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Abstract 
This report investigates extreme events through the means of using three large, recent reports into 
different types of extreme event to determine what constitutes an extreme event, what data is likely to 
be necessary to model it, and what compromises are likely necessary to make such modelling 
possible. The discussions consider the use of weather data in power system analysis, the modelling 
of cascading outages within the power system, and the potential of attacks on the cyber-physical 
system which constitutes the power system. Recommendations are then made in terms of how 
weather data should be used, what types of power system simulations are necessary, and what 
metrics are likely to be useful in such analyses. It is suggested that an extreme event be defined as 
“any event that, without suitable mitigating actions, would cause, as a result of conditions 
arising from that event: interruptions to a large number of end users’ supply of energy, beyond 
those that could be expected due an outage of any single item of energy system plant; 
extraordinary energy market conditions, or; interruptions of energy supply to significant 
elements of critical national infrastructure ”. This captures all potential extreme events that are 
likely to be simulated; those associated with correlated weather events; those associated with an 
extended abnormal weather or operational conditions; those incurred by cyber-physical attacks on the 
power system. Different scenarios are proposed which would be appropriate to simulate to help define 
a clearer scope of what simulations to undertake, for example modelling an extreme windstorm similar 
to Storm Arwen. 
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1 Introduction 
Among the primary objectives of the Scenarios for Extreme Events SIF project (SfEE [1])  are to 
determine a series of feasible extreme events which could affect the GB energy system and 
determine modelling frameworks with which to quantify the impacts these events could have, and the 
resilience of the system to these events. 

This brings with it a wide range of challenges which, in order to be addressed, first need to be set out 
explicitly so they can be better understood. This document seeks to describe various aspects of 
weather and extreme event simulation, the data challenges thereof, and how this might affect the 
choice of extreme events used in simulations and resilience modelling on GB. This will be through 
examining different potential sources of extreme events and recent work related to it, and recent 
attempts to study cascading outages on interdependent infrastructures. 

For the purposes of this report, it is important to explicitly define some terms at the outset to avoid 
misunderstanding or ambiguity. These are as follows: 

Risk – Risk associated with a particular event is a mathematical combination of the likelihood of an 
event and its assessed impact. This can via be a qualitative assessment of impact or quantitative. In 
the latter case, the risk metric would be product of likelihood and impact. An example of a risk metric 
is Expected Energy Not Served (EENS) – an expectation is an average, and in this case the impact is 
energy not served- a function of time and electrical energy1. 

Resilience – Resilience relates to the properties of a system which define its ability to anticipate, 
resist, contain, survive, recover from, and adapt to extreme or unpredicted events. This can be 
quantified via concepts such as the resilience trapezoid, described in [2, 3] but the specific metrics 
used have not been standardised yet. Some metrics such as Value at Risk or conditional Value at 
Risk [4] have been proposed [5]. This definition is a synthesis of definitions used in, for example, [6-
8], though there is no single universally acknowledged definition. 

Reliability – This, in general, describes the performance of a power system in predictable, typical 
operational conditions and is commonly measured by metrics such as Loss of Load Probability 
(LOLP), Customer Interruptions (CI) or Customer Minutes Lost (CML). Reliability is much more widely 
understood and characterised, though whether resilience is an expression of system reliability or 
should be conceptualised as a sector of power system security in its own right remains a subject of 
debate. The metrics used to quantify reliability are unlikely to be appropriate in all contexts for 
quantifying resilience, however, as they rely on averaging across large sample sizes and predictable 
events, whereas resilience is generally concerned with extreme events or events whose probabilities 
and impacts carry significant uncertainty. Even if extreme events are included in an estimate of 
system reliability, their rarity tends to mean that the values of reliability metrics are relatively 
unaffected by such events. 

Risk assessment - Any discussion pertaining to risk analysis should be just that – inclusive of both 
impact and probability. If modelling is, in fact, an impact assessment, it should be clearly labelled as 
such so as not to cause confusion between those more versed in risk analysis and those using the 
terms more liberally and colloquially.  

The categorisation and use of language is important in these contexts because there may be different 
usages deployed by different sectors of expertise and a first point should be to ensure consistency 
across these groups. 

 
1 EENS is typically quantified for a system, summing the event-related expected energy not supplied 
across many different events. 



1.1 Quantifying and mitigating risk 
In actuarial terms, risk is relatively straightforward to calculate – a combination of impact and 
probability across all realised scenarios. This is standard and acceptable practise for reliability 
analysis, which is based on well-described systems with well-understood probabilities and impacts 
involved, but this simplistic approach can flatten out the impacts of HILP events, as a single event of 
extreme impact but low probability can equate, in risk, to multiple smaller risks with higher 
probabilities. This theme is discussed in [9] in the context of “choosing” which reliability-related events 
to defend against and can be broadly described mathematically here.  

A consistent theme across all the investigated scenarios mentioned is that, for the heavy tail of 
events, probability can be difficult to ascertain, therefore accommodating error or uncertainty in these 
estimates is essential. 

In mathematical terms, a standard formulation for calculating risk can be illustrated as 

𝑟𝑖𝑠𝑘 = 𝜋𝐴1𝑐𝑅𝐴1 + 𝜋𝐴2𝑐𝑅𝐴2 +  𝜋𝐴3𝑐𝑅𝐴3 =  𝜋𝐵𝑐𝐵 (1) 

in which πn  is the probability of a given outcome of event n, and cn is the value of the associated 
impact which may be, for example, load curtailment, customers disconnected, or a monetary impact. 
In this instance an example is given where the risk of multiple smaller incidents is equivalent to one 
larger incident. 

In reality, an operator may explicitly wish to avoid a single extreme event even if that means an 
increased probability of less severe events. A suggested amendment to this is discussed in [10] and 
involves adding an exponent x to more heavily weigh high impact events in risk calculations, i.e. such 
that 

𝑟𝑖𝑠𝑘 = (𝜋𝐴1𝑐𝑅𝐴1)𝑥 +  (𝜋𝐴2𝑐𝑅𝐴2)𝑥 + (𝜋𝐴3𝑐𝑅𝐴3)𝑥 <  (𝜋𝐵𝑐𝐵)𝑥 (2) 

In these instances, also, probability may be a suitably generated estimate.  

The ultimate aim of any resilience or risk assessment is to manage risk. That does not necessarily 
mean eliminating it altogether. This is illustrated in Figure 1 [11]. 



 

Figure 1 -  classification of risk associated with power system operation [11] 

Moving a risk “down” a region is always a desirable outcome, even if not eliminating the risk 
altogether, e.g. moving from Zone 2 to Zone 3 may still be desirable even if it cannot eliminate the 
risk. This can be done by either reducing the probability of a given series of outcomes or mitigating 
their impacts. This should be the aim of modelling extreme events – can either the probabilities or 
impacts be reduced such that unacceptable risks be rendered tolerable? The role of modelling is to 
answer that question, or to establish the costs thereof. As is argued in [12], the answers and evidence 
are not always straightforward to present to stakeholders but it is still essential to have a robust 
evidence base on which to make the arguments. 

Bearing these aspects in mind, therefore, the metrics should reflect the impacts being assessed within 
the power system and be informative, without obfuscating what they are actually representing. Some 
suggested metrics are: 

• Number of customers disconnected 
• Average duration of disconnection 
• Aggregated duration of disconnections 
• Cost of remedial generation (that is, cost of additional generation that must be dispatched to 

mitigate the given incident versus nominal operation) 
• Cost of planned load deferral (i.e. if customers are paid to not use electricity at a given time to 

reduce remand during acute periods) or curtailment 
• Estimated cost of disconnections (VoLL × MWh lost for a given event) 
• Number of critical customers disconnected 
• Critical customers’ average disconnection durations 
• Aggregated critical customers disconnected durations 
• Generation disconnected, either output at the time of disconnection or capacity 
• Expected number of component/infrastructure failures (e.g. expected number of tower failures) 
• Energy not served 



This list is not exhaustive, and more may present themselves as useful as the SIF project on extreme 
event progresses. More typical metrics should also be considered for stochastic simulations as a 
baseline, such as Loss of Load Probability (LOLP) and Expected Energy Not Served (EENS). 
Increasingly popular risk-based metrics such as VaR and cVaR could also be used to demonstrate 
their utility.  

 

  



2  Weather Data – ESIG Report and Related Literature 
ESIG (Energy Systems Integration Group) – a consortium dedicated to research of large power 
systems -  has produced an extensive report into using weather datasets for power system 
simulations [13]. This is a significant piece of research which touches many themes which will be 
discussed herein as to how they impact resilience studies, using the ESIG report as a backbone to 
discuss wider weather-related resilience modelling issues. 

2.1 Linking weather data to power system modelling 
The report is primarily concerned with forecasting features such as demand and generation and how 
these are affected by weather conditions, but there are a significant number of features which are also 
relevant to more generalised resilience modelling. Figures and quotations used within this section 
should be presumed to originate from this report unless explicitly referenced otherwise. 

Weather data within power systems, it is argued, is primarily used for 3 general purposes: 

• Development of weather-related generation and assessment of the performance of that 
generation 

• System planning and adequacy studies 
• Operations planning 

However, it is also increasingly used for scenario analysis and study of extreme weather events, such 
as in [14, 15]. This will be discussed throughout this section as well as broader discussions of the 
themes raised in the ESIG report to contextualise the weather-related discussions to power system 
resilience studies. 

The key outcomes and findings of this report, and the most consequential figures, will be discussed 
here. The over-arching theme of the report is that there has been, to date, insufficient co-operation 
between the meteorology sector and power system planners and operators. The report itself is 
relatively US-centric, however its findings are generalisable and still useful in a GB context, but key 
differences exist.  

Historically, the primary interaction between the power system and weather has been temperature-
related, with temperature driving winter peak demands associated with heating and summer demands 
in the USA associated with air-conditioning and cooling, This is a finding corroborated by [16]. 
Reports such as [17] have also investigated the impacts of climate change more specifically within the 
UK in an increasingly renewables-heavy system, which should be referenced for more specific 
discussions of different aspects of power system modelling associated with climate change.  

If we are concerned with modelling extreme events, we must first define what we categorise as 
“events” before we can say whether climate change as a factor is a feature of the events we wish to 
model.  

A major problem with climate change and its interaction with the power system is the nature of these 
effects to be nonlinear – changes will likely not be gradual but may well accelerate in unanticipated 
ways. This has consequences for modelling the impacts of extreme weather on power systems as not 
only are the statistical relationships between weather and outages difficult to establish, but the 
probabilities of the kinds of weather events which lead to power outages are likely to shift. 

