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ABSTRACT
We present a critical analysis of the existing phenomenological theories of the nematic twist-bend 
phase including the models proposed by Dozov and Selinger and the more general Landau de 
Gennes theory of L. Longa and W. Tomczyk. The role of the flexoelectric polarisation is considered 
in detail as well as the stabilisation of the nanoscale helical structure of the twist-bend phase. In 
particular we focus into the mechanism of the reduction of the bend elastic constant determined 
by negative flexoelectric corrections and discuss why the splay elastic constant is not reduced at 
all. A molecular theory of elasticity of bent-core nematics, which also enables one to describe the 
reduction of the bend elastic constant, is considered in detail as well. Finally we consider two 
different tensor orientational order parameters of the twist-bend phase which describe all kinds of 
uniaxial and local biaxial ordering of bent-core molecules in the twist-bend phase.
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1. Introduction

The discovery of the nematic twist-bend phase has been 
one of the most fascinating discoveries in the field of liquid 
crystals during the past few decades because this phase is 
a rare example of the spontaneous chiral symmetry break-
ing in a three-dimensional fluid without positional order. 
The twist-bend phase possesses a helical structure with 
a nanoscale pitch which indicates that it appears as 
a result of a strong instability in the homogeneous nematic 
ground state. The twist-bend phase (NTB) was indepen-
dently predicted by Meyer [1] and Dozov [2] and later 
discovered experimentally in the system of mesogenic 
dimers, in which rigid cores are connected by a flexible 
aliphatic chain [3–5], in bent-core liquid crystals (LC) [6,7] 
and in other systems with strongly bend molecules. It has 
also been established experimentally that in the NTB phase 

the nematic director describes the oblique helicoid with the 
extremely short pitch of approximately few molecular 
lengths [3–9].

Dozov [2] has assumed that in the system of bent- 
core molecules the bend elastic constant can vanish at 
a certain temperature leading to an elastic instability 
and the growth of bend deformations. The bend defor-
mation is accompanied by the twist one because the 
bend alone cannot fill the space while the oblique heli-
coidal structure can be homogeneous in the bulk with-
out any defects. The twist-bend phase has also been 
studied by computer simulations [7,10–12]. In particu-
lar, recent large-scale simulations by M. Wilson [11] 
have confirmed the predominant role of the bent mole-
cular shape compared with the role of chiral molecular 
conformations. It should be noted that the assumption 
about the dramatic decrease of the bend elastic constant 
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on approach to the twist bend phase has been confirmed 
experimentally by several authors [5,13–15].

An interesting phenomenological model of the NTB 
phase has been proposed by Selinger [16] who has 
assumed that the Frank elastic constants may be 
reduced significantly by the negative flexoelectric cor-
rections proportional to the squares of the flexoelectric 
coefficients. These corrections are negligibly small in 
conventional nematics due to the relatively small values 
of the flexoelectric coefficients. However, Selinger has 
taken into account that the flexoelectric coefficients may 
strongly increase with the decreasing temperature if the 
material is close to the transition into the virtual ferro-
electric phase. One notes that this ferroelectric phase 
may not be observed as it may be globally unstable with 
respect to other low-temperature phases. If the nematic 
is relatively close to the virtual ferroelectric phase, the 
corresponding component of nematic dielectric sus-
ceptibility can be very large and hence the flexoelectric 
corrections may be comparable to the bare elasticity 
coefficients.

A detailed Landau de Gennes theory of the NTB 
phase has recently been developed by Lech Longa et al. 
[17–20] taking into account biaxiality and considering 
an interaction between several helicity modes. In this 
way it has been possible to consider a number of possi-
ble structures including the NTB phase and to study 
their relative stability. In particular, the theory has been 
used to quantitatively fit the experimental data on the 
temperature variation of the main parameters of the 
NTB phase including the anomalously low bend elastic 
constant of the nematic above the transition into the 
NTB phase. The effect of the external electric field on 
the helical structure of NTB phase has also been con-
sidered [18].

The first molecular theory of the NTB phase has been 
developed by Greco and Ferrarini [12,21,22] taking into 
consideration the Maier-Saupe type interaction between 
different arms of the model bent-core molecules. In this 
theory the biaxiality is also taken into account and it has 
been emphasised that there is no unique definition of 
the director in the oblique helical structure [22] similar 
to the smectic C phase [23,24]. As a result a number of 
uniaxial and biaxial order parameters as well as the pitch 
of the helical structure have been calculated. The mole-
cular model of the NTB phase, proposed by Greco and 
Ferrarini, has been generalised by Longa and Tomchuck 
[25,26] taking into consideration the biaxiality of the 
arms of the bent core molecules.

In this paper we briefly review and critically analyse 
the existing phenomenological theory of the NTB phase 
with a special emphasis on the contribution of Lech 
Longa and his group.

2. Elementary model of Dozov

Dozov has predicted the NTB phase [2] long before it has 
been discovered experimentally. The theoretical model of 
Dozov is based on the assumption that the bend elastic 
constant K33 vanishes at some temperature which results 
in the spontaneous bend deformation. It has been recog-
nised in [2] that the pure spontaneous bend solution in 
the bulk is impossible without defects and is generally 
energetically unstable, and hence two other one- 
dimensional solutions have been proposed. The first 
solution corresponds to the one-dimensional splay bend 
phase which we do not consider here while the second 
solution is the continuous tilted helical structure of the 
director which corresponds to the NTB phase. It has also 
been assumed that the spontaneous bend is stabilised by 
the higher order elastic terms which are proportional to 
the fourth power of the director gradients. In particular, 
the director distribution in the NTB phase is assumed to 
be described by the following expression: 

nðxÞ ¼ ðcos θ; sin θ sin ϕ; sin θ cos ϕ; Þ; (1) 

where θ is the director tilt angle and ϕ ¼ qx.
Taking this into account the free energy density of 

the NTB phase is expressed as: 

FNTB ¼
1
2

K22θ4k2 þ K33θ2k2 þ Cθ2k4� �
; (2) 

where the last term which is proportional to k4 describes 
the combined effect of the higher order elastic terms.

Minimization of this free energy yields simple 
expressions for the tilt angle θ and the wave number k 
of the heliconical structure: 

θ ¼ �
K33

3K11
; k2 ¼ �

K33

3C
: (3) 

where K33 < 0. Both θ and k2 vanish at the second-order 
transition which occurs at the critical temperature 
when K33 ¼ 0.

