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Abstract

INTRODUCTION: Alzheimer’s disease (AD) and behavioral variant frontotemporal

dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepre-

sented populations. Electroencephalography (EEG) is a high temporal resolution,
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cost-effective technique for studying dementia globally, but lacks mechanistic models

and produces non-replicable results.

METHODS:Wedeveloped a generativewhole-brainmodel that combines EEG source-

level metaconnectivity, anatomical priors, and a perturbational approach. This model

was applied to Global South participants (AD, bvFTD, and healthy controls).

RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more

viscous dynamics in patients, with altered metaconnectivity patterns associated with

multimodal disease presentation. The biophysical model showed that connectome

disintegration and hypoexcitability triggered altered metaconnectivity dynamics and

identified critical regions for brain stimulation.We replicated themain results in a sec-

ond subset of participants for validationwith unharmonized, heterogeneous recording

settings.

DISCUSSION: The results provide a novel agenda for developing mechanistic model-

inspired characterization and therapies in clinical, translational, and computational

neuroscience settings.

KEYWORDS

Alzheimer’s disease, electroencephalography, frontotemporal dementia, hypoexcitation, meta-
connectivity, neurodegeneration, structural connectivity, whole-brain modeling

1 BACKGROUND

The global challenge of dementia is exacerbated by limited brain-

phenotype associations and dynamic mechanisms in diverse

populations.1–8 By 2050, a 4-fold increase in dementia is expected

in the Global South, where 71% of dementia cases will come from

underserved regions and developing countries.2,9,10 The lack of

robust mechanistic explanations of whole-brain dynamics11 and

adequate biomarkers make these underserved popualtions even

more vulnerable.12 Non-generalizable brain–phenotype associ-

ations require mechanistically oriented models for population

heterogeneity.1,13 Tailored brain–phenotype biomarkers and robust

computational approaches are critically needed to face global

dementia challenges.

Alzheimer’s disease (AD) and behavioral variant frontotemporal

dementia (bvFTD)14,15 are two common subtypes of dementia asso-

ciated with cognitive decline, reduced life expectancy, family bur-

den, and an overload of health-care systems.16 Mainstream demen-

tia frameworks rely on pathological biomarkers such as amyloid

beta (Aβ) and tau proteins, quantified through positron emission

tomography (PET)—especially in AD.17 However, these biomarkers

present caveats for global settings. PET is not widely available

(i.e., the percentage of PET access for patients in Latin America

is < 1%12,9) or cost effective,18 and does not provide a conclu-

sive diagnosis19 or discriminate very well against FTD variants.20

Fluid biomarkers, such as plasma, show promise,21 but are not yet

widely accessible. Plasma biomarkers lack systematic validation in

diverse and non-stereotypical populations.9 Additionally, their influ-

ence on whole-brain dynamics and brain–phenotype mechanisms

across heterogeneous settings is unknown. These limitations call for

additional strategies for developing biomarkers in non-stereotypical

samples.

Scalable and cost-effective biomarkers for dementia in global con-

texts can be provided by high temporal resolution methods such

as electroencephalography (EEG).22 High-density EEG can poten-

tially identify the changes ascribed to neurodegenerative diseases

across diverse settings due to its low cost, non-invasiveness, porta-

bility, and wide availability in clinical research.23–27 Despite progress,

spectral and connectivity analyses often yield unclear results due to

small sample sizes and variable metrics,28 requiring large samples for

reproducible results.18 Generative brain activity models11 may allow

more robust results with moderate sample sizes,29–31 provide causal

mechanisms (biophysical-inspired)32–35, and brain stimulation poten-

tial targets by in silico perturbations.13,36,37 By generating EEG-like

signals based on the biophysical properties of local and mesoscale cir-

cuits these models can provide mechanistic interpretations and test

more focused hypotheses.38–42

EEG dementia research has traditionally focused on pairwise func-

tional connectivity and spectral analysis.14,24,43,44 Beyond this tra-

ditional approach, the assessment of high-order interactions allows

the characterization of emergent properties of brain networks45

reflecting more biologically plausible approaches to complex brain

dynamics in healthy aging,46,47 cognition,48 and dementia.49 Meta-

connectivity tackles third and fourth functional interactions between

brain regions50,51 and has been used to characterize aging pro-

cesses, with a shift toward more viscous (uncoordinated) brain

dynamics in older adult subjects.51,52 Although little tested in

dementia research,53 combining high-order metaconnectivity with
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whole-brain mechanistic models and perturbational approaches11

enables us to explore and predict whole-brain dynamics in neurode-

generation.

We developed a novel approach using generative whole-brain semi-

empirical modeling with source space metaconnectivity, anatomical

priors, and a perturbational approach, to investigate brain dynam-

ics of dementia in a sample of underrepresented patients from the

Global South. We explored how metaconnectivity patterns changed

across EEG frequency bands in dementia, and if metaconnectivity

was associated with multimodal disease severity. Then, we tested

two possible mechanisms ascribed to neurodegeneration to repro-

duce the altered metaconnectivity in dementia: structural connec-

tivity disintegration54–56 and alterations in the excitatory/inhibitory

(E/I) balance.57–60 Third, we used in silico perturbations through the

model to induce transitions between the pathological and healthy

states (and vice versa) and to identify possible therapeutic targets

for brain stimulation. Finally, we replicated our core results in a

second subset of participants, validating our results in an unharmo-

nized and more heterogeneous setting. Through the simultaneous

testing of these hypotheses, this novel computational framework has

the potential to identify novel markers of metaconnectivity dynam-

ics in dementia subtypes, associated with specific mechanisms of

hypoexcitation and structural disintegration. This framework can also

help identify the transitions between healthy and pathological brain

states.

2 METHODS

2.1 Participants

2.1.1 Full sample

The full sample comprised 332 participants recruited from clini-

cal centers in Argentina (CNC, Universidad de San Andrés), Chile

(GERO/CMYN, Universidad de Chile), Colombia (Pontificia Univer-

sidad Javeriana), and Turkey, as part of the Multi-Partner Consor-

tium to Expand Dementia Research in Latin America (ReD-Lat),61,62

BrainLat,8,63 and EuroLad.64 Data fromTurkeywere collected from the

cohort of Brain Dynamics Multidisciplinary Research Center, Dokuz

Eylül University, Izmir. Among the participants, 141 patients met the

National Institute of Neurological and Communicative Disorders and

Stroke–Alzheimer’s Disease and Related Disorders Association crite-

ria for typical AD,65,66 while 44 patients met the revised criteria for

probable bvFTD.67 All patients were in the early/mild stages of the

disease. A total of 147 with preserved cognition conformed to the

healthy controls group (CN). None of the participants had a history of

substance abuse, psychiatric disorders, or other neurological illnesses.

Demographic data for the whole sample are reported in Table 1. The

study was approved by the institutional ethics committee of each cen-

ter. All participants provided written informed consent following the

Declaration of Helsinki.

RESEARCH INCONTEXT

1. Systematic review: Electroencephalography (EEG)

constitutes a cost-effective method for characterizing

dementia globally. However, the lack of mechanisms

and non-replicable results in the field hinder dementia

research. This problem is of special concern in non-

stereotypical, underrepresented, and heterogenous

populations, like patients in the Global South. We pro-

posed novel metaconnectivity biomarkers, which tackled

high-order interactions, with a mechanistic hypothesis

tested in computational models.

2. Interpretation: We discovered robust biomarkers for

characterizing dementia using metaconnectivity, and

alteredmetaconnectivitypatternspredicted thedisease’s

progression. Through computational modeling, we found

that the structural disintegration of the human connec-

tome and a shift to hyperexcitation in brain dynamics trig-

gered the altered metaconnectivity patterns observed in

patients. We also proposed critical brain regions that can

be used as therapeutic targets for brain stimulation. Our

results are robust to more heterogeneous EEG settings

and populations, as confirmed in a validation of the core

results with additional datasets.

3. Future directions: Our results proposed novel biomark-

ers that can be used for dementia screening and pro-

vide open-source semi-empirical modeling tools for the

neuroscience community. Our work will inspire new

experiments and settings for testing therapeutical tar-

gets in dementia. Future work will validate our results

using large sample sizes and comparing stereotypical and

non-stereotypical patients to test the generalization and

specificity of our findings.