Different weather events and parameters will have different interactions with different aspects of the 
power system. This is illustrated within the report which presents the following figure, in Figure 2 [13]. 



 

Figure 2 - The primary linkages between variables in the weather and climate system (gray) and the electricity 
system (orange) [13] 

The strongest links in the figure are shown in dashed grey lines. Dark blue lines indicate direct 
dependencies that are most important in typical operation of the electricity system, while orange lines 
indicate dependencies that do not typically have a large impact on a daily basis but can have a 
profound impact in particular circumstances or combinations. 

These linkages could be used to refine the scope of events we wish to simulate and help define the 
weather datasets needed to perform them – but care should still be taken. For instance, “wind” is itself 
an umbrella term. Different features of wind have different impacts on different aspects of the power 
system and in different timescales. For example, a long period of low wind will not generate risk 
related with overhead lines but in combination with a low-solar period (also known as dunkelflaute) 
this could result in acute energy supply challenges.  

Snow and ice are not shown here as having an impact on transmission and distribution infrastructure, 
but historically in the GB system they absolutely have, especially on exposed assets in places like the 
Highlands of Scotland. It can also affect solar and wind generation through icing of turbines at low 
temperatures, and through snow coverage of panels and roofs. 

Further, it would be more useful to separate out “high” and “low” temperatures as independent 
phenomena affecting the power system. While heating will lead to forced derating of assets or 
emergency shutdowns of generation associated with high cooling water temperatures and water 
shortages, icing will have different impacts across critical infrastructure. Groundwater can also have 
an impact on transmission and distribution infrastructure. 

There is also no mention of space weather, though this is not as unsurprising in and of itself due to 
the complexities associated with understanding the associated phenomena and their relative 
infrequency compared to the effects of, for example, extreme wind on power systems. 

Another figure is produced showing specific tasks and how weather data is used for these, shown in 
Figure 3 [13]. 



 

Figure 3 – Flow of Weather Data into the Primary Power Systems Processes That Require Meteorological Data 
for Analysis Tasks [13] 

Weather data (light blue and dark blue boxes) flow into the primary power systems processes (orange 
boxes) that require meteorological data for analysis tasks. In some cases, this includes tasks that 
estimate states of the electricity system (medium blue boxes) that are impacted by the state of the 
atmosphere. Solid lines indicate the flow of data that are output from one process and become an 
input to another. The dashed line from observations to global climate models indicates that the data 
are used in validation of average global climate model outputs versus as an input to their production. 

Another important factor in modelling high-risk weather events is, as demonstrated in Figure 2, 
different features of weather can act at the same time to impact the power system. Wind can occur 
concurrently with snow, sleet, and blizzard (SSB) conditions, which is discussed in [18]. Categorising 
faults associated with weather carries significant challenge in its own right [19]. 

One means of associating weather parameters with failure probabilities are fragility curves which 
relate a hazard of some sort to a failure or damage probability. A review was carried out into the 
deployment of these which can be found in [20], with a brief discussion of their conceptualisation and 
principles also found in [21]. A drawback with these approaches is that isolating an individual feature 
which has caused an outage is extremely difficult because of the number of ways which weather 
impacts the power system. 

The incident weather upon an asset ”when” it fails, for example, may not be the event which has 
caused the damage leading to its failure, but may rather be, to use an analogy, the straw that broke 
the camel’s back. Modelling the failure as a binary representation is therefore almost always a 
simplification of both the effects of damage to the asset and the causes associated with the damage 
to that asset.  



Extreme wind speeds can also result in wind farms curtailing their output as a defence mechanism to 
prevent damage to turbines. High wind events will be correlated with high failure probability on 
overhead lines and the probability of curtailed wind generation [22]. Further, localised wind impacts 
will vary across wind generation sites, and different heights will experience different wind conditions 
based on local geographic conditions which can make projections of wind power challenging [23], 
[24].  

The evidence base surrounding the impact of climate change on wind resources is also not strong, 
with mixed findings. Some imply a “southward shift” [25] but other papers find little change, to slight 
growth [26]. This implies that scenario-based analysis, longer-term, is likely to be important (e.g. 
scenarios where there is significant growth in wind resource availability versus status quo or falls). 
Post hoc, probabilities can be assigned to these scenarios to establish risk. 

The lack of universal observational data requires methods such as reanalysis to create weather 
datasets which can be used to generate fragility curves. That is, it is not possible to have 
observational data for every point on the surface of the Earth (at the time of writing). Power system 
analysis can use observational data for specific sites, such as windfarms, but will typically rely on 
reanalysis datasets such as MERRA-2 [27] for the analysis necessary to generate fragility curves 
which can be used to generate scenarios used in resilience analysis. This is necessary where 
observations do not exist or are not of satisfactory temporal or spatial granularity. For forecasting, 
analysis may use Numerical Weather Prediction (NWP) methods from a wide range of sources. 

Any weather models used for scenario generation should, ideally, “capture the physical and 
dynamical relationships between weather variables and produce weather states that are physically 
plausible, evolve realistically in time and space, and produce distributions of conditions like those that 
are observed”. 

Though sources of data such as MERRA-2 are useful, they should not be treated as a “black box”, 
and efforts should be made to ensure that the data used in the generation of any fragility curves 
deployed is the same as, or at least comparable to, the data used in the scenario generation itself.  

Alternatively, appropriate numerical corrections should be applied to this data to make it appropriate. 
In the cases where this is not fully possible, full acknowledgement of the limitations of the data should 
be present – even if the absolute values which are generated from such implementations carry 
significant error or uncertainty, the relative outcomes of related scenarios using consistent datasets is 
still useful or could still be useful to generate plausible scenarios for analysis. 

Data from different sources may not be appropriate to “mix and match” when making projections, as 
the presumptions underlying the data regarding the physical processes involved may not be 
consistent. Similarly, there is a difference between data which is physics-driven and data which is 
statistical. One is derived from an initial condition and extrapolated forward based on physical rules, 
and the latter can be formed from retrospective analysis from the measurements taken and the data 
related to it. An example of this is the cumulative probability distributions generated in [18] versus 
fragility curves generated from analytically produced mechanical models of towers and power lines 
such as those used in [28]. 

Weather datasets such as MERRA-2 may be of a form that is too large in scale to be appropriate for 
some types of network, e.g. some data from MERRA-2 is ~50kmx50km in horizontal spatial 
resolution, which is too large to represent distribution networks. Features such as wind shadow, 
shading from mountains, and wind tunnels cannot be accurately captured at these resolutions. The 
following Figure 4 [13] is presented to illustrate this concept. 



 

Figure 4 – The top plot shows a cross-section of hypothetical complex topography represented at 3 km grid spacing. 
The middle plot uses the average of sets of three 3 km points for each 9 km point. In the bottom plot, three 9 km 
points were averaged to get to each 27 km point [13]. 

For modelling of geographically diverse regions, such as the Appalachian range in the USA or the 
Highlands of Scotland, such large resolution pixels (in the scale of 50km) may not always be 
appropriate for accurate representation of the weather parameters across these ranges. Downscaling 
and interpolation may be deployed retrospectively but this still cannot directly and accurately capture 
these effects. But merely allows more granular representation of networks subject to the weather 
represented by this data. 

Given the cubic relationship between wind speed and power generated from a turbine, the 
“averaging” effect of these large resolution datasets could have significant impacts on the projections 
of wind generation. This is illustrated in Figure 5 [13]. 



 

Figure 5 – Traces of wind speed and wind power for many different iterations of a model run with everything held 
constant except parameters related to turbulence and surface roughness [13] 

The upper plot in this figure represents a range of wind speeds generated by numerous model runs. 
The lower plot translates those wind speeds to estimates of wind generation. The wider spread seen 
in the lower plot shows the effect of parameter choice when the cubic relationship between wind 
speed and power output amplifies these differences. 

The reason for the scale of the resolution used is, of course, related to the computational expense of 
simulations on a global scale. As noted, “the computational resources needed to increase horizontal 
resolution scale by at least the third power because the number of required time steps increases by 
the same factor as the resolution change to keep the model computationally stable.” Hence, 
simulations based on 1km take 27 times the computational resources of a 3km simulation, and 27,000 
times the resource of a 30km simulation. All simulations based on geospatial data therefore require a 
balance between data granularity and computational and temporal expense.  

Mountain ranges and valleys will affect both precipitation and wind patterns in local areas, and heavy 
precipitation itself carries other risks such as landslips and flooding, which can affect large areas of 
network for significant amounts of time. An examination of the social and economic impacts of 
flooding-related outages is also considered in [29]. 

There is some discussion regarding the use of machine learning techniques and Generative 
Adversarial Networks (GANs), a machine learning technique, to generate weather scenarios and 
climate models, but this work is not fully developed. Machine learning has been used in the past as a 
“classifier” for simulating many perturbation events quickly and efficiently, however [30]. A problem 
with such techniques and the use of “convolutional networks” is that the data can exhibit regression to 
the mean and can “blur” out extremes of data, underestimating values of e.g. rainfall in specific 
regions. This is particularly problematic in the case of resilience simulations because it is those 
extremes which are of specific concern. Methods and approaches which work in one region may not 
work in another precisely because of these geographic effects on the underlying data. 



ESIG (used here to be understood as to refer interchangeably to the authors of the report) therefore 
recommends that validation of the underlying data used for retrospective analysis is of significant 
importance, while also recommending specific tools for doing so (e.g. the WIND Toolkit [31], though it 
is USA-specific). To this end, wind datasets should not be used as a “black box”. 

ESIG categorise 3 different types of renewable-energy-related power system studies. These are: 

1) Renewable integration studies 
These simulate the power system with varying levels of renewable resources 

2) Integrated resource plans 
These are optimization-based models to evaluate long-term costs and benefits of various 
resource mixes 

3) Resource adequacy studies 
These typically require hourly data and are concerned with evaluating the capacity of the 
system to meet energy demand based on reliability metrics 

Parts of these concepts will overlap with resiliency and security studies, but for our purposes a fourth 
category explicitly studying extreme events should be categorized.  

The approaches used for traditional reliability studies in less weather-dependent systems are likely to 
be inappropriate for resiliency studies, particularly those concerning extreme weather. The specific 
approaches resilience studies take will be considered in the following section, but within this section it 
is worth observing that conventional approaches of Monte Carlo Markov Chain (MCMC) simulation 
are unlikely to be able to capture the events used for resilience scenarios without either specialised 
sampling algorithms or large sample sizes.  

