result in Fig. 6d. By comparing Figs. 6a and 6e, it can be 
seen that increasing the frame sampling rate could dilute the 
detection of crack features, resulting in the crack feature 
segment (i.e., 2) being omitted from the detection result in 
Fig. 6e.

It is noted that finding the optimal parametric setting in 
the four-dimensional space (formed by the frame sampling 
rate, latency threshold value, sliding window length, and 
sliding window threshold) is a computationally challenging 

task that is fundamentally associated with the characteristics 
of the analyzed video. The adoption of the video-level 
inspection framework may require customized parametric 
tuning by other researchers for their own contexts of anom
aly detection.

III.C. Discussion

Taking the superheater crack feature inspection as the 
anomaly detection context, the proposed video-level

Fig. 4. Examples of rectified false-positive detections via the latency mechanism with frame sampling rate = 1 and latency 
threshold value = 3. Figs. 4a through 4d and 4i through 4l demonstrate the false-positive detections in the initial full-grid scanning 
stage. These false-positive detections were mainly attributed to the strong textural features due to discoloration, contours of tube 
holes and outlets, stains, and light reflection off metallic surfaces. In Figs. 4e through 4h and 4m through 4p, the efficacy of the 
latency mechanism is demonstrated for removing such false-positive detections.
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detection framework has been demonstrated to success
fully, accurately, and efficiently identity anomaly content 
segments in the inspection video. Specifically, removing 
false-positive detections can be challenging using only 
single-frame analysis. However, our proposed latency 
mechanism, based on the prior information in neighbor
ing frames, has been shown to be effective in filtering out 
false-positive detections.

On this basis, the sliding window process was 
applied to convert discrete frame-level detection results 
into consecutive anomaly summary clips for specialists to 
cross validate. The proposed framework is general and 
straightforwardly transferrable to a variety of anomaly 
inspection scenarios in nuclear power plants. Choosing 
parameter values in the proposed framework is dependent 
on the specific inspection context, and therefore requires 
customized tuning for the task of interest. With the effec
tive removal of false-positive detections addressed in this 
paper, one important direction of future work is the 
development of a technique for rectifying false-negative 
detections. Future work will also focus on tracking the 
movement of anomaly features across neighboring frames 
to further improve anomaly detection accuracy.

It is worth noting that while the efficacy of our 
video-level inspection framework was demonstrated 
using the GoogLeNet model as the anomaly feature 
detector, the same framework could, in theory, be applied 
to other deep learning–based systems that are used for 

video-level anomaly (e.g., crack) detection. This is 
because in our framework, the CNN-based classifier (in 
this study, GoogLeNet) for anomaly detection is an inter
changeable component and can be replaced with other 
well-trained CNN models for various inspection tasks. 
Potential candidates for deployment include but can go 
beyond ResNet,[26] VGG,[27] and AlexNet.[28] Please 
refer to Ref. [29] for a comparative study of different 
state-of-the-art CNN models on concrete surface crack 
detection evaluated for the trade-off between inference 
time and accuracy. A comprehensive comparison study of 
different CNN models is beyond the scope of this paper.

IV. KNOWLEDGE GRAPH RESULTS

IV.A. Knowledge Graph Implementation

In the context of this paper, traceability refers to the 
demonstration of the processed results at each step of the 
video-level detection workflow in a hierarchical visuali
zation format. Note that the definition of traceability can 
take a variety of forms in different contexts. The discus
sion of traceability in this paper only focuses on the status 
of patches, frames, and window intervals at each step in 
the proposed decision-making process.

In our study, the knowledge graphs were used to 
describe pairs of two entity names and the relationship 

Fig. 5. Performance of the latency mechanism on filtering out false-positive detections in the testing video at frame sampling 
rate = 1: (a) detected crack feature patch number in each frame only using the initial full-grid scanning and (b) refined 
classification results using the latency mechanism with a latency threshold value of 3.
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Fig. 6. Automatically generated crack feature summary clips using the proposed video-level detection methodology at different 
parametric settings in contrast to the ground-truth anomaly segments (referred to as 1, 2, and 3) in the video. Note that the 
conditional 3-s extension at each side of the sliding window and the 10-s automated grouping rule from Sec. II.B.3 were 
performed to give the detection results.
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in between. Our knowledge graph implementation was 
primarily based on the Graph objects provided in the 
MATLAB environment. Specifically, the nodes of the 
Graph object were used to represent (1) the entities 
(e.g., Patches, Frames, Window intervals) in the video- 
level detection system, and (2) the attributes (i.e., Crack 
feature, Flagged, and Anomaly) that describe those enti
ties. The edges of the Graph object represent the relation
ships (e.g., Next, Previous, in) between those various 
nodes. The rules of the underlying mechanism in the 
video-level detection process were used to encode the 
relationships in the knowledge graph.

As the knowledge graph follows the same reasoning 
process of the video-level detection framework, building 
the knowledge graph requires information from the 
CNN’s evaluation of each patch in every sampled 
frame, as well as the parameter values (i.e., frame sam
pling rate, latency threshold value, sliding window 
length, and sliding window threshold) used in the video- 
level detection process. The schema[30] that was used to 
build the knowledge graphs is illustrated in Fig. 7.

The schema in Fig. 7 is described as follows. The entity 
nodes are Patch, Frame, Window interval, and Video. The 
attribute nodes required are Crack feature, Flagged, and 
Anomaly. The edges in the schema are in, Next, Previous, 
by Latency, by Sliding Window, and CNN sees as.

The nodes and edges interact in the following way. 
The Patch node is connected to the Frame node through 
the edge in, and the same principle applies between the 
Frame and Window interval nodes and between the 
Window interval and Video nodes. A Patch entity node 
is connected to a Crack feature attribute node via the 
CNN sees as edge if the patch is detected as a potential 
crack feature in the initial full-grid scanning process.