2.1.2 Initial subsample (harmonized dataset)

A first subsample of participants was used to identify the metacon-

nectivity alterations in patients, fit the whole-brain model to empirical

data, and test connectome and stimulation perturbations. This sub-

sample comprised 95 subjects from Argentina and Chile from the

ReD-Lat consortium.61,62 Of these, 31 AD patients presented memory

deficits and showedmiddle-temporal/hippocampal and posterior atro-

phy among other regions commonly affected by this condition (Section

1 in Table S1, Figure S1A in supporting information). Another 18

bvFTD patients presented changes in personality and social behavior

according to caregivers and showed fronto-temporo-insular atrophy

(Table S2, Figure S1B in supporting information). The remaining 46 CN

participants had preserved cognition and served as healthy controls.

All participants underwent a comprehensive battery of neurologi-

cal, neuropsychiatric, and neuropsychological assessments following
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4 CORONEL-OLIVEROS ET AL.

TABLE 1 Demographics (full sample and subsamples).

Full sample CN (N= 147) AD (N= 141) bvFTD (N= 44)

𝜒2 test

Sex (M/F) 53/94 66/75 35/9 AD vs. CN bvFTD vs. CN

𝜒2 = 7.07, P= 0.008 𝜒2 = 17.01, P< 0.0001

Student t test

Age (years) 67± 8.3 74± 6.2 69.5± 8.0 AD vs. CN bvFTD vs. CN

t= 7.56, P< 0.0001 t= 1.87, P= 0.0630

Student t test

Education (years) 13.2± 4.5 10.2± 4.9 13.1± 5.3 AD vs. CN bvFTD vs. CN

t=−5.66, P< 0.001 t=−0.73, P= 0.4688

Sample 1 CN (N= 45) AD (N= 31) bvFTD (N= 18)

𝜒2 test

Sex (M/F) 17/29 14/17 13/5 AD vs. CN bvFTD vs. CN

𝜒2 = 0, P= 1 𝜒2 = 10.74, P= 0.001

Student t test

Age (years) 71± 7.2 76± 7.5 68± 9.9 AD vs. CN bvFTD vs. CN

t= 2.70, P= 0.008 t=−1.25, P= 0.22

Student t test

Education (years) 14.7± 4 9.9± 4.9 15.4± 4.8 AD vs. CN bvFTD vs. CN

t=−4.63, P< 0.001 t= 0.57, P= 0.57

Sample 2 CN (N= 101) AD (N= 110) bvFTD (N= 26)

𝜒2 test

Sex (M/F) 36/65 53/58 26/10 AD vs. CN bvFTD vs. CN

𝜒2 = 7.09, P= 0.008 𝜒2 = 7.09, P< 0.0048

Student t test

Age (years) 65.6± 8.2 73.3± 5.7 70.4± 6.3 AD vs. CN bvFTD vs. CN

t= 8.09, P< 0.0001 t= 2.98, P= 0.0034

Student t test

Education (years) 12.6± 4.5 10.3± 4.9 11.7± 5.0 AD vs. CN bvFTD vs. CN

t=−3.74, P= 0.0002 t=−1.34, P= 0.1826

Notes: Values constituted by proportion (sex) and mean ± standard deviation (age and education). Categorical variables were analyzed with Pearson chi-

squared (𝜒2) test. Continuous variables were analyzed through Student t tests.
Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; CN, healthy controls.

harmonized procedures.67–72 A multidisciplinary team established

clinical diagnoses following a formal criterion and ReD-Lat standard-

ized diagnostic procedures61,62 to prevent potential biases in diagnos-

tic evaluation. Cognitive functioning was assessed with the Montreal

Cognitive Assessment (MoCA) (Section 2 in supporting information).

Demographic and cognitive data for the whole sample are reported

in Table 1 and Table S3 in supporting information. Additionally, we

included a subsample matched by age, education, and sex for further

analysis (Table 2), which was selected using the PsmPy package for

Python73 (pypi.org/project/psmpy/).

2.1.3 Second subsample (non-harmonized dataset)

A second subsample was used to validate the metaconnectivity

features and mechanisms previously characterized using the ini-

tial subsample. The dataset comprised 237 subjects from Chile,

Colombia, and Turkey from ReD-Lat61,62 and EuroLad consortiums.64

The subsample included 110 AD patients, 26 bvFTD patients,

and 101 healthy controls. Demographic data and cognitive assess-

ment for this subsample are presented in Table 1 and supporting

information.
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TABLE 2 Demographics of thematched subsample.

AD vs. CN bvFTD vs. CN

Matched sample CN (N= 22) AD (N= 31) CN (N= 18) bvFTD (N= 18)

𝜒2 test

Sex (M/F) 11/11 14/17 12/6 13/5 AD vs. CN bvFTD vs. CN

𝜒2 = 0.29, P= 0.59 𝜒2 = 0.25, P= 0.62

Student t test

Age (years) 73.5± 3.2 75.7± 7.5 69.7± 7.6 68.2± 9.9 AD vs. CN bvFTD vs. CN

t=−1.27, P= 0.21 t= 0.50, P= 0.62

Student t test

Education (years) 11.9± 4.0 9.8± 4.0 16.2± 3.9 15.4± 4.8 AD vs. CN bvFTD vs. CN

t= 1.60, P= 0.12 t= 0.52, P= 0.61

Notes: Values constituted by proportion (sex) and mean ± standard deviation (age and education). Categorical variables were analyzed with Pearson chi-

squared (𝜒2) test. Continuous variables were analyzed through Student t tests.
Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; CN, healthy controls.

2.2 Magnetic resonance imaging acquisition and
analysis

Magnetic resonance imaging (MRI) was used to estimate the brain

atrophy in patients from the first subsample, recorded at various

centers (see details in supporting information). Images were prepro-

cessed using the DARTEL Toolbox for SPM12 (https://www.fil.ion.ucl.

ac.uk/spm/software/spm12/)74 running in MATLAB. The preprocess-

ing pipeline included segmentation into gray matter, white matter,

and cerebrospinal fluid. Those images were used to estimate the total

intracranial volume. Then, a template based on gray and white matter

segmentations was created for the complete data set (default param-

eters) to improve between-subject alignment. This template was used

to affine transformation into Montreal Neurological Institute space to

all individual gray matter images. Finally, images were modulated by

Jacobian determinants and smoothed with a full-width half-maximum

kernel of 10 mm. The gray matter maps were used to characterize the

atrophy patterns of patients, compared to healthy controls, and to find

associations between atrophy and metaconnectivity (see Section 1 in

supporting information).

2.3 Diffusion-weighted imaging acquisition and
preprocessing

Structural connectivity was used as priors of our whole-brain model,

for simulating the EEG-like dynamics specific to AD, bvFTD, and CN.

Structural connectivity matrices were obtained by applying diffusion

tensor imaging (DTI) to diffusion-weighted imaging (DWI) record-

ings. Data preprocessing was then performed using FSL BEDPOSTX

(BayesianEstimationofDiffusionParametersObtainedusing Sampling

Techniques toolbox)75 (see Section 4 in supporting information). After

preprocessing, a matrix with 90 × 90 components was obtained per

subject, representing the connectivity between automated anatomical

labeling (AAL) region pairs. Finally, the structural connectivitymatrices

for each group were obtained by taking the average of the matrices of

the CN, AD, and bvFTD participants separately.

2.4 EEG acquisition and preprocessing

2.4.1 Initial subsample

Participants sat in a comfortable chair inside an electromagnetically

shielded EEG room and were instructed to remain still, awake, and

with their eyes closed. Following previous works of our team,61,62

we analyzed 10-minute resting-state EEG (rsEEG) using a Biosemi

ActiveTwo 128-channel acquisition system. For recording eye blinks

and eye movements, electrodes were also placed in periocular zones.

Reference electrodeswere placed on linkedmastoids, and signalswere

sampled at a rate of 1024Hz.

2.4.2 Second subsample

Participants across all sites were instructed to sit comfortably in an

electromagnetically shielded EEG chamber, remaining still, awake, and

with their eyes closed. Although data acquisition instructions were

consistent across all sites, each location used its protocols. The Chilean

site used a Biosemi ActiveTwo 128-channel acquisition system, sam-

pling signals at 1024 Hz. The Bogotá site operated an ANT Neuro

128-channel acquisition system, with signal sampling at 512 Hz. In

Medellín, an ANTNeuro 64-channel acquisition systemwas used, sam-

pling signals at 1000 Hz. Finally, the Turkish site used a BrainAmp

32-channelDC system, sampling signals at 512Hz. All reference points

were standardized and set to the average during preprocessing. Sig-

nals were resampled at 512 Hz during preprocessing and subjected to

a high-pass filter of 40Hz and a low-pass filter of 0.5 Hz.
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2.4.3 EEG preprocessing

The rsEEG was preprocessed offline using standard procedures

described elsewhere.76 The analog filters were adjusted to a range of

0.03 and 100 Hz. Recordings were band-pass filtered at 0.5 to 40 Hz

and re-referenced to the average of all channels. Malfunctioning chan-

nels were identified and replaced using statistically weighted spherical

interpolation (based on neighbor sensors).77 Independent component

analysis78 and a visual inspection protocol79–82 were used to correct

blink artifacts and eyemovements.