Similarly, given the interdependence of weather variables, generation, and demand, traditional 
methods which would involve sampling from demand curves and dispatching generation to meet this 
demand cannot be reconciled with increasing penetration of weather-dependent generation. Such 
data relies on physical relationships that affects multiple aspects of the power system and can no 
longer be treated as independent. This changes the necessary approaches for modelling extreme 
weather events and implies a need for more physics-driven models, while ensuring consistency in the 
datasets used for scenario generation.  

Demand has always, to varying degrees across the world, been dependent on weather, but 
increasing interdependence between weather and generation availability is fundamentally changing 
this relationship. Relatedly, features such as ambient temperature, precipitation and humidity can 
impact generation through e.g. covering solar panels in snow, icing of wind turbines, etc, as well as 
their impacts on overhead line (OHL) networks at transmission and distribution level. 

Further, if behind-the-meter (BTM) generation is observed by operators as a reduction in demand, this 
complicates the modelling of distribution networks yet further particularly if e.g. high wind and high 
solar power days intersect during frequency excursion events, which can see disconnected demand 
during Low Frequency Demand Disconnection also disconnect significant amounts of generation, in 
turn exacerbating whatever event is underway. 

Given the lack of certain types of spatio-temporally complete and comprehensive datasets for all 
modelling contexts, compromises may have to be made, but there should be a level of coherence 
maintained between datasets and, where necessary, compromises must be acknowledged even if 
ideal validation is not possible. 

Further, historical models used to produce estimates of wind generation also have to be updated for 
improvements in technology and for scale of turbines; e.g. turbines in the North Sea will be larger and 
have much greater capacities than those onshore due to e.g. availability of space on the sea vs land, 
and the consistency of wind on flat seas compared to geographically diverse regions which are more 



complex to model. Similarly, the height at which observation data is measured is not always the 
height at which the hub of the turbine is, thus there may be discrepancies between the actual speed 
incident on the wind turbine (or any elevated asset) – this is also discussed in [22]. There may well be 
“reasonable” estimates, but given the cubic relationship between wind speed and wind power, and the 
exponentially increasing failure rate on OHL assets above certain thresholds (typically ~25ms-1 [22]), 
these small discrepancies can combine significantly. 

Wind and solar, of course, are not the only sources of power affected by weather. Hydroelectricity – 
pumped and storage – can also be affected by long-and-short-term weather conditions. Pumped 
storage will also not only be affected by weather patterns, both seasonal and over shorter periods, but 
by the deployment of pumped-storage hydro by system operators, adding further complexity to 
modelling these interactions. 

These factors all combine during, in particular concern for GB, winter. Common mode failures 
associated with wind, SSB, and icing can occur during periods when there is maximum demand 
associated with heating. Further, extreme cold, if systems are not designed for it, can even affect 
thermal generation such as gas turbines, as demonstrated in the ERCOT blackouts most recently 
where cascading outages and outages were in part associated with freezing of gas infrastructure [32]. 

Weather conditions such as this also aid the system in specific conditions – high wind that is not so 
high as to pose a risk of outage can facilitate enhanced cooling of lines, and thus enable techniques 
such as Dynamic Line Ratings (DLR) to enhance system resilience and enhance system capacity. 
After all, the role of the transmission system is to transport power, and the impact of line outages is to 
reduce the capacity of that system to move power. Dynamic line ratings can counteract that effect 
[33].  

Counter to this, of course, is high wind scenarios in areas at high risk of wildfires – high wind speeds 
and dry conditions can precipitate extreme risk of wildfires which leads to operators having to shut 
down power lines to mitigate this risk in a process known as public safety power shutoff (PSPS), 
which is widely deployed in California [34]. The use of microgrids has been explored to improve power 
system resilience related to these phenomena, as well as the wider implications of wildfires on power 
systems [35]. 

2.2 Data requirements 
As is evident, there are clearly a wide range of factors dictating what data is required in power system 
analysis and how it should be applied. These requirements are summarized in the following figure 
[13]. 



 

Figure 6 – data requirements for power system analysis [13] 

These attributes are explored in more explicit detail within the report, but these fundamental principles 
should be considered and adhered to as much as possible in modelling extreme weather events, 
though naturally some principles do not apply to all contexts (for example, if modelling a single 
scenario with a known set of parameters, it is not necessary to consider decades of data). The 
temporal granularity of data for simulations will also, naturally, be dictated by the nature of the power 
system simulations being undertaken. 

Some generalised observations can be taken, however, from the more specific properties of these 
attributes, which shall be discussed within this section. 

It is necessary to know temperature in sufficient detail to determine its impact on loads on the system. 
Similarly, variables which can impact generation should all be considered to reasonably approximate 
generation from various sources – e.g. if line icing or galloping is likely to be a threat, it may be 
necessary to include data relating to ambient temperature and precipitation as well as wind speed and 
direction. 

When extrapolating wind temperature to specific heights to determine impacts on e.g. connectors on 
OHL, the correct number of vertical levels should be used to be able to correctly extrapolate these 
wind speeds.  

A typical wind speed power curve for an individual wind turbine is shown. These will be well 
understood by windfarm owners and manufacturers [13]. 



 

Figure 7 – typical wind turbine power curve [13] 

The various critical points are described.  

• V1 is the cut-in wind speed, the speed above which a turbine begins generating power.  
• V3 is the rated wind speed, the speed at which the turbine reaches its rated power output; at 

speeds higher than this, no additional power available in the wind is captured, as the generator 
cannot further increase its output.  

• V5 is the cut-out wind speed, the speed at which the pitch of the turbine blades reduces the 
output to 0 to protect the turbine. 

• Operation of the turbine is suspended until the wind speed has slowed to V4 before it goes 
back up again, cycling between V4 and V5. 

This can accurately describe the behaviour of an individual turbine, but for an aggregated wind farm 
the behaviour will not be linear as wind speeds will vary across the site, resulting in a complementary 
sigmoidal-type curve around where the cut-in and cut-out speeds occur as wind turbines drop in and 
out of service. This is explored in [23], [22], and [36]. 

Features such as ambient temperature also impact solar generation, as it can reduce the efficiency. 
This can be difficult to measure because local effects can be significant, e.g due to wind, shade, or 
cloud cover. The temporal variability for individual panels may be significant, as well as at site-level. 
Any model of solar generation will either have to acknowledge abstracting these effects out of it or 
take direct consideration. Effects such as the Urban Heat Island effect may also affect urban panels 
and thus have greater thermal effects than solar farms in more rural regions. The same is true for 
extrapolating thermal cooling or heating demand in cities. 

Projections of hydroelectricity are particularly difficult because there is inherent hysteresis in both run-
of-river and pumped storage hydroelectricity. Both can be affected by precipitation, flash floods, ice 



melt, and ambient temperature- though pumped storage can more directly be controlled by human 
operators. 

Though short-term dispatch problems and optimal-power-flow problems can involve sampling of e.g. 
power curves based on instantaneously determined readings of wind, solar, etc, longer term unit 
commitment problems are made more challenging by the time-delayed impacts of hydroelectricity 
which can make them challenging to model and incurs significant uncertainty (or should, if model 
accuracy of hydroelectricity is a priority). 

To summarize these data recommendations: 

• Data should be of appropriate horizontal granularity (2km is suggested) 
• Appropriate vertical levels should be deployed to ensure accurate modelling of wind speed at 

different heights 
• Splitting a country or analysis region into sub-regions is not recommended by ESIG as it can 

introduce problems such as dataset seams; however, from a power systems perspective, 
specific analysis of, for example, the Highlands versus the Central Belt may be of value 

• If modelling unit-commitment problems, the data used should contain all the information to 
project hourly load and wind/solar at any generator as if it were being modelled in real-time 

• While we want to use the longest datasets possible for long-term projections, poor quality data 
should be avoided which, generally, means going back no further than 1990; it is not evident 
why 1990 specifically is chosen but it does coincide with the earliest date available from the 
BARRA dataset [37] 

• Observation data should be used in preference to statistical models wherever possible, but 
statistical or reanalysis methods may be useful to help clean up, complete or summarise 
observations. 

• It may be worthwhile to utilise different datasets through the same model to generate multiple 
realisations of the atmospheric states to generate an “envelope of truth”, thus giving an indicator 
of uncertainty 

• Datasets which accurately predict annual capacity factors but not outlier events may be 
appropriate for developers, but not for extreme event analysis 

• Documentation describing the datasets used and how they are applied will be essential for 
reproducibility and validation of work 

• Standardization of results and availability of data used will be important if work is to be 
developed further or disseminated  

2.3 Grading of specific data sources 
From the wide variety of data sources appropriate for energy-related studies available, a table is 
produced to grade these as necessary, which is presented in Figure 8 [13]. This grades different 
weather sets based on whether they meet the specific attributes and requirements they describe. 



 

Figure 8 - Summary of Current Power System Modelling Weather Input Data Sources 

MERRA-2 has been discussed already, and is used in [22]. Of note is that MERRA-2 is of significant 
utility, but “must be downscaled first”. ERA-5 is deemed “unquestionably the best global reanalysis 
dataset currently available”, though it is “not a panacea”. Therefore, it is recommended to use this 
dataset going forward if attempting to reproduce historic events or generate credible extreme weather 
scenarios. 

Of note, also, is that though tools such as the WIND Toolkit [31] have significant use also, they have a 
tendency to over-predict windspeeds. This may be acceptable for more conservative resilience 
analyses (i.e. you want higher failure rates on lines to establish upper bounds of risk), when projecting 
wind power it resulted in a 5-10% too high capacity factors. Improvements are currently being 
researched, however (e.g. the WIND Toolkit Lon-term Ensemble Dataset (WTK-LED). 

A similar toolset has been generated for Solar – the NSRDB [38]. This covers the USA and selected 
international locations dependent on satellite coverage. Unfortunately, as can be seen in Figure 9 
[38], this does not include Scotland. 



 

Figure 9 - METEOSAT IODC coverage, which excludes Scotland [38] 

There is also a readily accessible data repository generated by researchers at Imperial College known 
as renewables.ninja, which references different turbine manufacturers, solar panel types, weather 
repositories etc to provide relatively accessible data for weather studies [39]. This is not mentioned in 
the ESIG report, though the scale of corrections used in the data may mean it is not necessarily 
appropriate for high fidelity localised studies. 

ERA-5 and the WIND Toolkit and the NSRDB used in tandem are compared in the following figure to 
summarize the key attributes of these weather sources [13]. 