It should be noted that no mechanism of the softening 
of the bend elastic constant is proposed in [2]. This is the 
main drawback of the Dozov model which is directly 
addressed in the more detailed theory developed by 
Shamid et al. [16] considered in the following section.

3. Phenomenological theory of Shamid, Dukkal 
and Selinger

In contrast to the Dozov model which takes into con-
sideration only elastic terms, the so-called Selinger 
model is based on the flexoelectric effect and hence the 
free energy of the NTB phase depends both on the 
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director deformations and on the polarisation induced 
by the bend deformation: 

F ¼
1
2

K11S2 þ
1
2

K22T2 þ
1
2

K33B2 þ
1
2

μP2 � e10ðP � SÞ

� e30ðP � BÞ þ
1
4

νP4 þ
1
2

κðÑPÞ2;

(4) 

where S ¼ nðÑ � nÞ is the splay deformation vector, 
B ¼ ðn� ðÑ� nÞÞ is the bend deformation vector and 
T ¼ ðn � ðÑ� nÞÞ is the twist deformation pseudosca-
lar. Here the first three terms represent the standard 
Frank elastic energy where K11;K22;K33 are the ‘bare’ 
elastic constants. The next two terms describe the flexo-
electric effect which describes a coupling between the 
polarisation P and the bend and splay deformation 
vectors. Here e10 and e30 are the splay and bend bare 
flexoelectric coefficients, respectively. The fifth term is 
the dielectric energy of the polar nematic 1

4 νP4 which is 
included to stabilise the value of the polarisation. 
Finally, the last term stabilises the spontaneous bend 
deformation.

The main advantage of the Selinger model is the clear 
mechanism of the reduction of bend and splay elastic 
constants determined by negative flexoelectric correc-
tions. Such a reduction can readily be described neglect-
ing for simplicity the last two terms in the free energy 
(4). Indeed minimisation of the reduced free energy (4) 
(without the last two terms) with respect to polarisation 
P yields 

P ¼ μ� 1e10Sþ μ� 1e30B; (5) 

Substituting the polarisation (5) back into reduced free 
energy (4) one obtains the effective elastic energy 

F ¼
1
2

~K11S2 þ
1
2

K22T2 þ
1
2

~K33B2; (6) 

where ~K11 and ~K33 are the effective splay and bend 
elastic constants with negative flexoelectric corrections: 

~K11 ¼ K11 �
1
2

μ� 1e2
10; ~K33 ¼ K33 �

1
2

μ� 1e2
30 (7) 

One notes that the flexoelectric corrections are nega-
tive and thus they diminish the values of the bend and 
splay elastic constants. One notes, however, that in 
conventional nematics the values of the flexoelectric 
coefficients are sufficiently small and hence the flexo-
electric corrections can be neglected. On the other 
hand, flexoelectric corrections may increase signifi-
cantly if the coefficient μ is sufficiently small, i.e. if 
the system is close to the transition into the virtual 
ferroelectric phase. This phase may actually not be 
observed as it may be globally unstable. It is well 

known that above the transition into the ferroelectric 
phase the temperature variation of the dielectric sus-
ceptibility is described by the Curie-Weiss law. Hence 
the coefficient μ, which has the meaning of the inverse 
dielectric susceptibility, can approximately be 
expressed as μ ¼ μ0ðT � T0Þ where T0 is the transition 
temperature into the virtual ferroelectric phase. 
Substituting the expression μ ¼ μ0ðT � T0Þ into (5) 
one concludes that the bend elastic constant vanishes 
when T ¼ Tc ¼ T0 � ð2μ0K33Þ

� 1e2
30.

The parameters of the NTB phase can now be deter-
mined by substitution of the director 
profile (1) and the polarisation profile 
PðxÞ ¼ ð0; � p cosðqxÞ; p sinðqxÞÞinto the free energy 
(4). One obtains 

F ¼
1
2

K22 sin4 θq2 þ
1
4

K33sin2ð2θÞq2 �
1
2

e30 sinð2θÞpq

þ
1
4

νp4 þ
1
2

μ0ðT � T0Þp2 þ
1
2

κp2q2:

(8) 

Minimisation of the free energy with respect to p; θ and 
q yields the following results: 

sin θ �
K33

2e30

μ0

K22

� �1=2

Tc � Tð Þ
1=2
; (9) 

p �
K2

33μ0

4e2
30

μ0

K22

� �1=2

Tc � Tð Þ; (10) 

q �
1
2

3μ0

2κ

� �1=2

Tc � Tð Þ
1=2
: (11) 

Thus the Selinger model describes the second-order 
transition into the NTB phase. Directly below the tran-
sition the period of the helical structure 2π=q is infinite 
and then it decreases as Tc � Tð Þ

� 1=2. The tilt angle in 
the NTB phase increases from zero as Tc � Tð Þ

1=2 and 
the polarisation increases linearly as Tc � Tð Þ. One can 
also clarify the origin of the elastic instability which 
induces the transition into the NTB phase directly 
from the free energy (8) by expanding the polarisation 
in terms of q. Indeed, assuming that the polarisation is 
small, minimisation of the free energy (4) yields at 
small q: 

p ¼
e30 sinð2θÞq

μ0ðT � T0Þ þ κq2

�
e30 sinð2θÞq
μ0ðT � T0Þ

1 �
κ

μ0ðT � T0Þ

� �

: (12) 
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Substituting the polarisation (12) back into Equation 
(8). and keeping only the quadratic terms in q and θ 
one obtains: 

F �
1
2

θ2 K33

ðT � T0Þ
T � T0 �

e2
30

K33μ0

� �

q2 þ . . .

¼
1
2

θ2 K33

ðT � T0Þ
T � Tcð Þq2 þ . . . (13) 

The elastic instability occurs when the coefficient in the 
q2 term vanishes i.e. when T ¼ Tc.