2.5 Source space functional connectivity and
metaconnectivity estimation

Brain sources of the rsEEGwere estimated using the standardized low-

resolution brain electromagnetic tomography analysis (sLORETA).83

The sLORETA estimates the standardized current densities for a grid

of 6242 predefined virtual sensors (voxel size 5 × 5 × 5 mm) located

in the cortical gray matter and hippocampus of a reference brain (MNI

305,Brain ImagingCentre,MontrealNeurologic Institute). Voxelswere

grouped in N = 82 brain areas defined by the AAL parcellation84

(Figure 1A and Table S4 in supporting information). The time series for

each brain compartment was obtained by vector averaging across vox-

els the current densities calculated at each time point, resulting in a

time x regionsmatrix.

The rsEEG time series were band-pass filtered in the common EEG

bands: 𝛿 (0.5–4 Hz), 𝜃 (4–8 Hz), 𝛼 (8–13 Hz), 𝛽 (13–30 Hz), and 𝛾 (30–

40 Hz; Figure 1B). Functional connectivity matrices were built using

the pairwise Pearson correlation between the filtered time series in

both empirical and simulated data (simulation described below). Meta-

connectivity matrices were built using the sliding windows method,

as described in Arbabyazd et al.51 (Figure 1C). Windows of 8 seconds

lengthwith 80%overlapwere used to compute the time-resolved func-

tional connectivity (the rationale behind windows’ length is provided

in Figure S2 in supporting information). Then, functional connectivity

matrices were vectorized, taken from their upper triangular, and con-

catenated into the dynamic functional connectivity matrix (Figure 1D)

of dimensionQ xQ (Q connectivity pairs,w time windows). Time series

within the dynamic functional connectivity matrix were correlated

(using Pearson r) against each other, and the outcome corresponded

to the metaconnectivity matrix of dimension Q x Q (Figure 1E). These

matrices capture high-order interactions.51 Finally, we computed the

absolute value of the average sum of the negative values of the meta-

connectivity matrices, called dynamics viscosity (Figure 1F). A higher

viscosity is a dynamical signature of a less integrated brain activity.51

2.6 Dimensionality reduction

We used linear discriminant analysis (LDA)85 to reduce the set of

selected metaconnectivity features (see subsection 2.8) to single com-

ponents. For empirical data, the LDA was used independently for

discriminating AD or bvFTD from CN using the best features obtained

throughmachine learning. For simulated data, the same features based

on metaconnectivity were used for LDA and validated on empirical

data. This time, we combined the three groups (CN, AD, and bvFTD)

and fitted LDA toempirical data. Then,weprojected the simulateddata

using the fitted LDA model to represent it in a two-dimensional space

(two LDA components). The centroids of the groups in the reduced

space by LDAcorrespond (in themodel) to different “brain states” (CN-,

AD-, and bvFTD-like states).

2.7 Whole-brain modeling and perturbations

2.7.1 Neural mass model description

We used a modified86,87 Jansen and Rit neural mass model88 to model

whole-brain source networks (Figure2). Eachbrain areawas composed

of two subpopulations of neural masses (Figure 2A), each tuned to

oscillate in the 𝛼 and 𝛾 frequency bands (around 10 and 45 Hz, respec-

tively; Figure2A). The contributionof each subpopulation in generating

the postsynaptic potential (PSP) of pyramidal neuronswasweighted by

the parameter r𝛼 , as defined in Otero et al.87 The model’s parameters

are summarized inTable S5 in supporting information.Macroscopically,

eachbrain area iwas connected to another area jusing a structural con-

nectivity matrixM (DTI; Figure 3B). We used the average connectome

across subjects, leading to group-specific CN, AD, and bvFTD struc-

tural connectivity matrices. The strength of the coupling was scaled

by a global coupling parameter K. Considering that long-range pro-

jections are mainly excitatory,89,90 connections between brain areas

involved only pyramidal neurons. Each region received background

input,whose valueswere randomly sampled fromanormal distribution

with amean ⟨p(t)⟩ = 220Hz and a standard deviation 𝜎p = 31 (similar

values used inOtero et al.87). The complete systemof equations for the

𝛼 subpopulation consisted of

dx𝛼
0,i (t)

dt
= y𝛼

0,i (t)

dy𝛼
0,i (t)

dt
= A𝛼 a𝛼S

(
x1,i (t) − x2,i (t)

)
− 2a𝛼y𝛼

0,i (t) − a𝛼
2
x𝛼
0,i (t)

dx𝛼
1,i (t)

dt
= y𝛼

1,i (t)

dy𝛼
1,i (t)

dt
= A𝛼 a𝛼

(
pi (t) + C2S

(
C1x0,i (t)

))

+KC
N∑

j = 1,j≠i

MijS
(
x1,j (t) − x2,j (t)

)
− 2a𝛼y𝛼

1,i (t) − a𝛼
2
x𝛼
1,i (t)

dx𝛼
2,i (t)

dt
= y𝛼

2,i (t)

dy𝛼
2,i (t)

dt
= B𝛼 b𝛼

(
C4S

(
C3x0,i (t)

))
− 2b𝛼y𝛼

2,i (t) − b𝛼
2
x𝛼
2,i (t)

S (v) =
𝜁max

1 + exp (−r (v − vth))
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CORONEL-OLIVEROS ET AL. 7

F IGURE 1 Pipeline for metaconnectivity dynamics estimation. A, Source reconstruction (sLORETA) was used to extract the regional time
series (82 ROIs, brain regions, of the AAL parcellation). B, Signals were bandpass filtered in the common EEG frequency bands to compute
functional connectivity andmetaconnectivity. C, Time-resolved functional connectivity was characterized using the sliding windowsmethod, in
which functional connectivity was estimated using fixed (8 seconds) and overlapped (80%) timewindows. The procedure was performed for all
frequency bands. The results of the 𝛽 band are presented as an example. D, Dynamic functional connectivity matrix was built using the vectorized
upper triangular of functional connectivity matrices. E, By correlating the connectivity pairs’ time series across timewindows, the
metaconnectivity matrices can be estimated. Thesematrices capture high-order correlations (between three and four pairs of brain regions). In
the example, thematrices in the 𝛽 band of EEG are shown for CN, AD, and bvFTD patients. F, Dynamics viscosity is defined as the absolute sum of
the negative values within themetaconnectivity matrices. 𝛽 band viscosity was higher in AD and bvFTDwith respect to CN. *|D|> 0.5, **|D|> 0.8,
***|D|> 1.2. Data points in violin plots correspond to subjects. Box plots were built using the first and third quartiles, themedian, and themaximum
andminimum values of distributions. AAL, automated anatomical labeling; AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal
dementia; CN, healthy control; EEG, electroencephalography; ROI, region of interest; sLORETA, standardized low-resolution brain
electromagnetic tomography analysis.

where A𝛼 (B𝛼) and a𝛼 (b𝛼) corresponded to the excitatory (inhibitory)

postsynaptic potentials’ maximal amplitude and inverse characteris-

tic time constant, respectively. The first pair of equations represents

the excitatory feedback loop, the second represents the outputs from

pyramidal neurons, and the third represents the inhibitory feedback

loop. Populations of neurons were connected through constants C1,

C2, C3, and C4; all of them scaled with a common local connectiv-

ity constant C. The postsynaptic potentials, v, were transformed into

firing rates through a sigmoid function S(v), with a maximal output,

slope, and threshold given by 𝜁max , r, and vth . The equations for the
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8 CORONEL-OLIVEROS ET AL.