 

Figure 10 - Summary of Best Available Public Datasets to Estimate Site-Level Generation at All Current and Future 
Wind and Solar Assets in All Regions of the United States [13] 

It is also asserted that observations should almost always be preferred over e.g. reanalysis data “as 
observations are always better than model data”. This is not strictly true in GB, as observation data 
can be inconsistently collected and is not always available as readily as the repositories suggested 
here. 

The following properties are proposed for an open-access, comprehensive public dataset to meet the 
proposed attributes and requirements. It is proposed it would have to meet the following conditions: 

• Having sufficient spatial and temporal resolution for analyses 
• Including all necessary variables in one dataset in space and time 
• Coverage of multiple decades with a consistently applied methodology and being extended on 

an ongoing basis 
• Coincident and coherent across all variables 
• Validated with quantified uncertainty 
• Comprehensively and transparently documented, including an account of limitations of the data 

and a user guide 



• Future proofed 
• Publicly and easily accessible 

While the data already referenced adheres to these principles to varying extents, it is not generally 
true for network data for representative models of e.g. distribution systems and generator models on 
GB. This data tends to be incomplete or spread across multiple sources or requires time-costly 
processes involving non-disclosure agreements (NDAs) across multiple stakeholders, which can 
make academic publication of results awkward and more time consuming than it necessarily needs to 
be.  

IEEE test models do, of course, exist and are widely used in academia [40], but are not typically 
appropriate for real-world case studies and can be difficult to contextualise for those not familiar with 
the test systems being deployed.  

Similarly, failure and fault data, and its relationship to weather data, does not have a generalised 
central repository which can be easily accessed with such curves. There are resources which reply 
reliability-related data, e.g. the Transmission Availability Data System (TADS) [41] in the USA, but this 
is not associated with particular weather events which would be useful for modelling resilience events 
retrospectively. 

Finally, it is suggested that when analysing HILP events retrospectively, the reanalysis datasets 
should be compared with observational data from the time to determine how well the extremes were 
captured. Similarly, regions with high penetration of renewable energy resources and potential energy 
resources should be targeted for observational data readings as these often correlate with regions 
with low population density and low penetration of observational data recording sites. 

2.4 Suggested improvements or adaptations for deployment of weather 
datasets 

The datasets that end up being used are likely to be imperfect. Therefore, it is almost certain that 
corrections or adaptations will be necessary to improve the data and its usage. This was the case 
throughout [22] which both interpolated wind data and extrapolated it using the Wind Power Law to 
correct wind speeds to the appropriate height for quantifying OHL failure probability and aggregated 
wind power – this is not to mention the adaptations necessary for the electrical power system models 
used. These can include: 

• Using surface measurements in addition to synthetic datasets (but not mixing and matching 
synthetic datasets) 

• Extending data sources to represent higher levels of renewable resources 
• Extrapolating existing datasets to include more years of consistent data 
• Extending existing datasets to evaluate the impact of extreme weather 

It is noted that just because a data source has the required spatio-temporal fidelity and covers the 
appropriate geographical region, that it will be appropriate for the given task at hand. A key 
observation within this report is “If a model is simple and easy to understand by a non-
meteorologist, it likely is not very accurate”.  

Emphasis is placed on collaboration between power system engineers and meteorologists throughout 
– power system engineers will understand best what operational states lead to stress within the 
system, while meteorologists are best placed to understand the physical mechanisms which can 
create the scenarios under study and the uncertainties in any data used to model these scenarios. It 
is also emphasised that power system experts should not tamper with the underlying data “unless 
they are working closely with a qualified meteorologist”. In practical terms, this is simply not always 
possible because there may simply not be enough meteorologists available to provide insight into 
every research project. Nonetheless, this does not mean efforts should not be made. 



It is possible that such uncertainties in understanding the weather data being used to make forecasts 
of resource availability can lead to adverse operational scenarios, e.g. if there is an overestimate in 
the models to forecast wind generation availability and reserve generation is accordingly under-
provided, which could lead to significant operational risk. 

Suggestions for methods to generate plausible scenarios are provided. This includes one specific 
example where a Markov Chain was used to wander between bins of data representative of real daily 
weather transitions and according to weather parameters were derived from associated weather 
patterns from within those bins. The code and procedures for this method are provided in the links 
associated with [42]. This is an attractive method because it can generate plausible events from 
historical data reflective of realistic conditions, based on recent historical events. 

Of note are that two “stress tests” are defined for future analysis, based on longer term phenomena. 
One involved early gas plant retirement, low hydro availability, and coal retirements which impacted 
on the ability to import power into California over multiple years. The other related to transmission 
bottlenecks on the Eastern seaboard. We should be clear, if we are modelling “extreme events” what 
these events are and the temporal range of those events, because long term events are not 
necessarily less harmful than short term shocks. 

2.5 Weather data do’s and don’ts 
The insights throughout the section are summarized into the following “do’s and don’ts”, which are all 
relevant to the resilience analysis we wish to undertake: 

• Do consult meteorologists: “don’t go it alone” 
• Do model stressors to all resource types 
• Don’t assume extreme weather only impacts renewables 
• Do stress-test systems against as many future weather realizations as possible 
• Don’t make investment decisions using single-weather years 
• Don’t just evaluate doomsday scenarios 
• Do use data reflecting likely correlations among stressors 
• Do consider weather in neighbouring grids 
• Don’t assume each power system is an island 

2.6 Impacts of climate change 
If we are modelling extreme events, climate change itself will be an incidental causal factor, rather 
than a specific subject of analysis. That is, it will change the frequency and intensity of events under 
study, but if our concern is on the heavy tail of weather events, we are already concerned with the 
extremes. 

What climate change can contribute towards is creating combinations of extreme events as more 
wind and solar are added to the energy mix, and it is these combined – or “compound” – events which 
are likely to be of greatest risk to the power system and should be considered as key subjects of 
study, e.g. low wind coinciding with extreme cold and restrictions on gas supply, as is increasingly 
likely following the Ukraine war. 

Some variables are known with greater certainty than others. For example, near-surface temperatures 
are “increasing at a rate proportional to anthropogenic greenhouse gas emissions”, with events such 
as multi-day heatwaves and “tropical nights”, “when temperatures do not drop below 20°C during the 
night”, also increasing in frequency. This will in turn increase electrical demand associated with 
cooling in summers, though it is difficult to predict the scale to which this occurs. That is, policy 
decisions can have a direct impact on this type of demand with factors such as retrofitting of insulation 
and cooling devices or enhanced building stock reducing electrical demand passively.  



The following events are identified as being necessary for modelling with “moderate certainty” that 
they will occur: 

• Extreme temperatures leading to more frequent outages and derating of system assets, 
coincident with high load scenarios 

• Periods of low resource availability for renewables 
• Drought and shifting timing and location of precipitation, contributing to increased wildfire-

related risks 

Not noted within this section directly is the fact that changing precipitation patterns also affect run-of-
river cooling of nuclear plant, which can run dry during extreme heat or, in periods of acute heat, 
result in water too warm to cool generators reliant on it. Controls on thermal emissions from such 
plants during extreme heat events can also force plant to shut down for environmental reasons to 
prevent further heating of watercourses.  

Further, extremes of temperature associated with cold causing spikes in demand, or extremes of wind 
causing high line failure probability coincident with ramping events on wind generation. A summary of 
proposed events and case studies will be proposed in the concluding section. 

For real-time estimates of conditions on the system, if such simulations are to be considered, 
properties of the weather data used which should be considered also include: 

• Timeliness 
• Accuracy 
• Can facilitate a general estimate of net load, including both demand and BTM generation 

2.7 Summary of weather-related literature and ESIG report 
There are a number of useful observations and case studies provided within the ESIG report but they 
required contextualisation and further analysis to make them relevant to resilience studies for GB. 
Clearly, the ways in which weather has interacted with the power system in the past are not the ways 
in which they will do so in the future.  

Historically, time-of-day and season have been the two primary drivers of generation and demand on 
the system. Demands such as heating and lighting, and energy for cooking, were predictable with 
shift patterns, and heating and cooling demand were forecastable with relative confidence. Ramping 
events could be predicted to be linked to events such as sporting events or mass television events. 
However, penetration of renewables, “smart” devices, streaming, and to an unknown extent 
increasing shifts in working patterns are all changing how we use electricity.  

The transmission system observes demand no longer as simply a function of how much energy 
customers are using, but also as a function of how much generation on distribution networks is 
providing the system.  

The transmission and distribution systems themselves have always been subject to weather, but the 
effects of climate change are likely to exacerbate already-known issues on power systems globally. It 
should be noted that “high-risk events do not have to be “extreme” in the classical sense to pose 
risks”. The war in Ukraine was not an “extreme” weather event, but it had an acute effect on energy 
markets that was felt profoundly by consumers. Similarly, when weather and climate patterns change, 
what we now understand as “extreme” may no longer be so. 

There is a need for better weather data to quantify these risks. The desirable attributes for this data 
have been discussed and illustrated at length. Generating better weather data is not simply a useful 
intellectual exercise – it is also likely to be significantly less costly than “blindly building trillions of 
dollars of infrastructure without the basic tools to cost-effectively optimise it and assess its reliability”. 



In the context of this project, the data used will help determine what events are chosen for analysis, 
and thus will help guide what events are deemed highest risk. It is important, then, that this data is as 
robust as possible.  

The ESIG report did not itself discuss in great detail the consequences of extreme-weather related 
outages and events, but nonetheless understanding the data which is behind analysis of these events 
can aid in understanding how likely events which can affect the power system are, as well as helping 
to describe what an “extreme” or “stress event” actually is. 

2.8 Suggested weather-related case studies 
Defining an “extreme” weather event is clearly of importance as a basic starting point, as well as what 
a “stress test” for the power system might realistically be. Based on the discussion within this section, 
then, the following table is used to describe what are believed to be the key potential weather-related 
case studies for examination. It is assumed that system recovery is also to be modelled, and 
associated factors relevant to modelling these events which should be considered. These events are 
deemed to be probable within GB based on recent historical events or likely developments in the GB 
system in the near future. 