A Frame entity node is connected to a Flagged attri
bute node through a by Latency edge if any patch in the 
frame is determined to be a crack feature by the latency 
mechanism. A Window interval entity node is connected 
to an Anomaly attribute node through the by Sliding 
Window edge if this Window interval satisfies the sliding 
window threshold. Each Frame node is connected to the 
previous and next Frame nodes via the Previous and Next 
edges, respectively (if adjacent frames exist).

The rules for building the knowledge graph mirrors 
the underlying reasoning mechanism of the video-level 
detection system. To start with, we query if a sampled 
Frame node is connected to any Patch node which is in 
turn connected to a Crack feature attribute node. If so, 
this sampled Frame node is referred to as the original 
starting Frame, and we note the region index of the Patch 
node(s) associated with the Crack feature attribute. We 
then move to the previous sampled Frame node and 
repeat the query to check if there is a Patch node(s) 
with the Crack feature attribute at the same region(s) as 
in the original starting Frame.

This process is repeated recursively until the latency 
threshold value is reached or the latency condition does not 
suffice. If the latency threshold value is reached, we then 
connect the original starting Frame node to a Flagged attribute 
node via a by Latency edge to log that this Frame node 
contains a crack feature. We can then query a Window 
interval node (with the same length as the sliding window) 
to see if it comprises any sampled Frame node with the 
Flagged attribute. If the number of sampled Frame nodes 
with Flagged attribute satisfies the sliding window threshold, 
then this Window interval node is connected to an Anomaly 
attribute node via a by Sliding Window edge.

Based on this schema definition, the knowledge 
graphs of the testing video results (video referred to as 
A1, the same as the one used in Sec. III.B) are success
fully constructed. Figure 8 shows only a subsection of the 
knowledge graphs for brevity. As can be seen, the 

Fig. 7. Schema of the knowledge graph for the video- 
level detection framework to illustrate the underlying 
structure of how the nodes and edges are related to 
each other.
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Fig. 8.  Knowledge graph visualization to illustrate the status of the Window interval, Frame, and Patch nodes in an exemplar 
anomaly segment of the testing video A1 outlined via a three-stage process: (a) the Video-to–Window interval stage where only 
a short selection of Window interval nodes are presented herein for legibility; (b) the Window interval–to-Frame stage where each 
Window interval node contains 45 (i.e., frame sampling rate × sliding window length) Frame nodes and only the sampled Frame 
nodes are provided for brevity; and (c) the Frame-to-Patch stage where the scannable area in each frame consists of 24 patch 
regions. 
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knowledge graphs present the status of all the entity 
nodes at each step in the video-level detection workflow 
in order to provide useful information for addressing the 
traceability of the underlying decision-making process. 
Specifically, Fig. 8a shows a subsection of Window inter
val nodes (ranging from Window interval 750 to Window 
interval 764) that are connected to the Anomaly attribute 
nodes based on the rules of the detection framework. 
Taking the highlighted Window interval 758 branch 
(between the 2272nd and 2316th frames) as an example, 
this Window interval is flagged as Anomaly, as the num
ber of sampled Frame nodes herein with the Flagged 
attribute satisfies the sliding window threshold.

The status of the sampled Frame nodes in Window 
interval 758 are given in Fig. 8b. Finally, taking the sampled 
Frame 2278 node branch as an example, Fig. 8c shows the 
status of the Patch nodes in the Frame 2278 node that are 
seen by CNN as crack feature. Note that the conditional 
3-s extension at each side of the sliding window and the 10-s 
automated grouping rule were not used in Fig. 8. As can be 
seen in this example, the useful information from the knowl
edge graph visualization can help provide a better 

understanding of why a specific Window interval is logged 
as Anomaly, through the status illustration of the associated 
Patch and Frame nodes in each step of the video-level 
detection pipeline.

IV.B. Knowledge Graph Discussion

Note that we only applied the knowledge graph 
visualization to provide a better understanding of why 
a specific section of the inspection video was flagged as 
anomaly by the video-level detection framework. There 
was no attempt to address adding clarity to the deep 
learning (i.e., CNN) classification part, which only acts 
as the first step to performing initial scanning in the 
decision-making process.

V. CONCLUSIONS

This paper introduced a new video-level detection 
framework capable of accurately and efficiently identify
ing anomaly feature contents in inspection videos. The 

Fig. 8. (Continued).
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support from this framework can dramatically reduce the 
intensive manual labor cost of the inspection task and 
assist engineers with informed decision making. The pro
posed workflow was general and considered applicable to 
a variety of video-based inspection scenarios in nuclear 
power plants. We used the crack-like feature inspection in 
superheaters as a scenario example to demonstrate the 
performance of our detection workflow.

The results showed that the proposed framework can 
precisely detect the genuine crack features while effec
tively filtering out false-positive detections through the 
latency mechanism. On this basis, short crack feature 
summary clips were accurately obtained by applying the 
sliding window technique over the filtered discrete frame- 
level detection results.

Furthermore, knowledge graph visualization of the 
results at each step of the decision-making process was 
successfully implemented and illustrated based on the 
same underlying reasoning mechanism. The useful infor
mation from knowledge graph visualization was used to 
provide a better understanding of why a specific segment 
of the inspection video was detected as anomaly by the 
video-level detection framework.

Future work will partly focus on developing techni
ques to rectify false-negative detections and further 
enhance anomaly detection through the use of movement 
vector knowledge across neighboring video frames. 
Future work will also further explore the potential benefit 
of applying the knowledge graph to provide a common 
language that is human readable and machine legible so 
that traceability of the decision-making process can be 
addressed.
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