F IGURE 2 Description of the whole-brain computational model. A, The original Jansen and Rit neural mass model for one single cortical
column (brain region) involving three populations of neurons: pyramidal neurons (blue), excitatory (orange), and inhibitory (green) interneurons. In
themodel, long-range projections from and toward other cortical regions involved only pyramidal neurons. B, In our modified version of themodel,
we coupled two subpopulations of cortical columns (one oscillating in 𝛼, and the other in 𝛾). The combined subpopulations formed a single cortical
column. Ourmodel also incorporates inhibitory synaptic plasticity. C, Brain areas were connected through a human empirical structural
connectivity matrix (in this figure, the CN structural connectivity matrix averaged across subjects), parcellated in 82 brain regions using the AAL
parcellation. This matrix is weighted and undirected (symmetric). D,Whole-brain neural massmodel simulating EEG-like signals at the source level.
Themodel’s EEG power spectrum fitted to the CN (through functional connectivity matrices) shows two different peaks at the 𝛼 and 𝛾 frequency
bands. AAL, automated anatomical labeling; CN, healthy control; EEG, electroencephalography.

subpopulations are identical, except for the 𝛾 superscript. Further

details of themodel can be found in supporting information (Section 5).

Themodel’s final output corresponded toEEG-like signals in the source

space (Figure 3C,D).

2.7.2 Synaptic plasticity

Following Abeysuriya et al.91 we incorporated within our model

inhibitory synaptic plasticity as an additional differential equation:

𝜏C4 (t)
dt

= 𝜁inh (t)
(
𝜁pyr (t) − 𝜌

)(C4 (t)
C

−
C4,min
C

)𝛽

The plasticity updates the feedback inhibition to control the firing

rate of pyramidal neurons, preventing the full saturation of their sig-

moid function. In the equation, 𝜏 represents the inverse of the learning

rate; 𝜁inh(t) and 𝜁pyr(t) the firing rates of the inhibitory interneurons and

pyramidal neurons at time t, respectively; 𝜌 the target firing rate; and 𝛽

a bounding exponent that controls the convergence to C4,min = 0 (for

avoiding non-plausible negative connectivity values). We used 𝛽 = 1

(soft-bound), but other choices are possible.92 The two critical param-

eters for plasticity are the learning rate 𝜏 and the target firing rate 𝜌.

We chose values of 𝜏 = 2 s and 𝜌 = 2.5Hz.91,93

2.7.3 Model fitting, data augmentation, and
model’s observables

We ran simulations with the same time length as the empirical data

(610 seconds discarding the first 10 seconds) using different random

seeds for model fitting (100 seeds), data augmentation (300 seeds),

and model perturbation (50 seeds). The details of the simulations are

presented in the supporting information (Section 6). From the simu-

lated data, we extracted the same features based on metaconnectivity
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CORONEL-OLIVEROS ET AL. 9

F IGURE 3 Spatiotemporal characterization and validation of viscosity (metaconnectivity) in AD and bvFTD. A, The area under the curve of the
ROC curve was used to evaluate the performance of the classifier. Higher values (near 1) allow a good classification of healthy controls from
patients. The first and second columns correspond to the features based on functional connectivity andmetaconnectivity, respectively. At the left,
features ranked usingMRMRwere added one by one, andmodel performance was assessed using the AUC. Theminimal set of features
guaranteeing the highest AUC values consisted of the optimal number of features for classification. At the right, the ROC curves for a fixed number
of features (the best ones highlighted by the dotted lines). B, Confusionmatrices usingmetaconnectivity (first row) and functional connectivity
(second row). C, D, Brain regions characterized usingmetaconnectivity, projected on the brain’s surface for AD and bvFTD. Colors indicate if the
regions are involved in hypo or hyper patterns of metaconnectivity (based just on the sign of the CohenD effect sizes). E, A trend of LDA
component to be positively correlated with cognition (MoCA scores) was found, but not with (G) years with disease. G, LDA component was
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10 CORONEL-OLIVEROS ET AL.

of the empirical data, including functional connectivity and metacon-

nectivity matrices in each frequency band. The features extracted

from simulated data were reduced to two LDA components using

the LDA fitted to empirical data (see subsection 2.6). The fitting pro-

cedure consisted of minimizing the distance between the simulated

data and the empirical centroids of CN, AD, and bvFTD groups, to

reproduce the empirical metaconnectivity features. In addition, we

also explored the more traditional fitting to the functional connec-

tivity matrices using the structural similarity index (SSIM).94,95 The

SSIM is a method for measuring the similarity between two images.

In the context of functional connectivity, it constitutes a trade-off

between Pearson correlation and Euclidean distance, that is, for SSIM

both the pattern of connectivity and the mean functional connectiv-

ity matter. The SSIM has been widely used in the field of whole-brain

modeling.33,95

2.7.4 Connectome perturbation

To test the hypothesis that alterations in structural connectivity may

lead to functional disturbances in AD and bvFTD,54–56 we performed

in silico perturbations of the healthy connectome (CN). Our analysis

was based on the participation coefficient, PCw , and modularity, Qw ,

measures of integration and segregation, respectively.96 We obtained

the modular structure of the connectomes using a combination of

the Louvain algorithm and consensus clustering. We then classified

nodes according to their nodal participation coefficient, PCw
i .

96 Next,

we produced iteratively altered connectomes decreasing the connec-

tivity between nodes with the highest PCw
i , while preserving the nodal

strength and theoriginalmodular organizationof the connectome. This

perturbation changed the topological properties of structural connec-

tivity toward segregation. Simulations were performed for K = 0.25

(CN) using the perturbed connectomes. The complete procedure is

described in supporting information.

2.7.5 In silico perturbation

To investigate the transitions from the pathological to the healthy state

and vice versa, we implemented two different perturbation protocols

to pairs of homotopic nodes37,97 by changing the magnitude of the

background input p by an amount +Δp (excitatory protocol) or −Δp

(inhibitory protocol). For each pair of homotopic nodes, we swept Δp

from 0 to 600Hz in steps of 30Hz.

2.7.6 Modeling E/I balance disturbances

We also simulated a possible effect of E/I imbalance triggered by

neurodegeneration57–59 bydirectly decreasing or increasing the target

firing rate 𝜌 of synaptic plasticity. The rationale behind this was similar

to that of the perturbation protocols: increasing (decreasing) 𝜌 moves

the model toward hyperexcitation (hypoexcitation). Starting from the

model fitted to the CN condition, we searched the best global coupling,

K, and target firing rate, 𝜌, parameters to adjust the model to AD and

bvFTD groups. We repeated the inverse procedure from AD or bvFTD

to CN, starting from themodel fitted to the pathological conditions.

2.8 Data analysis

2.8.1 Empirical data

We used independent sample Student t tests to compare pairwise dif-

ferences between CN versus AD or bvFTD, and Cohen D effect size

was reported. Pearson correlation was used to assess the relation-

ship between empirical features (LDA and viscosity scores), MoCA

scores, and years of disease. We validated our empirical features

using surface-based morphometry through a regression between LDA

and cortical thickness with the Cat12 toolbox (https://neuro-jena.

github.io/cat/) in MATLAB 2018A. Cortical thickness was regressed

out with LDA to validate the metrics of the model using surface-based

morphometry (see Section 3 in supporting information for further

details). All P values were corrected for multiple comparisons (CN vs.

AD or bvFTD) across frequency bands and for all correlations using

the Benjamini–Hochberg method,98 for decreasing the probability of

making type I errors (false positives).

2.8.2 Simulated data

For simulated data, we computed Cohen D to report the results in

terms of effect size,99 as P values can be artificially inflated by sam-

ple size computing additional model realizations.99 We also used the

Euclidean distance between centroids in the reduced latent space

(through LDA85) to assess the proximity between different brain states

(e.g., ADvs.CN, orbetweena trajectory anda target centroid). To inves-

tigate the relationship between viscosity and the degree of integration

(PCw) of the perturbed connectomes, we calculated the Spearman

correlation between the average viscosity and PCw .

positively correlated with cognition, and (H) negatively correlated with years with disease. I, J, Model’s scores validation through surface-based
morphometry. LDA values were associated with cortical thickness using a linear regression for every clinical group individually joinedwith healthy
controls. To correct for multiple comparisons, a TFCE correction was used. *P< 0.05, ∼P≈ 0.1. AD, Alzheimer’s disease; AUC, area under the curve;
bvFTD, behavioral variant frontotemporal dementia; CN, healthy control; EEG, electroencephalography; LDA, linear discriminant analysis; MoCA,
Montreal Cognitive Assessment; MRMR,minimal redundancymaximum relevance; ROC, receiver operating characteristic; ROI, region of interest;
TFCE, threshold-free cluster enhancement.
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CORONEL-OLIVEROS ET AL. 11

2.8.3 Validation of the features based on
metaconnectivity

We compared pairwise and high-order features based on functional

connectivity and metaconnectivity to discriminate patients from CN.