 



 

Table 1 - proposed weather-related stress tests for the system 

Scenario Weather 
parameters 
likely 
necessary 

Example 
incident (if 
present) 

Affected 
infrastructure 

Consequences on 
infrastructure 

Exacerbating 
features 

Temporal 
range 

Extreme wind 
in winter (no 
precipitation) 

Wind magnitude 
(multiple levels), 
solar irradiance 

Storm Arwen Wind generation, 
overhead lines, , 
gas demand and 
networks 

Damage to OHL, ramping 
events on wind generation, 
high wind speed shutdown 
(HWSS) 

Demand, spatial 
extent, asset 
ages, 
cumulative 
damage over 
multiple events 

Seconds – 
days 

Extreme wind 
in winter 
(snow, sleet, 
blizzard, (i.e. 
SSB) 

Wind magnitude 
(multiple levels), 
precipitation, 
ambient 
temperature, 
solar irradiance 

Winter storms 
09/10, “Beast 
from the East” 

OHL, wind 
generation, 
exposed 
substations, solar 
generation, hydro 
generation, gas 
demand and 
networks 

Damage to OHL, ramping 
events on wind generation, 
icing, line collapse due to 
weighting, flashovers and 
infrastructure being snowed-
in, HWSS, solar panels being 
covered in snow, transport 
inaccessibility  

Demand, spatial 
extent, asset 
ages, 
cumulative 
damage over 
multiple events, 
accumulated 
precipitation or 
icing, post 
freeze melt 

Seconds - 
days 

Extreme cold 
(no 
precipitation, 
low wind) 

Wind magnitude 
(multiple levels), 
ambient 
temperature, 
solar irradiance 

“Beast from the 
East” 

Demand, OHL, 
exposed 
substations, gas 
demand and 
networks, hydro 
generation 

Line icing, turbine icing, high 
demand, damage to pipes 
and other underground 
infrastructure 

Duration, 
availability of 
generation 
through 
maintenance 
and random 

Hours -
Weeks 



 

outages, gas 
supply 

Extreme heat 
(low wind) 

Wind magnitude 
(multiple levels), 
ambient 
temperature, 
humidity, solar 
irradiance 

Summer 2018, 
2022 

Demand, 
constrained 
distribution 
infrastructure, 
generation, solar 
generation, thermal 
generation, hydro 
generation, gas 
demand and 
networks 

OHL derating, transformer 
derating, hydro generation 
curtailment, thermal 
generation curtailment, solar 
generation inefficiency 

Hydro 
availability, 
spatial extent, 
duration, 
cumulative heat 
effects on 
system 

Hours -
weeks 

Dunkelflaute Wind magnitude 
(multiple levels), 
solar irradiance, 
ambient 
temperature 

Not yet 
experienced in a 
GB system with 
a high 
dependency on 
wind 

Demand, wind 
generation, solar 
generation, gas 
demand and 
networks 

Energy market price spikes, 
inability to perform 
maintenance on generation 
to maintain supply 

Hydro 
availability, 
generator 
maintenance 
schedules, gas 
availability, 
storage, 
duration 

Hours -
Weeks 

Extreme rain 
(no/low wind) 

Ambient 
temperature, 
rainfall, wind 
magnitude 
(multiple levels), 
solar irradiance 

Storm Desmond Low-lying 
substations and 
generation 
facilities, solar 
generation, 
demand, hydro 
generation, gas 

Inundation of assets, damage 
to hydro run-of-river 
infrastructure, landslips, 
coastal asset damage from 
storm surges 

Previous 
temperatures 
and permeability 
of land, 
cumulative rain, 
duration, spatial 
extent 

Minutes - 
Days 



 

demand and 
networks 

Extreme rain 
(high wind) 

Ambient 
temperature, 
rainfall, wind 
magnitude 
(multiple levels), 
solar irradiance, 
rainfall 

Storm Babet Low-lying 
substations and 
generation 
facilities, solar 
generation, 
demand, hydro 
generation, OHL, 
gas demand and 
networks 

Inundation of assets, damage 
to hydro run-of-river 
infrastructure, landslips, 
coastal asset damage from 
storm surges, damage to 
coastal assets, OHL failures, 
HWSS 

Previous 
temperatures 
and permeability 
of land, 
cumulative rain, 
cumulative 
damage to 
assets, duration, 
spatial extent 

Seconds - 
Days 

High 
renewables 
output during 
low demand 
(low 
precipitation) 

Ambient 
temperature, 
solar irradiance, 
wind magnitude 
(multiple levels) 

Summer day in 
Future Energy 
Scenario (FES) 
from the ESO 

Solar generation, 
wind generation, 
hydro generation, 
gas demand and 
networks 

Energy price volatility, 
potential for system instability 

Vulnerability to 
outages, low 
system inertia, 
duration 

Seconds -
Days 

High 
renewables 
output during 
low demand 
(high 
precipitation) 

Ambient 
temperature, 
solar irradiance, 
wind magnitude 
(multiple levels), 
rainfall 

Autumn day in 
FES 

Solar generation, 
wind generation, 
hydro generation, 
low-lying 
generation and 
transmission 
infrastructure, gas 
demand and 
networks 

Inundation of assets, damage 
to hydro run-of-river 
infrastructure, landslips, 
potential for system instability 

Land 
permeability, 
cumulative 
damage to 
assets, 
cumulative 
precipitation,  

Seconds - 
Days 



 

Wildfires Ambient 
temperature, 
solar irradiance, 
wind magnitude 
and direction 
(multiple levels), 
rainfall, 
Convective 
Available 
Potential Energy 
(CAPE) 

The Camp Fire Solar generation, 
wind generation, 
hydro generation, 
low-lying 
generation and 
transmission 
infrastructure, gas 
demand and 
networks 

Fire damage to transmission 
and distribution infrastructure, 
widespread property 
damage, damage to gas 
networks, damage to demand 
and generation 

Dry land can 
exacerbate 
heavy rainfall 
and cause flash 
flooding 
afterwards, 
smog, pollution, 
widespread 
damage 

Hours - 
weeks 

Lightning 
storms 
(without 
precipitation) 

Ambient 
temperature, 
CAPE, 

Rainfall, wind 
magnitude 
(multiple levels), 
solar irradiance  

N/a Solar generation, 
wind generation, 
exposed 
transmission and 
distribution 
infrastructure 

Can cause transient outages 
and damage to Transmission 
and Distribution Infrastructure 
(TDI)  

Can spark 
wildfires 
following dry 
periods, can be 
exacerbated by 
extreme winds 

Milliseconds 
- Hours 

Lightning 
storms (with 
precipitation) 

Ambient 
temperature, 
CAPE, 

Rainfall, wind 
magnitude 
(multiple levels), 
solar irradiance, 
precipitation  

“Thundersnow” Solar generation, 
wind generation, 
exposed 
transmission and 
distribution 
infrastructure, low 
lying substations 
and infrastructure, 
gas networks and 
demand 

Inundation of assets, damage 
to hydro run-of-river 
infrastructure, landslips, 
coastal asset damage from 
storm surges, damage to 
TDI, transient outages, line 
icing in SSB conditions 

Can be 
exacerbated by 
extreme winds 
with associated 
impacts, if dry 
ground 
beforehand can 
cause flash 
flooding 

Milliseconds 
- Hours 



 

 

This list is not intended to be exhaustive but should reflect a broad spectrum of potential scenarios 
and the kinds of events likely to affect the GB system now and into the future. For some features (e.g. 
communications networks) the assumption of effects may be more indirect. For example, 
telecommunications towers in towns, villages and cities may be affected by extreme winds; 
communications systems will be affected by any power outage. If models of these networks are 
unlikely to be simulated (e.g. communications or water networks) they are not directly included as 
model features but may be affected. Particularly challenging are compound events where there is a 
coincidence of extreme events either at the same time or before the system has had the capacity to 
recover from the previous event, or where subsequent events exacerbate each other. For example, 
extreme rain following a protracted dry period can lead to flash flooding as the ground is less 
permeable and less able to absorb precipitation. 

Though efforts have been made to include modelling of transportation networks and features such as 
visibility [43], at this point in time it is recommended to be treated as a low priority for extreme event 
analysis of the kind undertaken here, but should be a future consideration. This is simply due to 
management of feasibility of models at this point. Water networks were deemed marginal and should 
be only be included if an appropriate proxy or representation can be determined. 

There are complex relationships and interdependencies between the water, transportation, gas, and 
communications networks and outages will percolate in difficult to anticipate manners. These “network 
effects” are discussed in the following section, which considers “cascading outages”. A general 
principle is that a parameter is included in this table if 1) it is reasonable to expect that it will be 
directly impacted by the weather event being studied; 2) it cannot reasonably be abstracted out of the 
model; and 3) it is possible and reasonable to form a representative model. Point 3 in particular will be 
key to defining the scope of any model used. It should be noted that even if complete quantitative 
modelling of a given scenario or threat cannot be conducted within the scope of the project, a 
qualitative assessment would still be of value to determine future research directions or take account 
of threats to the system. Such analysis can be useful as a platform for further investigation of risk and 
need for quantitative modelling, judgements on risk mitigation actions, or awareness raising. 

  



 

3 Cascading Outages Modelling – NIC/Oxford University Group 
Report 

Unlike the ESIG report, this piece of research by the NIC and a research group at the University of 
Oxford [44] attempted to perform some quantitative analysis of how outages may propagate through a 
system. The work is of varying strength, and the assumptions made in developing some of the 
network models used can be questioned. 

The network models used linked electrical, water, communications, and transport networks together in 
a single node, including both road and rail. The aim of the research was to identify a “range of 
vulnerabilities characteristics that arise from the architecture of the UK economic infrastructure 
network”; model likely changes to how these systems interact in the future; use the model to produce 
an assessment of these characteristics and their relative importance; identify resilience enhancement 
options. 

Infrastructure systems are defined in [44] as “the collection and interconnection of all physical facilities 
and human systems that operate in a coordinated way to provide infrastructure services”- this is an 
appropriate definition both for what they sought to achieve and what this research project aims for.  

The over-arching approach will be described here, and the validity of the approach and the results 
discussed. As with the previous section, quotations, unless otherwise explicitly stated, will originate 
from [44] – tables and figures are referenced accordingly. 

3.1 High-level methodology summary 
The network models themselves area modelled as interlinked node-branch models overlain on each 
other, as shown in Figure 11. 



 

 

Figure 11 - System-of-systems conceptualisation of infrastructure networks and their interdependencies [44] 

This is a logical approach to take in the first instance, because clearly these networks are interlinked 
in materially significant ways – railways are used to transport coal to power stations, roads are used 
to transport staff, water is used in thermal plants of all kinds to varying extents, and 
telecommunications networks are used to co-ordinate responses. The model is an attempt to model 
three different FES, generated not by the ESO itself, but by Aurora and the National Infrastructure 
Assessment (NIA) via the NIC, envisioning different levels of Hydrogen penetration; and one 
envisioning a 100% EV fleet. These are described as shown in the table below. 