Thus the Selinger model provides a clear mechan-
ism of the transition into NTB phase related to the 
reduction of the bend elastic constant by negative 
flexoelectric corrections. There is also no need to 
take into consideration higher order elastic terms 
to stabilise the heliconical structure. At the same 
time the model is slightly oversimplified and as a 
result it does not describe quantitatively some prop-
erties including, in particular, the splay elastic con-
stant K11. Indeed, the effective splay elastic constant 
(see Equation (7)) is given by 
~K11 ¼ K11 �

1
2 ðμ
0ðT � T0ÞÞ

� 1e2
10. One notes that the 

flexoelectric correction to the splay constant also 
diverges when T ! T0 and hence K11 should also 
decrease with the decreasing temperature even 
when the splay flexoelectric coefficient e10 is smaller 
then the bend coefficient e30. Experimentally, how-
ever, the temperature variation of K11 in bent-core 
nematics, which exhibit the NTB phase, is similar to 
the one in conventional calamitic nematics [13–15]. 
Thus one needs a more detailed theory to describe 
the behaviour of all elastic constants above the NTB 
phase. In the next section we summarise the mole-
cular theory of elasticity of bent-core nematics and 
in Section 5 we discuss the Q-tensor theory devel-
oped by Lech Longa and his group.

4. Molecular theory of elasticity of bent-core 
nematics

A molecular theory of elasticity of nematic LCs can 
be developed [27–29] using the density functional 
approach (see, for example [30–32]). In this 
approach, the free energy of a liquid crystal, F, is 
a function of the orientational distribution function 
for biaxial molecules f ðxÞ where x ¼ ða; bÞ and where 
ρ is the number density of molecules, the unit vec-
tors a and b are in the direction of the long and 
short molecular axis respectively. The free energy can 
then be expanded around its value in the isotropic 
phase in terms of Δf ¼ f � f0 where f0 ¼

1
8π2 is the 

one particle distribution function in the isotropic 
phase (see [28] for more details): 

F ¼ ρkBT
ð

f ðxÞ ln f ðxÞΛ½ � dxdr

�
1
2

kBTρ2
ð

C2Iðx1; r12; x2ÞΔf ðx1ÞΔf ðx2Þdr12dx1dx2dr1; (14) 

where r12 is the intermolecular vector and 
C2Iðx1; r12; x2Þ is the direct pair correlation function of 
the isotropic phase.

The direct pair correlation function can be 
approximated in several different ways including 
the so called Parsons-Lee approximation [33,34]. In 
this approximation one assumes that the 
direct correlation function can be written in the 
scaled form, i.e. C2Iðx1; r12; x2Þ ¼ C2ðr12=σ12Þ where 
σ12 ¼ σ12ðx1; u12; x2Þ is the minimum distance of 
approach for two rigid molecules ʹ1ʹ and ʹ2ʹ which 
depends on their relative orientation, and where the 
unit vector u12 ¼ r12=r12.

Simple interpolation (between three orientations) of 
σ12 for two uniaxial hard spherocylinders, of diameter d 
and with L being the length of the cylindrical part, is the 
following 

σ12 ¼ d þ
L � d

2
ða1 � u12Þ

2
þ ða2 � u12Þ

2� �
: (15) 

In the nematic phase composed of bent-core molecules 
one can employ the following modification of the 
Parsons-Lee approximation [27]. In this case the pair 
correlation function for bent-core molecules i and j 
composed of the two uniaxial arms rigidly joined 
together at a bend angle α can be written as a sum of 
the correlation functions between different arms using 
the Parsons-Lee approximation: 

C2Iðxi; rij; xjÞ �
X

ν;μ
C2

rνμ

σνμ

� �

(16) 

where σνμ ¼ σνμðai;ν; uνμ; aj;μÞ. Here ai;ν is the unit vec-
tor along the primary axis of the arm ν of the molecule i, 
aj;μ is the primary axis of the arm μ of the molecule j, rνμ 

is the vector between the centre of the arm ν of the 
molecule i and the centre of the arm μ of the molecule 
j and uνμ ¼ rνμ=rν;μ.

Introducing the new variables r0νμ ¼ rνμ=σνμ 
the second term in Equation (14) can be written in the 
form: 

H ¼ �
1
2

kBTρ2
ð

dr1
X

ν;μ

ð1

1
C2ðr0νμÞðr0νμÞ

2 

ð

Δf ðx1ÞΔf ðx2Þσ3
νμdx1dx2

� �

dr0νμduνμ; (17) 

where only the product Δf ðx1ÞΔf ðx2Þσ3
νμ depends on 

the orientation of the two molecules x1; x2. One notes 
that Equation (17) describes the free energy of an 
inhomogeneous nematic phase which is the sum of 
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the free energy of the homogeneous state and the 
distortion energy. The distortion free energy can be 
separated by expanding the orientational distribution 
function f ðx;nðr2ÞÞ at the position r2 around the 
point r1: 

f ðx;nðr2ÞÞ ¼ f ðx;nðr1ÞÞ þ ðr12 � ÑÞf ðða � nÞ2; ðb � nÞ2Þ

þ
1
2
ðr12 � ÑÞ

2f ðða � nÞ2; ðb � nÞ2Þ þ . . .

(18) 

taking into account that only quadratic terms contribute 
to the free energy of nonchiral nematics Equation (18) 
can be expressed as 

f ðx;nðr2ÞÞ � f ðx; nðr1ÞÞ �
1
2
@f
@n
� ðr12 � ÑÞ

2nþ
1
2
@2f
@n2

: ððr12 � ÑÞnÞ2:
(19) 

Substituting r12 ¼ rνμσνμ and u12 ¼ uνμ into Equations 
(19) and (17), one obtains the following expression for 
the free energy of the inhomogeneous nematic: 

F ¼ F0 þ

ð

FdðrÞdr; (20) 

where F0 is the free energy of the homogeneous phase 
and the distortion free energy Fd is given by 

FdðrÞ ¼ �
1
2

kBTρ2λ
X

ν;μ

ð

σ5
νμf ðx1Þ

@f
@n
� ðuνμ � ÑÞ

2n
�

þ
@2f
@n2 : ððuνμ � ÑÞnÞ2Þdx1dx2duνμ; (21) 

where 

λ ¼ �
ð1

1
C2ðrÞr5dr:

In Equation (21) the function σνμ depends only on 
ðaν � uνμÞ and ðaμ � uνμÞ and thus it can be expanded in 
Legendre polynomials Pnðaν � uνμÞ and Pnðaμ � uνμÞ. The 
lowest order term in the expansion of σ5

νμ which con-
tributes to the elastic constants can be expressed as [27] 
20
9 d3ðL � dÞ2P2ðaν � uνμÞP2ðaμ � uνμÞ. Substituting this 
expression into Equation (21), averaging over the orien-
tations of the two molecules and integrating over the 
intermolecular vector r12 one obtains relatively simple 
expressions for the elastic constants of bent core 
nematics [27]:  