Features consisted of functional connectivity and metaconnectivity

links (connectivity values within matrices). Features were pre-selected

by ranking them according to the absolute value of the Cohen D

effect size (AD or bvFTD vs. CN) in each frequency band. The best

and least redundant 100 features were selected using the minimal

redundancy maximum relevance (MRMR) feature selection algorithm

in Python (https://github.com/smazzanti/mrmr). For classification, we

used a Gaussian Naive Bayes classifier to discriminate between AD

or bvFTD and CN (GaussianNB function from Python sklearn library).

The Naive Bayes classifiers are highly efficient, quickly trained, and

make accurate predictions even with large datasets. They have only

one hyperparameter, a smoothing parameter, that is usually usedwhen

working with categorical variables to avoid zero probabilities. Because

that is not our case, we set the smoothing parameter to 0. Then we

split the dataset into training and test sets (80% vs. 20%, respectively)

using a 5-fold cross-validation. Features were added one by one from

theMRMR ranking. In each step, we evaluated the performance of the

model through (1) confusion matrices, (2) model accuracy, (3) the area

under the curve (AUC) of the receiver operating characteristic curve

(false positives vs. true positives rates), (4) F1 score, (5) sensitivity, and

(6) specificity. To avoid artificial inflation of P values due to sample size,

we computed Cohen D to report the results in terms of effect size. The

performance of the model was assessed 300 times using different ran-

domseeds, andwe computed the averaged performance across folds in

each iteration.

2.9 Data and code availability

The scripts for all simulations and data analysis are available at

the following GitHub repository: https://github.com/carlosmig/EEG-

Dementias.git. The Brain Connectivity Toolbox for Python (https://

github.com/fiuneuro/brainconn)96 was used for graph analysis, and

BrainNet Viewer toolbox100 was used for visualization of brain plots.

Data are available upon request from the corresponding authors, and a

formal data-sharing agreementmust be established.

3 RESULTS

3.1 Dementia is better characterized by higher
viscous dynamics than by functional connectivity

We investigated the characterization of dementia by using meta-

connectivity51 to capture high-order interactions in each frequency

band. Unlike functional connectivity, metaconnectivity matrices cap-

tured third- and fourth-order correlations among different brain areas.

At the global level, 𝛽-band metaconnectivity matrices had more nega-

tive entries, indicating less coordinated brain dynamics (Figure 1E,F).

We observed higher viscosity, that is, the absolute value of the aver-

aged sum of negative metaconnectivity values,52,51 in both AD and

bvFTD in β compared to the CN (P= 0.00374, t= 3.45, D= 0.80 for AD

vs. CN; P = 0.00021, t = 4.65, D = 1.29 for bvFTD vs. CN). In bvFTD,

an increment in viscosity was observed in 𝛼 (P = 0.00633, t = 3.21,

D = 0.89) and 𝛾 (P = 0.02158, t = 2.69, D = 0.75) bands, as well in the

across bands average (P=0.00061, t=4.15, D=1.15; Figure S3 in sup-

porting information). Therefore, uncoordinatedviscousbraindynamics

characterized AD and bvFTD, particularly in higher frequency bands,

and the effect was stronger in bvFTD compared to AD compared to

CN. The increment in viscosity reflects a change in the global brain

dynamics of patients beyond the alterations at the level of individual

metaconnectivity interactions. However, individual metaconnectivity

values can be used to discriminate between patients and controls, as

addressed below.

The validation of viscosity/metaconnectivity involved a comparison

with classical connectivity metrics using the best features. The top

metaconnectivity values considering all frequencybandswith thehigh-

est Cohen D absolute values were ranked using an MRMR algorithm,

and the resulting ordered vector was used as input for a Gaussian

Naïve Bayes classifier (Figure 3A). TheAUCvalues reached amaximum

(0.999 AD or bvFTD vs. CN) using the first 12 features for AD versus

CN, and for bvFTD versus CN. In contrast, using pairwise connectiv-

ity values resulted in lower AUC values (of 0.855 for AD versus CN,

and 0.850 for bvFTD versus CN) than the viscosity metrics. Table S6 in

supporting information contains brain regions belonging to the top 12

bestmetaconnectivity features, andTable S7 in supporting information

all statistical analyses. The confusion matrices are shown in Figure 3B.

To verify whether the selected features were the best discriminators,

we re-classified subjects using random partitions of features (up to 12

features) 10,000 times, generating surrogatedistributions forAUCand

accuracy. Both AUC and accuracy were higher when using the original

features for AD (P= 0.0047 for AUC, and P= 0.0008 for accuracy) and

bvFTD (P = 0.0468 for accuracy, and P = 0.0570 for AUC), compared

to randomly selected features (Figure S4 in supporting information).

These results were replicated with a harmonized and matched sample

(Figure S5 in supporting information). Tables S7 and S8 in supporting

information summarize all metrics.

Brain regions associated with viscous dynamics are reported in

Figure 3C,D. To facilitate visualization, we grouped the regions in

“slow-like” (𝛿 + 𝜃) and “fast-like” oscillations (𝛼 + 𝛽 + 𝛾). The colors

in Figure 3C,D indicate whether the brain region contributes to an

increase or decrease of the metaconnectivity values, based on the

sign of Cohen D effect sizes while discarding the magnitude. Across

AD and bvFTD, we found regions involved in both increased and

decreased metaconnectivity. Further, the faster the frequency bands,

the decreased metaconnectivity was more pronounced, especially in

bvFTD. In AD, decreased metaconnectivity in faster frequencies was

observed in the calcarine fissure and the amygdala, while increased

metaconnectivity in the slower bands was seen in frontal areas (supe-

rior/inferior frontal gyrus, olfactory cortex, Rolandic operculum). In

bvFTD, faster oscillations involved decreased metaconnectivity in
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12 CORONEL-OLIVEROS ET AL.

frontal areas (middle and inferior frontal gyrus), insula, and amygdala.

In contrast, increasedmetaconnectivity in the slower bands was found

in the precentral area, hippocampus, superior parietal gyrus, and infe-

rior parietal gyrus. Thus, the most affected brain regions in AD and

bvFTD were pattern specific in terms of oscillations, connectivity, and

anatomy.

Finally, we used metaconnectivity to provide discrimination

between patients in the harmonized dataset. In this new scenario,

metaconnectivity showed the great capability of differentiating bvFTD

from AD, reaching AUC values close to 0.99 (Figure S6 and Table S9 in

supporting information). We observed decreased metaconnectivity in

the bands for several brain regions, including the left superior frontal

gyrus (dorsolateral and orbital parts), the right parahippocampal gyrus,

the right superior temporal gyrus, among others (Table S10 in support-

ing information). Consequently, metaconnectivity not only provides an

accurate classification between patients and healthy controls but also

is sensitive to discrimination between different dementia subtypes

(bvFTD vs. AD).

3.2 Metaconnectivity predicts multimodal disease
presentation

We investigated the relationship betweenmetaconnectivity and cogni-

tive scores (MoCA scores), yearswith the disease, and regional atrophy

in patients with AD and bvFTD. Using LDA, we independently built a

composited variable for theAD- andbvFTD-specific features. LDAsep-

arated AD patients from CN (Figure 3E), and a trend was observed for

the LDA component to be positively correlated with cognitive impair-

ment in AD (P = 0.1074, r = 0.360), but not with years with disease

(P = 0.2358, r = −0.227, Figure 3G). In bvFTD, LDA also distinguished

patients from CN (Figure 3F) and correlated positively with cognitive

impairment (P = 0.0493, r = 0.526) and negatively with years with

disease (P= 0.0493, r=−0.520; Figure 3H).

Furthermore, we found an association between atrophy (measured

in terms of cortical thickness) and metaconnectivity (LDA compo-

nents) using a linear regression model with threshold-free cluster

enhancement correction (TFCE), as shown in supporting information

3. In AD, an anatomic-specific temporo-posterior metaconnectivity–

atrophy association was observed, while in bvFTD, a fronto-temporal

metaconnectivity–atrophy association was observed (Figure 3I,J).

Thus, metaconnectivity was associated with cognitive impairment (in

both conditions, but at a trend level in AD), age of disease (bvFTD), and

specific brain atrophy patterns (AD, bvFTD).

3.3 Hypoexcitation and structural disintegration
explain metaconnectivity dynamics in
neurodegeneration

Weused amodified version of the Jansen and Rit neural mass model88

to study themetaconnectivity dynamics in neurodegeneration, by sim-

ulating potential disruptions in structural connectivity and E/I balance.

To ensure the accuracy of our simulations, we first characterized the

model with synaptic plasticity through parameter explorations, which

resulted in a good fit for empirical data. Specifically, we used functional

connectivity fitting in healthy subjects and demonstrated the efficacy

of our approach in Figures S7, S8, and S9 in supporting information.