 

Table 2 - Future scenarios from the NIA and their translation in network topology, flow, and failure models [44] 

 

The network analysis fundamentally uses topological searches and path searches to establish if 
network nodes are still connected. If they are not, they are taken out of service and this effect 
“cascades” down to interlinked services. The approach of modelling outages is shown in Figure 12 
[44]. 

 

Figure 12 - Representation of direct and indirect service disruptions across interdependent networks [44] 



 

3.2 Weaknesses in consortium approach 
There are various weaknesses to the approach taken within this modelling in how it relates to 
modelling cascading outages on the power system. 

Firstly, there is no consideration of gas networks in the model. Even if hydrogen gas replaces 
methane in the gas transmission system, this still needs transported. As evidenced by the ERCOT 
cascading outages referenced in the previous section [32], faults in the gas system can cascade into 
faults across the whole energy system. It is therefore counter-intuitive to model rail, transport, and 
water networks but to not consider gas networks which are responsible for meeting considerable heat 
demand.  

Secondly, there is no consideration of network capacity. In distribution networks which are typically 
radial, full simulations of network flows, voltages and dynamics may not be necessary simply due to 
the fact that there is little or no redundancy in the system, so if a connection is lost it is almost always 
the case that any demand or generation on the opposite side of the line outage from the feeder will be 
lost. Therefore, branch capacity is not an issue – simply the binary of whether the network is still 
connected or not.  This assumption does not hold for transportation or meshed power networks, 
whereby loss of connectivity will lead to congestion in transport networks, and in power systems may 
lead to cascading outages, system destabilisation, sympathetic tripping, thus further outages. 

Thirdly, there is no consideration of frequency or voltage in the modelling of “cascading” outages. 
What the paper refers to as a “cascading” outage and what power system engineers understand as 
“cascading outages” are materially different. The outages referred to within the research paper which 
the consortium deploy can better be thought of as “connected” or “percolating” outages – outages with 
a direct causal relationship due to network effects, but not due to cascading electro-mechanical or 
electro-magnetic effects such as frequency or voltage collapse.  

Simulation of cascading outages is a significant area of study for electrical engineers both in terms of 
quantifying the causes of these events and the effects thereof, as well as the analysis of the kinds of 
events which can cause them.  

For example [45] uses a link between bespoke software and an optimal power flow (OPF) solver to 
determine voltage and power flows within a software loop with the optimisation function being used as 
proxy for what a system operator or the electricity market would do under those circumstances.  This 
approach has been deployed in various forms for some time, for example in the “Manchester Model” 
from 2002/03 [46], illustrated in Figure 13, and more recently in [47].  



 

 

Figure 13 - so-called "Manchester Model" of representing cascading outages [46] 

Using such models to compute the value of system security has also been discussed within [48]. The 
market for corrective actions and preventive dispatch has diversified significantly in recent years to 
reflect the changing nature of power grid operation, with services segregated into, for example 
“primary frequency response”, “secondary frequency response”, “fast frequency response”, and 
“dynamic containment” [49]. These refer to different types of power injection to the power system to 
maintain stability when the balance between supply and demand rapidly changes. 

The dispatch of systems to prevent cascading outages, codified in the Security and Quality of Supply 
Standards (SQSS) [50], has always been implicit in the dispatch and planning of day-to-day power 
system operations and can be abstracted and calculated via methods such as Security-Constrained 
OPFs [51] and Unit Commitment (UC) problems [52]. It is common to abstract out frequency-and-
voltage-related features in large-scale resilience studies and use, for example, OPFs [15], but these 
still rely in some part on modelling the ability of the network to actually transport power. Recently it is 
also increasingly the case that abstractions or representations of frequency response are included in 
resilience simulations [53]. It is not reasonable or realistic to ignore branch capacity altogether as well 
as frequency response on power networks as has been conducted in the NIC study. 

Another potential weakness in the modelling of networks relates to how they generate water 
networks. Because there were insufficient data on water networks to create a network for GB, the 
Oxford-led consortium synthesised a model from another project which they linked to in the report, but 
the link provided to the data did not work at the time of writing. The base model used to synthesise 
the water network was also only based on England and Wales. The model is shown in Figure 14. 



 

 

Figure 14 - water network represented within [44] 

Notwithstanding that the majority of England’s water comes from ground sources, compared to 
Scotland with far more significant surface freshwater resources, if there is insufficient representative 
data to formulate a model it is unclear as to the benefit of including such a model within the analysis 
when it could still be represented simply via point demands for water-related infrastructure (e.g. 
pumps). This could still communicate and imply impacts on the water networks without needing to 
model the networks themselves- especially if the robustness of the water networks is impossible to 
verify. 

Further, not modelling capacity on those synthesised networks carries many of the same issues as 
those of power networks; water network capacities are limited by the pressure the pipes can survive 
and their physical size, therefore they are clearly not able to limitlessly supply any node which 
happens to be connected to a supply point, especially if localised drought conditions affect supply 
routes or water begins to freeze in pipes. 

They also use an economic model to replicate the effects of power systems and related outages, 
while acknowledging the weaknesses of the economic model they use. Typically, in power system 
analysis, Value of Lost Load (VoLL) is used as a proxy for this, where a currency value is assigned to 
each MWh not “served” compared to expected values. This value is typically in the range of 
£17,000/MWh. Though analysing the impacts of disruption to other infrastructures will necessitate 
more involved economic analysis, there is already a standard value that can be used as a benchmark. 
The estimates of economic disruption provided within the report for various cascading outages, shown 
in Table 3 [44], seem low when compared to estimates of VoLL, and are unlikely to be realistic. 



 

Table 3 - estimates of economic costs caused by infrastructure disruption [44] 

 

3.3 Summary of issues related to cascading outages 
Cascading outages do not always emerge only from natural hazards. Events such as the power cuts 
of August 2019 [54] illustrate that concurrent outages with very little or no association with each other 
can combine to create wide-scale system disruption with very little exogenous perturbation to the 
power system itself. Further, this is also why transmission-scale systems and meshed networks 
cannot simply be analysed through topological searches, even if simpler networks can. 

Combining disparate network models does not necessarily improve the overall standard of modelling 
conducted if the representation of those models is not appropriate for the task being undertaken but 
may make any analysis less than the sum of its parts. Any modelling conducted does not necessarily 
need to model the full dynamics of a perturbation scenario but does need to at the very least consider 
factors such as capacity constraints on the networks being modelled when they are as materially 
significant as they are on electrical power networks. Given features such as frequency response, 
supply/generation balance, generator availability, and protection action, which are not captured in 
simple topological searches, can directly contribute to large-scale power system disruption, if the aim 
is to model extreme events these must be considered in some way eventually.  

Furthermore, as discussed in the previous section, in future networks weather will continue to impact 
not only the transmission networks, but also demand and generation through changes in temperature 
and wind/solar conditions. Therefore, cascading outage models must take consideration of these 
factors as they will directly affect the ability of the power system to respond to perturbations.  

Increases in renewable generation reduces system inertia. Without suitable countermeasures by the 
system operator, such as use of fast dynamic frequency containment services, the ability of the power 
system to resist changes to frequency (measured in terms of Rate of Change of Frequency, or 
RoCoF) is reduced with increasing levels of wind generation [55]. A resilience enhancement approach 
proposed by the Oxford-led consortium in the modelling performed is to increase redundancy and 
provide backup storage – but these do not address many of the causes of large blackouts in and of 
themselves. If the cause of a blackout is an extreme windstorm damaging significant amounts of 
distribution or transmission infrastructure, this will also carry a risk of destroying any additional 
network infrastructure constructed, meaning there may be negligible improvements in resilience. 

The next subsection provides recommendations and suggestions on the requirements of simulating 
cascading outages. 

3.4 Suggested cascading outage-related case studies 
A number of recommendations for modelling of cascading outages under different circumstances are 
summarised in 

Table 4. It should be noted that the events which cause these cascading outage events may be 
weather driven, but if assumptions are made about generator setpoints, system inertia, frequency 



 

response etc. the specific simulations used in isolation may be viewed as a “black box” depending on 
the simulation approach deployed.  

Further, in a very broad sense, simulation types within power systems can be separated into Steady 
State, Quasi-Steady-State (QSS), and dynamic models. The last of these is sub-divided according to 
which kinds of transients are of interest: studies that consider electro-mechanical dynamics using 
models based on phasor representations of root mean squared voltages and currents (“RMS 
models”); or simulations of electro-magnetic transients, i.e. using “EMT models”.  A QSS simulation 
could be, for example, a simplified simulation for a system frequency response (SFR) simulation as 
deployed in [53]. In each of these approaches, a different set of equations is solved to describe the 
physical phenomena of interest with the more complex models used only where judged to be 
necessary. Very often, the more temporal granularity is needed, the more limited is the practical 
spatial scope of a model2. . 

In this sense the examples given here may be extensions of the scenarios described in 

 
2 A ”model” can generally be understood as the combination of the set equations to be solved and the 
parameters describing a particular physical system. Very often, in a power systems context, there are 
quite standardised sets of equations – for steady state, QSS, RMS or EMT studies – to be solved and 
commercial software to solve them. For many power systems engineers, a “model” is then a particular 
set of parameters describing a particular physical system under particular conditions. 



 

Table 1, but the simulations of the electrical responses of the system could be cause-agnostic if the 
data fed into the simulations is corrected appropriately based on the principles decided here.  

In this sense the examples given here may be extensions of the scenarios described in Table 1, but 
the simulations of the electrical responses of the system could be cause-agnostic if the data fed into 
the simulations is corrected appropriately based on the principles decided here. 