K11 ¼ � kBT
π
5

ρ2λκ~S2; (22) 

and 

K22 ¼ K33 ¼ � kBT
π
15

ρ2λκ~S2; (23) 

where κ ¼ 20d3ðL � dÞ2=9. Here ~S is the orientational 
order parameter of the single arm i of the bent-core 
molecule which depends on the bend angle α: 

~S ¼ hP2ðai � nÞi

¼
3
2
hða � nÞ2i cos 2αþ

3
2
hðb � nÞ2i sin 2α �

1
2

¼ S cos 2αþ
1
2
ð1 � Sþ DÞ sin 2α; (24) 

where ai ¼ a cos αþ b sin α is the unit vector in the 
direction of the long axis of an arm i and where 
S ¼ hP2ða � nÞi is the nematic order parameter of the 
whole molecule while D ¼ hðb � nÞ2i � hðc � nÞ2i are the 
biaxiality order parameter of the biaxial bent-core mole-
cule in the uniaxial nematic phase, and c is the second 
short molecular axis.

One notes that Equations (22,23) describe the so- 
called bare elastic constants, i.e. the ones without flexo-
electric corrections. The temperature variation of the 
reduced bare elastic constants Kred

ii ¼
d

� λtJðρ�Þ2
Kii is pre-

sented in Figure 1, where the nondimensional density 
ρ� ¼ ρd2L, the nondimensional temperature t ¼ kBT

J and 
where J is the Maier-Saupe interaction constant. One 
can readily see that the bare elastic constants are 
decreasing with the increasing bend angle α although 
their temperature variation is qualitatively very similar 
to the one for rod-like molecules. This means that the 
polar molecular shape itself does not lead to any 
decrease of the elastic constants with the decreasing 
temperature if polar effects are not taken into account.

Finally it should be noted that in this approxima-
tion K22 ¼ K33 which is related to the fact that we 

Figure 1. (Colour online) Temperature variation of the bare bend 
nondimensional elastic constant K33 (i.e. Without flexoelectric 
correction) for different values of the bend angle α: 0 (red), π=18 
(green), π=9 (orange), π=6 (blue). The nondimensional tempera-
ture t ¼ kBT

J where J is the Maier-Saupe interaction constant.
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have only taken into account the quadratic contribu-
tions in a. It is well known that the difference between 
K22 and K33 is determined by the higher orientational 
order parameters including, in particular, hP4ða � nÞi. 
The corresponding contribution has been evaluated 
in [29].

5. Reduction of elastic constants by 
flexoelectric corrections in bent-core nematics

In the distorted liquid crystal the orientational distribu-
tion function is modified, and in the case of small 
orientational deformation it contains a small correction 
hða; b;nÞ which is generally polar: 

f ða; b;nÞ ¼ f0ða; b;nÞ 1þ hða; b;nÞð Þ; (25) 

where f0ða; b;nÞ is the orientational distribution func-
tion of the undistorted nematic phase and the small 
correction h ¼ hf þ hp is a sum of two terms. The 
function hf ,Ñαnβ is proportional to the gradients of 
the director while the function hp,hbi is proportional 
to the polar order parameter hbi which determines the 
polarisation due to the polar ordering of short molecu-
lar axes. One notes that another polar order parameter 
hai ¼ 0 because a is always Equationuationuivalent to 
� a due to the C2v symmetry of a bent-core molecule. 
Then the average molecular dipole in the distorted 
nematic phase can be expressed as: 

< d > ¼
ð

df0ða; b;nÞhða; b;nÞdbda; (26) 

where the molecular dipole 

d ¼ μ?b: (27) 

Here the polar correction to the orientational distribu-
tion function hða; b;nÞ should be determined using 
a corresponding molecular-statistical theory.

The one-particle distribution function of the dis-
torted liquid crystal can be determined by minimisation 
of the free energy with respect to f ðωÞ taking into 
account the normalisation condition. One obtains 

δ F þ λ
ð

ρðωÞdω
� �

δρðωÞ ¼ � kBTC1ðωÞ þ kBT ln f ðωÞ þ Λþ λ ¼ 0;

(28) 

where the lagrange multiplier λ is determined from 
the normalization condition, f ðωÞ is the one-particle 
distribution of the distorted nematic, given by 
Equation (25) and C1ðωÞ is the one-particle correla-
tion function. Let us now perform the functional 
Taylor expansion of the function C1ðρðωÞÞ in the 
right hand side of Equation (28) about the local dis-
tribution f0ðωÞ: 

C1ðρÞ ¼ C1ðρ0ðωÞÞ þ ρ
ð

C2ðρ0ðω1Þ; ρ0ðω2ÞÞ f ðω2Þð

� f0ðω2ÞÞdω2 þ . . . ; (29) 

where C2ðρ0ðω1Þ; ρ0ðω2ÞÞ is the pair direct correla-
tion function. One notes that he higher order terms 
in the expansion (which are determined by higher 
order direct correlation functions) do not contri-
bute to the flexoelectric effect because they are 
proportional to the higher powers of 
f ðω2Þ � f0ðω2Þð Þ and hence to the higher powers of 

the orientational deformation.
The difference f ðω2Þ � f0ðω2Þð Þ in the second term in 

the right hand side of Equation (29) can be expressed as 
f ðωÞ � f0ðωÞð Þ ¼ f0ðða � nÞ2; ðb � nÞ2ÞhðωÞ by using 

Equation (25). Performing the gradient expansion of 
the function f0ðða � nÞ2; ðb � nÞ2Þ to the first order one 
finally obtains: 

f ðωÞ � f0ðωÞð Þ ¼ ðr12 � ÑÞf0ðða � nÞ2; ðb � nÞ2Þ
þ f0ðða � nÞ2; ðb � nÞ2ÞhðωÞ: (30) 

Substituting Equation (30) into Equation (29) and then 
into the general Equation (28) and expanding ln f in 
Equation (28) to the first order of the small function h 
one obtains the following integral Equationuationuation 
for the correction hðωÞ: 

hðx1Þ ¼ � ρòC2ðx1; x2; r12Þðr12 � ÑÞf0ðða � nÞ2; ðb � nÞ2Þdx2dr12�

� ρòC2 x1; x2; r12ð Þf0ðða � nÞ2; b � nÞ2
� �

h x2ð Þdx2dr12;
(31) 

where x ¼ ða; bÞ.
In the general case the correction hða; bÞ is a sum of 

the ‘symmetric’ and the ‘antisymmetric’ parts: 

hða; bÞ ¼ hsða; bÞ þ haða; bÞ; (32) 

In this section we assume that the direct correlation 
function can be expressed as 

C2Iðx1; r12; x2Þ �
X

ν;μ
C2

rνμ

σνμ

� �

�
1

kBT
Θðr12 � dÞUddðb1; b2; r12Þ;

(33) 

where the first term is a sum of the correlation func-
tions between different arms of the two molecules 
expressed in the Parsons-Lee approximation (see 
Equation (16)), Θðr12 � dÞ is the step function which 
describes the steric cut-off and the second term is the 
dipole-dipole interaction potential for bent-core 
molecules.