We fitted themodel to CN, AD, and bvFTD groups, using the empiri-

cal structural connectivity matrices specific to each group. The global

coupling parameter, K, and the target firing rate of pyramidal neu-

rons, 𝜌, were swept while the proportion of the 𝛼 generator neurons

within a single brain region was fixed in r𝛼 = 0.5, based on our previ-

ous explorations. We extracted the same features from simulated data

based on metaconnectivity as those characterized in empirical data

and projected them onto the two-dimensional LDA space, using the

LDA trainedwith the empirical features. The optimization functionwas

the distance between the simulated data and the CN, AD, and bvFTD

centroids in the LDA space. Figure 4 shows the fitting results, where

lower distance values indicate a better fit of the model to empirical

data. We used the notation Δ𝜌 to represent the deviation from the

default target firing rate value (2.5 Hz); positive values of Δ𝜌 move

the model toward hyperexcitation, and negative ones toward hypoex-

citation. Our results suggest that lower K values (compared to AD

and bvFTD) and near-zero values of Δ𝜌 best reproduce the empiri-

cal features in CN (Figure 4A, with a blue dot indicating the pairs of

parameters associated with the lowest distance, equivalent of highest

goodness of fit). However, the best fit of the model to patients’ empiri-

cal data was obtained by increasing K and decreasing Δ𝜌 (Figure 4B,C,

with red and green dots for AD and bvFTD best parameters). This sug-

gests that, to simulate the specific empirical LDA–metaconnectivity,

the brain dynamics must be shifted toward hypoexcitation. Further-

more, lower values ofΔ𝜌 should be used for fitting themodel to bvFTD

data compared to AD. For visualization purposes, we compared the

projected empirical data (Figure 4D) to the simulated data (Figure 4E)

and found a good correspondence indicating that the fitted model

captured the empirical features. Finally, we measured the distance

between each point in the simulated LDA space and the CN cen-

troid to test the capability of the model in characterizing patients and

healthy controls (Figure 4F).Our results show that ourmodel produces

a good discrimination between AD versus CN (Cohen D = 4.89) and

bvFTD versus CN (Cohen D = 7.70). Overall, to reproduce empirical

metaconnectivity patterns in AD and bvFTD, the brain dynamics must

be shifted toward hypoexcitation, especially in bvFTD, and pushed to

greater global coupling values indicating higher connectivity strength,

compared to healthy subjects.

Based on the empirical results shown in Figure 1F, simulated data

indicated an increase in 𝛽 band viscosity as illustrated in Figure 4G.

The altered viscosity and metaconnectivity can be explained by two

mechanisms: structural disintegration and/or E/I balance disturbances.

The patients’ PCw was reduced, with bvFTD exhibiting lower values,

as represented by the color dots in Figure 4H. To establish a robust

link between the structural integration and the functional features of

the data (viscosity and LDA measures of metaconnectivity), we used

the model that was fitted to the CN and performed simulations with

perturbed versions of the connectome. The perturbations involved
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14 CORONEL-OLIVEROS ET AL.

iteratively reducing the healthy connectome PCw (integration), as illus-

trated in Figure 4H. When PCw was reduced, viscosity increased and

a negative correlation between PCw and viscosity was found (Spear-

man rsp = −0.94, p < 0.00001). Surprisingly, the measurements for

CN andADwere close to the curve. Therefore, these results suggested

that structural disintegration (reduced integration) may be responsi-

ble for the increase in viscosity in AD and, to some extent, in bvFTD.

The distance between the bvFTD point and the curve might indicate

that both structural disintegration and hypoexcitation contribute to

the increase in dynamic viscosity in this condition.

In the simulations with the perturbed connectomes, we projected

the data using LDA with the same coefficients as empirical data. In

Figure 4I, a trajectory from the CN centroid is observed that diverges

from the healthy brain state as the PCw is sequentially reduced. Mov-

ing in the direction of the trajectory reduces the distance from the

original position (CN centroid) to both AD and bvFTD. Thus, the per-

turbed connectome moves the model, in the low dimensional space

toward brain dynamics resembling the states in AD and bvFTD. As

shown in Figure S10 in supporting information, we repeated the fitting

procedure using functional connectivity matrices instead of metacon-

nectivity. Adequate fitting to empirical connectivity matrices (SSIM

values > 0.6 for CN, AD, and bvFTD) reproduced the increase in

dynamic viscosity in both AD and bvFTD compared to CN. When per-

turbating the healthy connectome, we obtained comparable results to

the original ones usingmetaconnectivity for model fitting (Figure S10).

However, compared to metaconnectivity, the model fitted using func-

tional connectivitywasnot capableof reproducing the specific features

extracted from empirical data.

Different pathophysiological pathways can be involved in brain

disorders101 affecting both structural connectivity54–56,102–104 and

E/I balance.57–60 In our model, the inclusion of inhibitory synaptic

plasticity (Figure 2A) allows us to directly control the firing rates of

pyramidal neurons in simulations,moving themodel toward excitation-

or inhibition-dominated regimes of activity. This model enabled us to

test the hypothesis that alterations in E/I balance produce transitions

between healthy and pathological states and vice versa. We fitted the

model to the CN condition to analyze what combinations of K and Δ𝜌

parameters increased the goodness of fit to the AD and bvFTD groups.

Results showed that an increase in K alongside a decrease in Δ𝜌 better

reproduces the brain dynamics in AD and bvFTD (Figure 4J,K), using

the healthy participant’s connectome from CN parameters. In the last

row of Figure 4, trajectories from the centroids in the LDA space are

drawn, in addition to the initial (CN) and final (AD or bvFTD) parame-

ters. The opposite transitions from AD or bvFTD to CN (Figure 4L,M),

require decreasing K and increasing Δ𝜌. Thus, for moving the brain

dynamics to the ones observed in AD and bvFTD from CN, the model

must be pushed toward hypoexcitation, and vice versa for the opposite

transition (from hypoexcitation to balanced E/I).

3.4 Perturbational landscapes identify the
transitions to healthy and pathological states

Perturbational landscapes, that is, the models’ trajectories during per-

turbations in the LDA-reduced dimensional space, reveal potential

therapeutic targets for healthy and pathological brain states. Aswhole-

brain models have the potential to inspire novel therapies,13,36,37 we

explored in silico perturbations of homotopic brain regions97 with

excitatory and inhibitory protocols (Figure 5) to identify potential

therapeutic targets. In Figure 5A,B, we perturbated single pairs of

brain regions, with the magnitude of the perturbation defining the

observed trajectories in the reduced dimensional space. For bvFTD,

inhibitory perturbations led to transitions from pathological to healthy

states, while excitatory perturbations led to the opposite transitions.

To summarize the results, we presented the distance between the best

trajectories and the target centroids in Figure 5C. The results for in

silico perturbation in bvFTD were consistent with previous sections,

in which a shift toward hypoexcitation (inhibitory perturbation) was

required to drive the dynamics from the healthy to pathological states,

and vice versa. In contrast, for ADboth inhibitory and excitatory proto-

cols led to transitions from CN to AD state, although the brain regions

involved differed. We included a null case that represented the dis-

tance from the initial to the target centroid. All perturbation protocols

were efficient in deviating the model from the null case (|D| > 1.2,

F IGURE 4 Fitting of themodel to empirical metaconnectivity features. A–C, The two parameters of themodel (global coupling, K, and change
in target firing rate,Δ𝜌) were fitted to empirical data using features based onmetaconnectivity and LDA. Red values, which indicate a lower
distance of the simulated features to the target empirical centroids, are a hallmark of a better fit to empirical data. D, E, Empirical and simulated
data (data augmentation up to 300models’ realizations) projected using LDA. F, Distance from each simulated data point to the CN centroid. G,
The simulated data showed an increment of 𝛽 band dynamics viscosity in AD and bvFTD, similar to the empirical results. H,Modeling of structural
alterations in neurodegeneration. Healthy connectome disintegration (reducing structural integration), from right to left, is related tomore viscous
brain dynamics. Colored dots corresponded to themeasurements of each group (simulated data). I, Trajectories from the healthy state (CN, high
PCw) to pathological conditions. Each point in the trajectory corresponds to simulations where the connectomewas sequentially perturbed
decreasing its PCw . J, K, The transition from the healthy condition (CN) to the pathological ones (AD or bvFTD) involved an increment of global
coupling, K, and a negative change in firing rates,Δ𝜌, whichmoves themodel toward hypoexcitation. In the second row, the trajectories in the LDA
space corresponded to the paths marked by the black arrows in the (K, Δ𝜌) parameter space. The initial and final combination of parameters were
drawn near their respective centroids. The opposite transition in (L, M) involved a decrease in K and an increase inΔ𝜌. *|D|> 0.5, **|D|> 0.8,
***|D|> 1.2. Data points in violin plots correspond to different model realizations (random seeds). Box plots were built using the first and third
quartiles, themedian, and themaximum andminimum values of distributions. Confidence intervals were built using themean± standard
deviation. Correlations were computed using Spearman’s rsp. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN,
healthy control; E/I, excitatory/inhibitory; LDA, linear discriminant analysis.
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CORONEL-OLIVEROS ET AL. 15