 

Table 4 - example scenarios and requirements for analysis of event cascading from the electricity system to other infrastructures (cause-agnostic) 

Scenario Electrical parameters necessary Example 
incident 
(if 
present) 

Affected 
infrastructure 

Models needed (simulation 
and features) 

Temporal 
range 

Frequency 
excursions (no 

network damage) 

Inertia constants, dispatchable 
generation set points, primary, 
secondary, dynamic containment, 
frequency response capacities, 
demand, storage capacities, 
demand response capacities, 
DER, renewable capacities, 
ramping rates 

August 
2019 

Dispatchable 
generators, 
transmission 
infrastructure, 
distributed 
generation,  

gas networks and 
demand, demand, 
demand response, 
storage 

Generator tripping models, 
demand response, storage, 
renewables capacities, SFR 

Milliseconds 
- days 

Outages 
including network 

damage 

Inertia constants, dispatchable 
generation set points, primary, 
secondary, dynamic containment, 
frequency response capacities, 
demand, storage capacities, 
demand response capacities, 
DER, renewable capacities, 
network topology and parameters, 
ramping rates 

Storm 
Arwen 

Dispatchable 
generators, 
transmission 
infrastructure, 
distributed 
generation,  

gas networks and 
demand, demand, 
demand response, 
storage, protection 
equipment 

Generator tripping models, 
demand response, storage, 
renewables capacities, weather 
models, SFR 

Milliseconds 
- days 



 

Protection 
failures 

Inertia constants, dispatchable 
generation, primary, secondary, 
dynamic containment, frequency 
response capacities, demand, 
storage capacities, demand 
response capacities, DER, 
renewable capacities, network 
topology and parameters, 
protection equipment locations 
and settings, ramping rates 

August 
2019 

Dispatchable 
generators, 
transmission 
infrastructure, 
distributed 
generation,  

gas networks and 
demand, demand, 
demand response, 
storage, protection 
equipment 

RMS dynamic models and, 
potentially, EMT models, 
generator tripping models, 
demand response, storage, 
renewables capacities 

Milliseconds 
- hours 

Resource 
adequacy 

studies/ 
Integrated 

Resource Plans 
(long term stress 

tests) 

Demand, storage, demand 
response, dispatchable 
generation, DER, renewable 
capacities 

ESO FES Dispatchable 
generation, solar 
generation, hydro 
generation, wind 
generation, storage, 
demand response 

OPFs, UCs, demand, storage, 
renewables capacities, 
weather/climate models 

Hours - 
years 

Renewables 
integration 

studies 

Demand, storage, demand 
response, dispatchable 
generation, DER, renewable 
capacities, frequency response, 
ramping rates 

ESO FES Dispatchable 
generators, 
transmission 
infrastructure, 
distributed 
generation,  

gas networks and 
demand, demand, 
demand response, 

Demand, storage, renewables 
capacities, weather/climate 
models, SFR 

Seconds-
years 



 

storage, protection 
equipment 

System 
restoration 

Inertia constants, dispatchable 
generation set points, primary, 
secondary, dynamic containment, 
frequency response capacities, 
demand, storage capacities, 
demand response capacities, 
DER, renewable capacities, 
network topology and parameters, 
ramping rates, 

N/A Dispatchable 
generators, 
renewable 
generators, gas 
networks and 
demand, storage, 
TDI, protection 
equipment  

Demand, storage, renewables 
capacities, weather models, 
potentially also load flow, 
models of network switching, 
RMS dynamic models, UCs, 
OPFs, potentially EMTs if 
interested in specific 
phenomena such as 
energisation 

Hours - days 



 

The wide temporal range of these studies illustrates the complexities associated with power system 
analysis of extreme events. Further, frequency variations are normal within the power system but can 
trigger cascading outages and severe system outages if they are not controlled, e.g. as occurred in 
August 2019 in GB [56]. Analysis of these events is complex as the response of individual generators 
and localised protection and inertia properties of systems can cause localised impacts of system-wide 
frequency-related phenomena. It is a significant challenge to cover every potential factor in an event 
which causes power system disruption with the same simulation package, which is why simulation 
packages used in power systems tend to be special purpose and tailored to specific use-cases, be 
that real-time simulations, EMT simulations, or simple load flow calculations.  

The work in [53] investigated the problems associated with the wide range of temporal impacts by 
exporting data from a real-time dynamic simulation (RTDS) via an IP connection, and solving the 
frequency response and power flow calculation using simplified representations in the python 
programming language. The work in [57] linked multiple unit-commitment SCOPFs with a frequency 
response simulation and different types of optimal power flows to model largescale outages on a 
representation of the GB system caused by an extreme wind storm.  

In that sense, linking different models together to capture different events is possible, but it can be a 
complex and time-consuming effort to ensure consistency of results. This also complicates how 
outcomes are measured and quantified, particularly if there are disparities across the system as to 
how long it takes customers to restore, and to what level interdependent systems are modelled. For 
example, system restoration following an extreme windstorm alone compared to system restoration 
following extreme blizzards and the subsequent snow melts will be very different. If high wind 
penetration on a system means lower inertia, and a series of cascading outages leads to a system 
blackout, the control responses and frequency response of the system will need to be simulated to 
fully capture the eventual consequences for the system as this will not be captured adequately by just 
using an OPF, even if that OPF includes load curtailment.  

Features such as Low Frequency Demand Disconnection (LFDD), also known as Under Frequency 
Load Shedding (UFLS), must either be captured directly by performing an appropriate system 
frequency response (SFR) simulation or through appropriate proxies within the optimal power flow 
used to model system behaviour [58]. This is particularly consequential in GB as falling system inertia 
makes the system increasingly vulnerable to high Rate of Change of Frequency (RoCoF) events [59]. 

Generators which trip due to frequency excursions will typically have to re-synchronise with the 
system and recover after a period of time, and in the event of a total blackout system restorations 
becomes even more complex and Black Start or system restoration procedures will have to be 
enacted. Whether or not these matters are considered should be decided before any modelling is 
conducted due to the complexities associated with modelling system restoration – it is possible, for 
example, to model restoration just via an OPF for each step and presume that the system maintains 
stability, but features such as unit commitment also come into effect once the simulation extends into 
the range of hours, as generators will be scheduled to come in and out of service and weather 
patterns will affect both customers and generators, as well as, potentially, the integrity of the 
transmission system and the capacity to get power where it needs to go. 

Finally, it is important to remember in any complex power system simulation the concepts of aleatory 
and epistemic uncertainty. That is, respectively, the uncertainty associated with the abstractions used 
in the development of any model used, and the uncertainties associated with the inherent, 
fundamental randomness of the world. 

To summarize, any modelling of weather events that involves power systems should: 

• Clearly define the boundaries of the simulation problem spatially and temporally so that the 
types of simulation to be used can be chosen appropriately 



 

• Define clearly interactions with other infrastructures so that either the effects on those systems 
can be modelled appropriately or such that potential challenges can at the very least be 
indicated 

• Only model systems and events you have confidence in and which are based on robust, 
appropriate datasets and models 

• Not try to model “too much”; overcomplexity can obfuscate model results and undermine any 
findings by introducing potentially unnecessary error. 

In addition, it must be decided what approach to the modelling should be taken, and whether that 
is: 

• Stochastic: based on performing many simulations and resolving fully each scenario in situ, 
before averaging the results, using datasets representative of a presumed scenario or event 
(i.e. Markov Chain Monte Carlo simulation, linked with fragility curves). That is, for n samples, 
at least n simulations will be performed, dependent on how many types of simulations are 
performed in each sample (e.g., if only a load flow is performed for every sample, then n 
loadflows will be performed, but if a loadflow and a frequency response is performed for every 
sample, 2n simulations will be performed, meaning simulation cost increases linearly for sample 
size). 

• Scenario-based: predetermined weather and outage events are chosen and performed by the 
simulation framework to calculate outcomes; these events would have to be chosen by expert 
elicitation or pre-established conventions; an example of this could be N-1 simulations 

Thus far, the focus has been on natural hazards and their impacts on the power system, but another 
threat comes from intentional or malicious attacks on the system. These are the subject of discussion 
in the next section. 

  



 

4 Cybersecurity-related Events 
Compared to natural hazard modelling and power system outages more generally, there is relatively 
little real-world evidence of disruption to power systems associated with intentional, malicious attacks 
to power system integrity- at least on a comparable scale. Two events are noteworthy in recent years 
both because of the scale of damage they incurred when they were successful, and because of how 
unusual it was for them to succeed. These attacks shall be discussed here as well as more general 
cybersecurity and cyber-physical system security and how it may prove to be relevant to the research 
undertaken in this project. 

4.1 Example attacks 
Two attacks in recent years are of particular significance; the Stuxnet attacks on Iranian Uranium ore 
enrichment facilities, and the extensive cyberattacks conducted against Ukraine’s electrical power 
systems in 2015. Even more recently it has been claimed there has been a cyberattack exposed at 
Sellafield, but details are still emerging and specifics are not yet known, so a review cannot yet be 
conducted [60]. Sellafield disputes it has been attacked at all, but it is claimed that adversaries have 
gained access to monitoring systems on the site itself. 

4.1.1 Ukraine and Black Energy 3 
A review in [61] is conducted to understand the implications of the Ukraine cyberattack on bulk power 
systems. This attack affected 225,000. The malware “Black Energy 3” was used to steal VPN (virtual 
private network) credentials, in turn allowing access to privileged systems. Afterwards, KillDIsk 
firmware was used to wipe backup hard-drives to disrupt and delay system restoration.  

State estimation was disrupted using False Data Injections, flooding workstations with inaccurate 
information to further disrupt operations.  

Such attacks can take a significant amount of planning and require in-depth knowledge of the system 
under attack. For example, they rely on the attackers: 

• Having knowledge of victims’ systems 
• Being able to manipulate meter measurements 
• Having knowledge of control and operations 

o Network topology 
o Electrical parameters 
o Data detection schemes and mitigations 
o SCADA device specifications 

Using this information and access to control systems, attackers could perform actions such as: 

• Maliciously disrupting measurements 
• Switching circuit breakers 
• Disrupt communications infrastructure 

There are different approaches to maliciously altering data packets, or adversarial attacks, which will 
depend on the type of attack being undertaken. Some examples are: 

• Disrupting meters at a local level or physical disruption 
• Intercepting and altering data packets at a communications protocol level 
• Forging data packets 
• Altering data within the control centre itself 



 

In the context of the current research project being undertaken, we are less interested in the specific 
mechanisms by which an attacker might be able to achieve access to these systems, rather what they 
might do once they do.  

The probability of success affects any aggregated risk assessment of such cyberattacks, but it is 
unlikely to be within the scope of the project to be able to realistically quantify this risk – probability 
could however be qualified or assumed e.g. through a weighting from 0-5 based on expert elicitation 
which could in turn be used to determine risk. It still might be worth evaluating the extent of the impact 
following such events and the modelling approach followed by the project could be able to potentially 
play out such scenarios for impact assessment. 

4.1.2 Iran and Stuxnet 
Stuxnet was an attack on nuclear-related infrastructure in Iran linked to Israel as the source [62]. This 
report used a systems analysis report to analyse the vulnerabilities which contributed to the attack 
being possible as well as providing an analytical method for how to analyse similar events more 
generally.  