Combining Equations (31–33) the polar correction to 
the orientational distribution function of the polar bent- 
core nematic can be expressed as: 
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haðb1; a1Þ ¼ �
4π

3kBT
μ?ðb1 � PÞ �

1
kBT

μ?ðb1 � EÞ

�
ρ

12
L2ðL � dÞλ3

ð

ða1 � uÞ2 þ ða2 � uÞ2
� �

sin2 αðb1 � b2Þf0ðða2 � nÞ2; ðb2 � nÞ2Þhðb2; a2Þ

da2db2du �
1
2

ρLdðL � dÞ2λ2

ð

P2ða2 � uÞ

P2ða1 � uÞ ða1 � uÞ � ða2 � uÞð Þðu � ÑÞ

f0ðða2 � nÞ2; ðb2 � nÞ2Þda2db2du:
(34) 

Now the polarisation P can be expressed as: 

P ¼ � ρ
ð

μ?bf0ðða � nÞ2; ðb � nÞ2Þhðb; aÞdadb

¼ �
π
3

ρμ2
?

2kBT
P �

ρμ2
?

2kBT
E �

1
2

ρ2μ?λ2 sin αLdðL � dÞ~S2

ð
1
2

1
3
ð2þ SÞu � Snðn � uÞ

� �

P2ðn � uÞðu � ÑÞP2ðn � uÞdu

þ
1

24
ρλ3 sin2 αL2ðL � dÞ~S

ð
1
3
ð2þ SÞP � Snðn � PÞ

� �

ðn � uÞ2du;

(35) 

where ðu � ÑÞP2ðn � uÞ ¼ 3ðn � uÞðu � ÑÞðn � uÞ. Here we 
have decoupled the averages over short and long mole-
cular axes (thus neglecting the corresponding third rank 
polar order parameters). In this case 
hbαbβi ¼ ðδαβ � haαaβiÞ=2 ¼ ð1=3Þð2þ SÞδαβ � Snαnβ

� �

if the order parameter D ¼ 0.
Let us assume for simplicity that the director 

varies slowly in the ðx; zÞ plane and that the local 
director n k z. Then in the case of pure splay the 
flexoelectric polarization P k n k z and the only non-
zero component of splay is Ñxnx. In this case 
P ¼ Pz ¼ ~e11Ñxnx, where ~e11 is the effective splay 
flexo coefficient. Substituting these components into 
Equation (35) and integrating over u one obtains the 
following expression for ~e11: 

~e11 ¼ e11 1 �
1
3
ð4πχ0 � 2ð1þ 2SÞA0 sin2ðαÞÞ

� �� 1

;

(36) 

where 

A0 ¼
ρλ3

108
L2ðL � dÞ ¼

ρ�λ3

108
LðL � dÞ

d2 ;
ε

108
LðL � dÞ

d2 ;

(37) 

and 

χ0 ¼
ρμ2
?

kBT
¼

ρμ2
?

tJ
;

ψ0
t
: (38) 

Here e11 is the so-called bare flexoelectric coefficient 
which is obtained by neglecting polar intermolecular 
interactions (that is the last two terms in the denomi-
nator in Equation (41): 

e11 ¼ �
8π
315

ν sinðαÞ~S2ð1 � SÞ: (39) 

where 

ν ¼
2
3

ρ2λ2μ?dLðL � dÞ2: (40) 

In the case of pure bend P k x?n and the only nonzero 
component of bend is Ñznx. Here P ¼ Px ¼ ~e33Ñznx, 
where ~e33 is the effective bend flexo coefficient. 
Substituting these components into Equation (35) one 
obtains the following expression for ~e33: 

~e33 ¼ e33 1 �
1
3
ð4πχ0 � ð2þ SÞA0 sin2ðαÞÞ

� �� 1

; (41) 

where e33 is the undressed bend flexo coefficient: 

e33 ¼ �
8π
315

ν sinðαÞ~S2ð2þ SÞ: (42) 

Finally the effective elastic constants with negative 
flexoelectric corrections are given by the following 
Equationuationuations: 

~K11 ¼ K11 �
1
2

1 �
1
3
ð4πχ0 � 2ð1þ 2SÞA0 sin2ðαÞÞ

� �� 1

; e2
11; (43) 

~K33 ¼ K33 �
1
2

1 �
1
3
ð4πχ0 � ð2þ SÞA0 sin2ðαÞÞ

� �� 1

; e2
33; (44) 

where the bare elastic constants are given by Equations 
(39 and 42), and χ0 is expressed by Equation (38).

As discussed in the previous section, the bare elastic 
constants are not renormalised by the flexoelectric 
polarisation and possess a standard temperature depen-
dence, i.e. grow monotonically with the decreasing tem-
perature. This growth is mainly determined by the 
increase of the nematic order parameter S. In contrast, 
the effective bend elastic constant with the flexoelectric 
correction is rather small everywhere in the nematic 
phase, decreases with the decreasing temperature and 
reduces to zero as shown in Figure 2. The behavior of 
the bend constant is strongly effected by the nondimen-
sional dipole-dipole interaction parameter ψ0 ¼ ρμ2

?=J 
which is proportional to the square of the molecular 
transverse dipole. At the same time the temperature 
variation of the effective splay elastic constant, pre-
sented in Figure 3, is qualitatively similar to the typical 
variation of the splay constant for conventional 
nematics. This behavior is very similar to the one 
observed experimentally [13].
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6. Landau – de Gennes theory of the NTB phase 
proposed by Lech Longa

The most general Landau – de Gennes theory of the 
NTB phase has been proposed by Longa and 
Tomchuk [20] based on the biaxial Q-tensor 
approach. Longa and Tomczuk have also considered 
a competition between different modulated polar 
nematic phases and constructed the corresponding 
phase diagrams. In this theory the authors do not 
use the ansats which describe the helical distribution 
of the director but consider a general form of the 
biaxial tensor order parameter QijðzÞ which is con-
sistent with the symmetry of the one-dimensional 
polar distorted nematic phase.