F IGURE 5 Perturbational approachmediating the transitions between states. A, B, The excitatory and inhibitory perturbation protocols were
used to produce transitions fromAD or bvFTD to CN and vice versa. These consisted of perturbating single pairs of homotopic regions, producing
trajectories that corresponded to different perturbationmagnitudes. C, Evaluation of protocols’ performance bymeasuring the distance from the
best point on the trajectories to the target centroid. Lower distance values indicate a better performance. *|D|> 0.5, **|D|> 0.8, ***|D|> 1.2. Data
points in violin plots correspond to different model realizations (random seeds). Box plots were built using the first and third quartiles, themedian,
and themaximum andminimum values of distributions. The colored areas on the brains’ surface represent the best perturbation targets to drive
the transitions, for each perturbation protocol. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN, healthy control;
LDA, linear discriminant analysis.

Figure 5C), but only for the CN→ bvFTD transition (and vice versa) did

the perturbation protocol influence the distance to the target centroid

(|D| > 1.2, Figure 5C). These findings suggest that targeted excita-

tory and inhibitory perturbations of specific brain regions may have

therapeutic potential for the treatment of neurodegenerative diseases.

Finally, we identified the top five pairs of homotopic brain regions,

which are associated with the trajectories that most reduce the dis-

tance to the target condition, in mediating the different transitions

(Figure 5 and Table S11 in supporting information). In the case of

AD, we identified a subnetwork of frontoparietal and temporal brain

regions, using both protocols, including the superior frontal gyrus, the

superior and middle temporal gyrus, and the precuneus. For bvFTD,

the characterized network consisted of several frontotemporal brain

areas, such as the middle temporal gyrus, frontal gyrus (middle and

inferior), and the precuneus. Overall, our in silico brain perturbation

approach allows us to identify key brain regions involved in the patho-

logical trajectories, which can be proposed as therapeutic targets for

real-life perturbation protocols (e.g., transcranialmagnetic stimulation,

and deep brain stimulation).

3.5 Out-of-sample validation of metaconnectivity
and mechanisms

We conducted an out-of-sample validation to evaluate the robust-

ness of our approach and its generalizability to more heterogeneous
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16 CORONEL-OLIVEROS ET AL.

contexts. To achieve this, we used a second subsample of participants

(CN = 101, AD = 110, bvFTD = 26) and replicated key analyses from

our original dataset. These analyses included alteredmetaconnectivity

and increased viscosity in neurodegeneration,model fitting bymanipu-

lating global coupling and E/I balance, and connectome disintegration,

which are all associated with the model’s mechanisms for simulating

altered metaconnectivity in AD and bvFTD. For validation purposes,

we first used the same metaconnectivity-based features (normalized

tomatch the range of the first dataset) as inputs for themachine learn-

ing classifier. Then, we projected the data using the LDA trained with

the original dataset. Next we conducted model fitting by sweeping

the global coupling and target firing rate parameters while compar-

ing the model’s output to the new features in the reduced-dimensional

space through LDA. Last, we replicated the connectome perturba-

tion analysis using the model fitted to the CN group of the validation

dataset to explore the relationship between viscosity and structural

disintegration.

Using the same classifier, we found good discrimination values

between AD (AUC = 0.883) and bvFTD (AUC = 0.957) patients and

healthy controls (Figure 6A,B). These results demonstrate the robust-

ness of metaconnectivity as a biomarker for dementias, with better

performance than pairwise functional connectivity in previous find-

ings (Figure 3). In the new dataset, we again found a similar pattern of

increased 𝛽 band viscosity in AD (P = 0.00011, t = 3.94, D = 0.55) and

bvFTD (P < 0.00001, t = 6.07, D = 1.36), suggesting again a shift to a

more uncoordinated or viscous brain dynamics in patients (Figure 6C).

The data were then projected into a two-dimensional space using LDA

(Figure 6D), and while the overlap between groups was slightly higher

than in previous results (Figure 4E), metaconnectivity still achieved

good discrimination of CN from AD (P < 0.00001, t = 12.13, D = 1.68)

and bvFTD (P< 0.00001, t= 10.00, D= 2.22) using LDA (Figure 6E).

The whole-brain model was re-fitted using the new data projected

using LDA. Although the parameters were different from the origi-

nal ones (Figure 4A-C), we observed the same original pattern: fitting

the model to AD and bvFTD conditions required a higher global cou-

pling and a shift to hypoexcitation, compared to CN (Figure 6F). The

simulated data showed a similar pattern of increased 𝛽 band vis-

cosity in AD (D = 1.63) and bvFTD (D = 3.58) with respect to CN

(Figure 6H). Using data projection with LDA (Figure 6I), the model

showed good discrimination between AD (D = 2.34) and bvFTD

(D = 2.89) from CN (Figure 6J). Finally, using the same perturba-

tional procedure of connectome disintegration, we found again a link

between structural integration and dynamic viscosity (Spearman rsp =

−0.87, P < 0.00001; Figure 6G). Thus, by using an external dataset

with large heterogenous sources, we validated and generalized the

whole-brain metaconnectivity mechanisms (structural disintegration

and hypoexcitability) in neurodegeneration.

4 DISCUSSION

We applied whole-brain semi-empirical modeling to brain data and

causal mechanistic explanations for the transition from brain health

to disease (and vice versa) in neurodegeneration. Results showed

increased dynamic viscosity in AD and bvFTD compared to healthy

controls, along with altered metaconnectivity across all frequency

bands. The metaconnectivity-based features outperformed pairwise

interactions, and partially predicted disease severity. These high-order

interactions also discriminated between patient groups. The compu-

tational modeling reproduced the metaconnectivity-based features

extracted from empirical data and identified the mechanisms explain-

ing the viscosity/metaconnectivity patterns in patients, supporting the

hypothesis of reduced structural integration27,105,106 andalterations in

E/I balance57–60 linked to AD and bvFTD. We also identified key brain

regions using a perturbational approach that mediates the transitions

from pathological states to the healthy state and vice versa. Over-

all, our work provides novel and theoretically supported EEG-based

biomarkers for characterizing dementias in underrepresented, diverse,

and non-stereotypical populations.

Our study shows that metaconnectivity outperformed pairwise

functional connectivity as a biomarker for dementia classification.

Results resemble previous works of our team,49 using a differ-

ent approach to high-order interactions in AD and bvFTD. The

altered metaconnectivity patterns observed in our study overlapped

with previously identified brain regions affected in both AD107 and

bvFTD15,108,109 including frontoparietal, temporal, and frontotem-

poral brain regions. We found that while patterns of increased

and decreased metaconnectivity were observed in all frequency

bands,49 reduced metaconnectivity was mainly associated with faster

oscillatory regimes such as beta and gamma, which is consistent

with the widely supported slowing of EEG rhythms reported in

dementia,24,27,28,105,110,111 and previous results using information

theory.49 Our results also demonstrated that these metaconnectiv-

ity features predicted severity and disease presentation, especially

in bvFTD. However, weaker correlations were observed between

metaconnectivity and disease severity in AD, possibly due to the

more advanced stage of the pathology in terms of years with the

disease, lower MoCA scores, and advanced atrophy. As brain dam-

age is widespread at these stages, functional measurements are

less powered to predict the disease stage. Our findings highlight

the robustness of high-order interactions beyond pairwise functional

connectivity45–49,112 and support the growing body of evidence sug-

gesting that complex brain dynamics should be better characterized by

simultaneous interactions,45–48,112 dementia included among them.