One notes that in any one-dimensional periodic 
nematic phase with tilted director the local symmetry 
is characterised by the C2h point symmetry group if the 
phase is nonchiral and by the C2 group if the phase is 
chiral. In both cases there exists only one local symme-
try axis h which is normal to the wave vector k of the 
periodic structure and to the tilt plane. Thus the unit 
vector h must be the primary axis of any 
macroscopic second rank tensor including the tensor 
order parameter Qij. Taking this into account the tensor 
order parameter Qij can be expressed as a sum of three 
mutually orthogonal tensors (which is a slightly simpli-
fied form of Equation (6) in [20] suitable for the NTB 
phase): 

Qij ¼ Skðkikj � δij=3Þ þ
1
2

Pkðcicj � hihjÞ

þ
1
2

Cðkicj þ cikjÞ; (45) 

where the unit vector c is perpendicular to k and h, and 
where Sk;Pk and C are the three independent orienta-
tional order parameters of the periodic nematic phase. 
Here Sk is the uniaxial orientational order parameter 
with respect to the wave vector k, Pk is the biaxial order 
parameter in the plane perpendicular to k and C is the 
tilt order parameter which specifies the tilt of the direc-
tor. These order parameters are discussed in detail in 
[23] in the case of the Smectic C phase and considered 
also in the following section.

In the NTB phase the unit vectors h and c rotate 
about the z axis which is parallel to k: 

h ¼ ðcosðkz þ ϕÞ; sinðkz þ ϕÞ; 0Þ;
c ¼ ðsinðkz þ ϕÞ; � cosðkz þ ϕÞ; 0Þ; (46) 

where ϕ is the phase.
Now the Landau de Gennes free energy of the NTB 

phase can be expressed in terms of the order parameter 
Q and its gradients and the polarisation P induced by 
the gradients of Q: 

F ¼
ð

fQb þ fQel þ fP þ fQPð Þ; (47) 

where fQb is the bulk free energy density, fQel is the 
elastic energy and the last two terms fP and fQP depend 
on the polarisation.

The bulk free energy contains the scalar invariants 
composed of the tensor order parameter Qμ;ν. There exists 
only two independent invariants I2 ¼ trðQ2Þ and 
I3 ¼ trðQ3Þ, and hence fQb can be written in the following 
form where terms up to the sixth order in Q are taken into 
account [20]:  

Figure 2. (Colour online) Temperature variation of the effective 
bend nondimensional elastic constant K33 (i.e. With flexoelectric 
correction) for different values of the nondimensional dipole- 
dipole interaction parameter ψ0 from the top : 0.003 (blue), 
0.006 (orange), 0.009 (green) and for α ¼ π=6. The nondimen-
sional temperature t ¼ kBT

J where J is the Maier-Saupe interac-
tion constant.

Figure 3. (Colour online) Temperature variation of the effective 
splay nondimensional elastic constant K11 (i.e. With flexoelectric 
correction) for different values of the nondimensional dipole- 
dipole interaction parameter ψ0 from the top : 0.003 (blue), 
0.006 (orange), 0.009 (green) and for α ¼ π=6. Note that all 
three curves coincide. The nondimensional temperature t ¼ kB T

J 
where J is the Maier-Saupe interaction constant.
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fQb ¼ a0
ðT � T�Þ

TNI
I2 � bI3 þ cI2

2 þ dI2I3 þ eðI3
2 � 6I2

3Þ þ fI2
3 ; (48) 

where TNI is the nematic-isotropic transition 
temperature.

The elastic energy fQel contains a large amount of 
higher order terms composed of the derivatives Qμ;ν;α 

and the tensor Qμ;ν itself. One notes that the simplest 
approximation for the elastic energy contains only 
two second-order terms Lð2Þ1 Qαβ;γQαβ;γ and 
Lð2Þ2 Qαβ;βQαγ;γ. This approximation is sufficient for 
many purposes but the main disadvantage is that it 
yields the same values for splay and bend elastic 
constants. In the Longa’s theory [20] three additional 
third order terms of the type Q@Q@Q are taken into 
consideration in order to lift the degeneracy between 
bend and splay deformations. In addition three 
fourth order terms QQ@Q@Q are also taken into 
account to stabilise the inhomogeneous structure of 
the phase. As a result the elastic energy is expressed 
as [20]:  

fQel ¼ Lð2Þ1 Qαβ;γQαβ;γ þ Lð2Þ2 Qαβ;βQαγ;γ (49) 

þ Lð4Þ14 λ2Qμν;ν þ QαβQαμ;β
� �2 (50) 

þ Lð4Þ6 λ3Qβν;ν þ QαβQαμ;μ
� �2 (51) 

þ Lð4Þ7 λ4Qβμ;ν þ QαβQαμ;ν
� �2

: (52) 

where λ2 ¼ Lð3Þ2 =2Lð4Þ14 ; λ3 ¼ Lð3Þ3 =2Lð4Þ6 ; λ4 ¼ Lð3Þ4 =2Lð4Þ7 .
Finally the polarisation dependent terms fp and fPQ 

are given by 

fP ¼ ap0
ðT � TPÞ

TNI
P2 þ Λ4P4 þ bPðÑPÞ2; (53) 

fPQ ¼ � εPP � Ñ �Qð Þ � ΛQPPαQαβPβ: (54) 

One notes that the last term in Equation (55) is not 
included into the free energy employed in the Selinger 
model. This term, however, is very important as it 
enables one to understand why the splay elastic constant 
is not reduced in contrast to the bend one. Indeed, let us 
neglect for simplicity the last two terms in Equation 
(54), assume that the tensor Q is uniaxial and then 
minimise the sum fP þ fPQ with respect to polarization. 
One obtains 

P ¼ Ps þ Pb; (55) 

Pb ¼
εPSðn � ÑÞn

2ap0ðT � TP � ΔTPÞ=TNI
; (56) 

Ps ¼
εPSnðÑ � nÞ

2ap0ðT � TP þ 2ΔTPÞ=TNI
; (57) 

where ΔTP ¼ ΛQPSTNI=6ap0. Substituting Equations (57 
and 58) back into the reduced free energy 
fPQ þ ap0

ðT� TPÞ

TNI
P2 one obtains the following flexoelec-

tric corrections to the bend and splay elastic constants: 

ΔK33 ¼ �
ε2

PS2

2ap0ðT � TP � ΔTPÞ=TNI
; (58) 

ΔK11 ¼ �
ε2

PS2

2ap0ðT � TP þ 2ΔTPÞ=TNI
; (59) 

One can readily see that the corrections to splay and 
bend elastic constants diverge at different temperatures 
TPb ¼ TP þ ΔTP and TPb ¼ TP � 2ΔTP, respectively, 
where TPb ¼ TPS þ 3ΔTP. If ΔTP is sufficiently large 
the bend flexoelectric correction ΔK33 may reduce the 
total bend elastic constant to zero at some temperature 
while splay correction remains negligibly small. In this 
case the temperature variation of the splay elastic con-
stant is qualitatively similar to that in conventional 
calamitic nematics which corresponds to the experi-
mental data.