We enhanced our empirical analysis by incorporating computa-

tional semi-empirical modeling, which provided causal mechanisms

linking altered viscosity and metaconnectivity patterns. Our findings

showed that disrupting the structural brain hubs (connectome disinte-

gration) led to increased viscosity in AD and bvFTD. Considering that

(1) higher viscosity is a signature of an uncoordinated (less integrated)

brain dynamics,50,52,51 and (2) brain hubs are essential for orches-

trating brain activity104 and promoting integrated brain states,113–116

compromising the brain’s structural hubs would impair functional inte-

gration (increasing viscosity) in patients with dementia. These hubs

are very susceptible to excitotoxicity and damage,114 and are com-

promised in neurogenerative diseases.54 Our model suggests that
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CORONEL-OLIVEROS ET AL. 17

F IGURE 6 Out-of-sample validation of whole-brain metaconnectivity andmechanisms. A, ROC curves and AUC values for AD and bvFTD. B,
Confusionmatrices. C, Dynamic viscosity is defined as the absolute sum of the negative values within themetaconnectivity matrices. 𝛽 band
viscosity was higher in AD and bvFTDwith respect to CN. D, Empirical data projected using LDA. E, Distance from each empirical data point to the
CN centroid. F, Two parameters fitting (global coupling, K, and change in target firing rate,Δ𝜌) of themodel to empirical data using features based
onmetaconnectivity and LDA. Red values, which indicate a lower distance of the simulated features to the target empirical centroids, are a
hallmark of a better fit to empirical data. G, Healthy connectome disintegration (reducing structural integration) from right to left is related to
more viscous brain dynamics. Colored dots corresponded to themeasurements of each group (simulated data). H, The simulated data showed an
increment of 𝛽 band dynamics viscosity in AD and bvFTD, similar to the empirical results. I, Simulated data (data augmentation up to 300models’
realizations) projected using LDA. J, Distance from each simulated data point to the CN centroid. *|D|> 0.5, **|D|> 0.8, ***|D|> 1.2. Data points in
violin plots correspond to different model realizations (random seeds) and subjects. Box plots were built using the first and third quartiles, the
median, and themaximum andminimum values of distributions. Confidence intervals were built using themean± standard deviation. Correlations
were computed using Spearman rsp. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN, healthy control; LDA, linear
discriminant analysis; ROC, receiver operating characteristic.
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18 CORONEL-OLIVEROS ET AL.

disrupting the rich-club organization of the human connectome may

be a possible pathway to generate AD- and bvFTD-like brain dynam-

ics. We explored a second mechanism in the model based on E/I

balance. Specifically, a shift toward hypoexcitation was necessary to

recover the metaconnectivity observed in empirical data and to pro-

duce a transition from healthy to pathological states. Overall, our

results are in line with the dual profile of E/I balance in neurode-

generative diseases.57 Both human and animal studies suggest that

in preclinical stages, dementia is characterized by hyperexcitation,

due to the accumulation of Aβ and tau aggregates.57–59 As the dis-

ease progresses, hyperexcitability leads to neuronal loss, producing a

shift toward hypoexcitation, hypometabolism, and the slowing of EEG

rhythms.24,27,57–59,105,110,117–122 Thus, our results provide the first

semi-empirical modeling support for two different but complementary

pathways triggering the functional disturbances in neurodegenerative

diseases.

The perturbational approach identified key brain regions that could

be targeted for stimulation in therapies such as transcranial magnetic

stimulation or deep brain stimulation.123–125 Data-driven approaches

suggested that the precuneus, compromised in AD126 and proposed

as a therapeutic target for stimulation126; and the frontal gyrus

(superior, and middle) and temporal poles, structures impaired in

bvFTD,108,109,127 could be effective targets. Similar results were found

in a previous functional MRI study from our team,33 in which the best

stimulation targets were posterior (AD) and frontotemporal (bvFTD)

brain regions. Interestingly, in our work, the best protocol for produc-

ing the transition from bvFTD to CN corresponded to the excitatory

protocol,which is consistentwith our previous results inwhich increas-

ing the model’s excitability mediates the transition from bvFTD to

a brain state that most resembles healthy controls. Another avenue

for future research involves simulating in silico pharmacological ther-

apies to restore healthy brain function.13,35,39 Based on our results

indicating hypoexcitation, whole-brain models informed with neuro-

transmitters andneuromodulator receptor expression couldbeused to

test pharmacological interventions that may restore a healthy E/I bal-

ance in patients. Possible candidates include cholinergic drugs107,128

and psychedelics,129 which have been found to restore normal brain

function in other disorders.130

From a more methodological perspective, our work provides valu-

able computational tools for studying whole-brain dynamics in both

health and disease,11 and we have made these tools publicly available

alongside this publication. Compared to other biophysical or purely

phenomenological computational works,35,131 our model can repro-

duce functional connectivity in a wide range of the EEG spectrum.

As a biophysical-inspired model, it can answer more specific ques-

tions directly, for example, how E/I balance, neuromodulators, and

local connectivity impactwhole-brain activity. Other brainmodels sug-

gested a shift toward hyperexcitation for explaining the slowing of the

EEG rhythms in AD,32,35 which may seem contradictory to our find-

ings. However, that is more likely to occur in the preclinical and early

stages of dementia, during which a shift toward brain hypometabolism

predominates in the middle and advanced stages.57,118–121 More-

over, both hyperxcitation and hypoexcitation can coexist in AD, with

some brain regions exhibiting increased or decreased excitability.32,34

Further, ourwork is unique in combiningmetaconnectivitywithwhole-

brain modeling, which differs from other modeling studies that have

reproduced empirical observables using theoretical models without

previously addressing how well these features characterize neurode-

generative diseases.

Our approach was effectively generalized through out-of-sample

validation, which incorporated more heterogeneous, diverse, and non-

harmonized datasets. Using data from various countries, EEG configu-

rations, channel quantities, and diverse demographics, we successfully

replicated previous findings based on harmonized data. In the second

subsample, metaconnectivity continued to demonstrate its robustness

in distinguishing patients from healthy controls. Notably, the impaired

metaconnectivity dynamics (viscosity) were observed in both AD and

bvFTD groups even with comparable effect sizes and directionality

(bvFTD > AD > controls). The compromised mechanisms identified by

the model also accounted for the empirical dynamics in the out-of-

sample validation. These findings support the generalization of both

metaconnectivity alterations and biophysical mechanisms attributed

to thesedeficits. Expandingmodel generalization tounderrepresented,

non-stereotypical, and diverse samples is crucial for understanding

brain-phenotype associations.1–8,63 While future research should con-

sider validations using harmonized datasets, our findings underscore

the strength of our results when applied to complex and variable data

sources.

There are important limitations that should be addressed in future

work. First, although comparable or larger than similar studies,32,34,117

our results should be confirmedwithmoreparticipants from theGlobal

North and South. Still, the theoretical framework based on biophys-

ical modeling may allow us to make better use of small datasets

and improve the understanding of brain function by linking empiri-

cal features with biophysical mechanisms.30 We have validated our

results with diverse samples from the Global South, which are crucial

for better representation in global research.1,12 Nevertheless, future

works should compare stereotypical versus non-stereotypical patients

to test the generalizability and specificity of our findings and should

account for the differences between the Global North and South.

More specifically, we suggest including differences such as structural

inequalities6,7,132 such as the Gini coefficient, socioeconomic dispari-

ties (social determinants of health, socioeconomic status), educational

differences, and varied genetic admixtures, with a higher degree in

Latin America. Environmental factors like pollution levels also distin-

guish these regions. Incorporating these elements as parameters in

generative models11 could significantly enhance region-specific analy-

ses. Second, we used averaged empirical priors for model fitting, while

personalizedwhole-brainmodels are gaining acceptance for character-

izing brain dynamics in many brain conditions and disorders.133 Such

personalized models could lead to individualized therapies for restor-

ing healthy brain function,32,134 which is particularly relevant given the

high heterogeneity among dementia patients.135 Further, the current

group-level atrophy assessments should be expanded to individualized

approaches using weighted matrices and functional connectivity met-

rics, offering more personalized brain analysis. Therefore, we plan to
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CORONEL-OLIVEROS ET AL. 19

expand our model to perform single-subject characterization in future

work. Finally, the model could be further improved by incorporating

other empirical priors,32,33,39,101,35,136 such as metabolic Aβ and tau

brain aggregates, and neurogenetic maps, among others.11 This could

improve the precision of ourmodel in reproducing AD- and bvFTD-like

phenotypes.

Our results provide a well-rounded characterization of AD and

bvFTD brain phenotypes using a novel whole-brain semi-empirical

modeling framework. The findings establish a comprehensive compu-

tational framework and a multilevel research roadmap for advancing

dementia characterization, encompassing early stages, longitudinal

investigations, diverse dementia subtypes, and individualized trajec-

tory evaluations in clinical trials.
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