In the frame work of the general Landau-de Gennes 
theory developed by Longa et al. the elastic constants are 
also renormalised by the flexoelectric effect although in 
a more complicated way. In particular, different elasti-
city coefficients in Equation (49) are renormalised in 
a different way: 

Lð2Þ2;eff ¼ Lð2Þ2 �
ε2

P
aP

; (60) 

Lð3Þ3;eff ¼ Lð3Þ3 �
ΛQPε2

P
4a2

P
; (61) 

Lð4Þ6;eff ¼ Lð4Þ6 �
Λ2

QPε2
P

4a3
P

; (62) 

where aP ¼ ap0
ðT� TPÞ

TNI
.

Finally the results of the Landau de Gennes theory 
have been used to fit the experimentally observed tem-
perature variation of several material parameters of 
nematic LCs which exhibit the NTB phase. It has been 
showm that the variation of all three elastic constants in 
the nematic phase above the NTB phase can be 
described by the general Landau theory in the quantita-
tive way. One notes that the theory simultaneously 
describes the reduction of the bend elastic constant 
and the ‘classical’ behaviour of the splay and twist 
constants.
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7. Uniaxial and biaxial order parameters of the 
NTB phase

The NTB is intrinsically locally biaxial because of 
the deviation of the director n from the wave vector 
k of the helical structure. Thus any 
macroscopic second rank tensor after diagonalisa-
tion in the NTB phase can be expressed as a sum 
of the uniaxial and the biaxial parts. In particular 
the averaged molecular tensor haiaj � ð1=3Þδiji can 
be written in the form: 

Qij ¼ hðaiaj � ð1=3ÞδijÞi

¼ Sðninj � δij=3Þ þ
1
2

Pðmimj � hihjÞ; (63) 

where P is the biaxial order parameter. One notes 
that only one eigenvector h of the tensor Qij is fixed 
by the symmetry of the NTB phase as it is parallel to 
the C2 symmetry axis which is perpendicular to the 
tilt plane. The other two eigenvectors n and m are 
parallel to the tilt plane but their orientation is not 
specified by any symmetry. As a result the primary 
axes of different macroscopic tensors are not neces-
sarily parallel in the NTB phase due to its low sym-
metry. In particular the orientation of the primary 
axis (i.e. the director n) is not uniquely defined and is 
generally different for different tensors. As a result 
the NTB phase may be characterised by a number of 
‘directors’ and hence by different tilt angles depend-
ing of how many macroscopic tensors are taken into 
consideration.

Taking this uncertanity into account it may be more 
consistent to express all macroscopic tensors in the 
same universal frame based on the wave vector q and 
the unit vector h?q in the direction of the C2h symme-
try axis. In this frame, the tensor order parameter Qij is 
not diagonal, and can be expressed as: 

Qij ¼ Skðkikj � δij=3Þ þ
1
2

Pkðcicj � hihjÞ

þ
1
2

Cðkicj þ cikjÞ; (64) 

where Sk; Pk and C are the three independent orienta-
tional order parameters of the NTB phase.

Here the order parameter Sk characterises the order-
ing of long molecular axes along the wave vector k and 
the order parameter Pk describes the biaxiality of dis-
tribution of long molecular axes in the plane perpendi-
cular to k. Finally, C is the tilt order parameter which 
describes the tilt of the axes of the tensor Q with respect 
to k. One notes that both order parameters C and Pk 
vanish in the uniaxial smectic A phase where the tensor 
Qij is uniaxial and orthogonal in the k frame. It can be 

shown that at small tilt angles Pk / Θ2 and hence Pk is 
the secondary order parameter of the Smectic A – 
Smectic C transition which describes the biaxiality of 
the phase.

Finally the vector tilt order parameter C can be 
defined as 

Ci ¼ εijkQkj ¼ Cðc� kÞi; (65) 

i.e. C ¼ Cðc� kÞ which describes both the direction 
and the magnitude of the tilt.

One notes that the three terms in Equation (66)) are 
mutually orthogonal. Hence the order parameters Sk;Pk 
and C can be expressed as: 

Sk ¼
3
2

Qijðkikj �
1
3

δijÞ ¼
3
2

Sðcos 2Θ �
1
3
Þ þ

3
4

P sin 2Θ;

(66) 

Pk ¼ Qijðcicj � hihjÞ ¼ S sin 2Θþ
1
2

Pðcos 2Θþ 1Þ;

(67) 

C ¼ Qijðcikj þ kicjÞ ¼ S sin 2Θ �
1
2

P sin 2Θ; (68) 

where we have used Equation (65) and have taken into 
account that n ¼ k cos Θþ c sin Θ 
and m ¼ � k sin Θþ c cos Θ.

Solving the system of Equationuationuations 
Equation (68) with respect to S;P and Θ one obtains 
the following expressions for the tilt angle Θ and the 
order parameters S and P in terms of the order para-
meters Sk; Pk and C: 

tan 2Θ ¼
C

Sk � 0:5Pk
; (69) 

S ¼
1
4

Sk þ
3
8

Pk þ
3 C

4 sin 2Θ
; (70) 

P ¼
1
2

Sk þ
3
4

Pk �
C

2 sin 2Θ
: (71) 

At small tilt angles tan 2Θ � 2Θ and Pk / Θ2. It follows 
then from the first Equationuationuation above that in 
this limit the scalar tilt order parameter C � 2SΘ is 
indeed proportional to the tilt angle Θ while the biaxial 
order parameter is very small.

One notes that this description is very similar to the 
one used in the theory of Smectic C* LCs [23,35] 
because the point symmetry is the same. It should be 
noted also that from the molecular theory point of view 
it is more convenient to use the tilt order parameter C 
because it is explicitly expressed as a well defined 
ensemble average of the corresponding molecular 
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expression while the tilt angle Θ cannot be expressed in 
this way.

One notes also that in this section the tensor order 
parameter Q is defined as a statistical average of the 
molecular invariant tensor aiaj � δij=3. At the same 
time the NTB phase is composed of strongly biaxial 
molecules and hence it is also possible to consider the 
independent molecular invariant tensor bibj � cicj and 
the corresponding independent tensor order parameter 
Bij ¼ hðbibj � cicjÞi which can be expressed in the same 
general form as Equation (66): 

Bij ¼ Dkðkikj � δij=3Þ þ
1
2

Bkðcicj � hihjÞ

þ
1
2

CBðkicj þ cikjÞ: (72) 

Here the order parameter Dk describes the uniaxial 
ordering of short axes of bent core molecules along the 
wave vector k, the order parameter Bk specifies the 
biaxial ordering of short molecular axes in the plane 
perpendicular to k, and the order parameter CB 
describes the tilt of the tensor Bij with respect to k.

It is reasonable to assume (and this is confirmed by 
existing experimental data) that the nematic order para-
meter S in the NTB phase is rather high. In this case the 
biaxial ordering of primary molecular axes should be 
week and hence Pk � Sk. At the same time the uniaxial 
ordering of short axes of bent-core molecules should 
also be week and therefore Dk � Sk as well. Thus in the 
first approximation it is possible to neglect the order 
parameters Pk and Dk and express the tensors Qij and Bij 

in the simplified form: 

Qij � Skðkikj � δij=3Þ þ
1
2

Cðkicj þ cikjÞ; (73) 

Bij �
1
2

Bkðcicj � hihjÞ þ
1
2

CBðkicj þ cikjÞ: (74) 

In this approximation the tensor order parameter Qij 
mainly describes the uniaxial ordering of long molecular 
axes while the tensor Bij describes the biaxial ordering of 
short axes. Simultaneously the parameter C specifies the 
tilt of the primary director (the primary axis of the 
tensor Qij) according to the Equationuationuation 
tan 2Θ � C=Sk while the parameter CB determines 
the second tilt angle ΘB, i.e. the tilt of the axes of Bij.

Taking this analyses of the order parameters into 
account one concludes that it may be more convenient 
to develop the general Landau – de Gennes theory of the 
NTB phase in terms of the two independent tensor 
order parameters Qij ¼ hðaiaj � δij=3Þi and 
Bij ¼ hðbibj � cicjÞi rather then in terms of the single 
tensor Qij which formally includes all types of 

orientational order. The advantage of such an approach 
is that one can readily separate the effects of unixial and 
biaxial ordering of bent-core molecules on the structure 
and properties of the NTB phase and similar inhomo-
geneous phases. This kind of theory, however, is still to 
be developed.

8. Discussion

All existing phenomenological theories of the NTB 
phase are based on the assumption (confirmed by 
experimental data) that the bend elastic constant 
vanishes at some temperature triggering an instability 
of the homogeneous nematic phase. The generally 
accepted mechanism of such an instability is related to 
the flexoelectric polarisation, proportional to the bend 
and splay deformations which generally results in the 
negative flexoelectric corrections to the bend and splay 
elastic constants of the nematic phase. This mechanism 
has been first considered in detail by Selinger et al. [16], 
and a more general Landau- de Gennes theory has been 
developed later ny Longa et al. [20]. In particular, the 
theory of Longa et al. enables one to explicitly explain 
why in the nematic composed of bent-core molecules 
only the bend elastic constant is reduced while the 
variation of the splay elastic constant is qualitatively 
similar to the one observed in conventional calamitic 
nematics. Similar ideas have also been employed in the 
molecular-statistical theory of elasticity of bent-core 
nematics [27,29] which also enables one to understand 
why only the bend elastic constant is reduced. The 
theory of Longa et al. also takes into consideration the 
local biaxiality of the NTB phase and has been used to 
predict and describe the whole family of one- 
dimensional inhomogeneous nematic phases [20]. 
Finally, the experimentally determined temperature var-
iations of the elastic constants,tilt angle in the NTB 
phase and the pitch of the nanoscale helical structure 
have been fitted qualitatively using the results of this 
theory.

From our point of view the important uncertanity 
of the existing phenomenological theory of the NTB 
phase is related to the stabilisation of the helical 
structure. When the bend elastic constant vanishes, 
the corresponding director deformations begin to 
grow and they should be stabilised by some higher 
order terms resulting in the heliconical structure. In 
the first model of the NTB phase proposed by Dozov 
[2] it was assumed that the structure is stabilised by 
the higher order elastic terms proportional to the 
fourth power of the deformations. Unfortunately 
there are too many of such terms to be included in 
the theory, and later Selinger et al. have shown [16] 

LIQUID CRYSTALS 11



that the heliconical structure can be stabilised by 
a single term in the free energy expansion which is 
quadratic in the gradients of the polarisation. One 
notes that in the perfect NTB phase only ðÑ � PÞ is 
nonzero and hence the corresponding term takes the 
form κðÑ� PÞ2. At the same time ðÑ � PÞ ¼ 0 and 
therefore there are no displacement charges in the 
NTB phase. In contrast,ðÑ � PÞ is different from zero 
in the splay-bend nematic phase as well as in some 
other periodic phases considered in [20]. In these 
cases the electrostatic interaction between displace-
ment charges should be taken into account in the 
total free energy. This is not straightforward, how-
ever, as the charge-charge interaction is long range 
and is not analytic in k which does not allow an 
expansion in powers of k.

Another unsolved problem in the general theory of 
the NTB phase is a relationship between simple mole-
cular models proposed by Ferrarini et al. [12,21,22] and 
Longa et al. [25,26]. Firstly it is not clear if the reduction 
of the bend elastic constant described in [21] is directly 
related to the flexoelectric effect. Secondly the mechan-
ism of the stabilisation of the heliconical structure in the 
framework of these simple models is also unclear. In 
particular, the gradients of the polarisation are not taken 
explicitly into account in these models and hence the 
mechanism of stabilisation proposed by Selinger et al. 
[16]. does not seem to be relevant here. The clarification 
of these points may shed more light onto the mechan-
isms of the transition into the NTB phase.
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