To summarize, Stuxnet was discovered by “VirusBlockAda” in June 2010. It primarily affected 
computers in Iran but did spread to systems across the globe. The attack process is illustrated in the 
following figure. 



 

 

Figure 15 – Studxnet attack process, described in [62] 

The attack itself was likely tested in isolation to prevent impacts on other infrastructures (i.e. those 
within the attacking state). It was aimed at program logic controllers (PLCs) used for controlling 
uranium centrifuges, which itself would have been challenging as each PLC would have a unique 
configuration. This would have required access to manufacturers, contractors, or snooping malware. 

Given such infrastructure was likely to be airgapped, it is also probably that the malware was 
physically introduced to the system, e.g. by an infected USB device. Once the infection was within the 
system it was able to self-proliferate and affected other systems, such as SCADA. 

It utilised known flaws in the Windows operating system to proliferate – using legacy operating 
systems is not uncommon in infrastructures as the flaws are well known and can be designed around, 
but the onus is still to ensure those vulnerabilities are addressed before they can be exploited. 



 

Stuxnet lurked on systems and mimicked normal operation, first by recording what “normal” operation 
looked like, then replicating normal command messages and sending them to appear legitimate. 
Registers of infected devices were kept to monitor the proliferation of the malware. Eventually, these 
access routes were used to attack the system. The primary targets were SCADA, web-servers, 
network adapters, central data repositories, and database servers. Legitimate nodes on the system 
were subsequently replaced with illegitimate ones to aid in seizing control of systems. The paper itself 
then proposes a methodology to identify specific threats to the system, but this is outside of the scope 
of this report. 

Both these attacks have in common that they targeted not the physical components of the power 
system directly, but the mechanisms which controlled it – the “cyber” component of the “cyber-
physical system” (CPS). In [62] it is argued that the main components of a CPS are: 

• SCADA 
o Used to gather and control geographically dispersed assets 

• Distributed Control Systems (DCS) 
o Controllers which are grouped together to carry out specific tasks at a specific location 

• PLC 
o Device-level controllers used by DCS and SCADA 

Security in power systems initially emerged from air-gaps and a lack of digitization, and centralisation 
of control. “Smart grid” concepts and increasing digitisation undermine this. 

Attacks can undermine systems not just by attacking components themselves but by attacking 
communications and interactions between components – e.g. delays, inaccurate information, 
distributed denial-of-service (DDoS) attacks. 

Diversity of devices means that homogenous security profiles are unlikely to work, especially if all 
devices on a system are “trusted”. More devices which communicate with parts of the system mean a 
larger attack surface. Every trusted node is a potential attack vector, thus the attack surface increases 
with connectivity and scale. As we are moving to systems with much more software and control and 
much higher number of controllable devices by an increasing number of entities (e.g. not just the 
system operator but aggregators or even individuals), this can also manifest as an increasing risk. 
This is an aspect that is worth considering as we are potentially moving towards systems with more 
software and control of a larger number of devices (e.g. distributed energy resources, batteries, EVs) 
and potentially by a larger number of actors (e.g. aggregators or even individual consumers). 

Prioritisation of securing “obvious” targets like SCADA can overshadow security of lower-level devices 
which can still cause harm to the wider system. Different approaches are identified to model safety 
analysis of CPS: 

• Fault tree analysis 
• Failure mode and effects analysis 
• Hazard analysis and critical control points 
• Hazard and operability study 

Risk assessments can then be performed to identify hazards, that is any event or situation with a 
potential to cause damage. Hazards can be related to  

• Actions 
o Undesirable actions (e.g. tripping of devices, incorrect setpoints, etc.) 
o Desirable actions not taken (e.g. failed or partial delivery of an expected service) 

• Timing 
o Desirable actions taken too soon or too late 



 

• Sequence 
o Desired action in sequence of actions skipped, or actions in a sequence performed out 

of order 
• Amounts 

o Desired action performed too much or too little 

Quantifying the risk can then be performed via methods already discussed within this report, which in 
turn can be used to design safety and resilience measures. 

Systems can be “safe” but not “secure” – parameters can be altered to create adverse operational 
conditions that technically speaking are still within the “safe” range, but might cause uneconomical 
operation. Cyberattacks can also use this principle to malicious ends by manipulating the system to 
still operate within operational bounds but might not be secure against further disturbances. For 
example, a system might be driven to operate in a condition which is not N-1 secure or according to 
SQSS. This could potentially be envisaged to be exploited even further to deliberately cause 
instability, for example through enforcing disturbances that will drive the system to an unstable 
operating condition, although this would potentially require much more effort and access to critical 
systems (see example of the Ukraine cyberattack). [62]; 

• Failure mode and effects analysis (FMEA): 
o Identify individual failure models of a system/its components and effects on reliability 
o Performed at start of development phase, after design 
o Uses “risk priority number” (RPN) in quantitative analysis to identify “reliability rates” 

for each failure mode. This could potentially be useful in prioritising scenarios to further 
investigate. Deciding how to prioritise those scenarios is an of itself an additional 
challenge 

o RPN = severity x probability x detection ranking 
o Unclear what “detection ranking” is 
o Can be useful for single points of failure but some failures can occur even if all 

components are operating normally 
o Fails to consider combinations of failures 

It is argued these “traditional” methodologies view safety as reliability issue – failures being a result of 
linear chain of undesired events. CPS security threats however can occur without any evident failures. 
E.g. an attacker could modify settings within a “safe” range but still cause disruption. 

A method, labelled STAMP was proposed – i.e. Systems Theoretical Accident Model and Process. It 
is designed to consider interactions among components as opponents to design safe systems. 

• Looks at systems as dynamic systems rather than static 
• Consider safety and security as control issues rather than reliability issue 
• Components within a system require control through constraints, inadequate enforcement 

leading to failures 
• Models how these systems interact to determine a “safe” and “secure” state 

From this, a means of investigating failures retrospectively is proposed, “Causal Analysis based on 
STAMP” or CAST. It uses the following procedure: 

Defines a means of investigating failures – “Causal Analysis based on STAMP” (CAST) 

• Define hazards 
• Find safety constraints and requirements 
• Define control structure 
• Find possible events causing failure or accident 



 

• Navigate through system control structure to find vulnerabilities and how they can cause failure, 
unsafe states 

• Analyse interactions and finding potential factors that can lead to failure 
• Finding external and dynamic factors that can affect overall safety structure 
• Produce design recommendations for improvements to safety design 

This could be a useful approach for designing events for analysis more generally from a “Bottom Up” 
approach, as opposed to a top-down approach of inducing a causal event and investigating its 
impacts. However, given the significant number of ways in which power system collapse can occur it 
is likely not possible to produce a complete set of pathways within the scope of this project, and is 
likely a significant body of research in its own right. Furthermore, it should be noted that such 
methods might end up requiring large computational effort if detailed models of energy systems are 
needed to be employed. 

4.2 Review of general cyber-physical security principles  
A systemic literature review of cybersecurity and cyber-physical system resilience was undertaken in 
[63]. In this case it understand cyber-physical systems (CPS) as “architectures that incorporate digital, 
[analogue], and physical components”. Cyber-physical energy systems (CPES) are those explicitly 
related to the delivery of energy to customers. 

It is important to demarcate the digital (“cyber”) and physical components of the system because 
these present as different attack surfaces for adversaries, though the line is not always obvious. The 
power system itself is an enormous and complex system integrating physical machinery (generators, 
transmission), monitoring and control (Supervisory Control and Data Acquisition – SCADA), and 
digital components. These present multiple attack avenues for adversaries. However, there is little 
practical experience of hackers or malicious attackers successfully deploying widescale attacks 
against infrastructure in states such as the UK – which is not to say they have never happened, with 
events such as the WannaCry ransomware attack affecting companies of all kinds globally. Most 
vulnerabilities on the power system, however, are already known – a figure is quoted suggesting that 
“99% of vulnerabilities exploited in 2020 were known to security officials”. More recent events such as 
the reporting of the Sellafield attack suggest there may also be attacks that have occurred or are in 
progress which we simply do not yet know about. 

There are multiple different labs utilising different approaches specifically designed to investigate 
cyber-physical threats to systems, outlain in Table 5 [63]. 



 

Table 5 - Cyber-physical testbed architectures, accuracy, repeatability, cost characteristics, and example testbeds 
with their simulation resources. [63] 

 

What should be immediately observed is that these all entail real-time dynamic simulations and 
network model simulations. This therefore places the simulations or replications outside of the scope 
of this research project as it is unlikely that a single solution can be provided that incorporates 
extreme weather simulations with real-time simulations of this nature, though this depends on what 
types of attack the users actually wish to investigate. It could still be worthwhile to “play out” scenarios 
which could be caused by cyber-attack related failures, however. 

It is of course desirable to be able to model such attacks in testbeds such as these safely without 
risking a lab-based experiment or cyberattack leaching into the MITS, though a consequence of this is 
that then the realism of such experiments has to be carefully considered given the difference between 
any lab-based work and a real physical system. It should also be noted that this is essentially PHiL 
testing, which the Power Networks Demonstration Centre, a research centre affiliated with 
Strathclyde, conducts. 

Four different categories of cyberattack studies are proposed as general concepts, illustrated in Table 
6 [63]. This is purely to illustrate the range and scale of different types of study conducted. 



 

Table 6 - CPES security study categories and research examples. [63] 

 

The specific nature of each of these studies is provided in the reference within the report and will not 
be repeated here. The key point to note is that it is clearly an area of intense ongoing study, and that 
there are a significant range of studies being conducted. What should concern us is whether 1) it is 
appropriate to replicate these studies within the modelling framework of “extreme events” or 2) 
whether it is practical and reasonable to do so. 

Typically cyberattacks, within the cases described within the review, as modelling an “adversary” and 
a “defender” or “red team” and “blue team”. This requires modelling of both the objective function of 
the attacker and the defender who will have opposing objectives; one to inflict harm and the other to 
prevent it. The capability of this attacker will depend on the information it has on the system under 
attack and the resources they have to exploit it.  

The impacts of the attack will also depend on what section of the system is attacked. To these ends, 
the following categorizations are offered. Firstly, the categorization of assets under attack, described 
in Table 7 [63]. 



 

Table 7 - ICS functional levels, equipment categories, and their corresponding components [63] 

 

Attackers are classed as Class I and Class II. Class I attackers are described as those who lack the 
resources or ability to attack without being detected, whereas Class II attackers can be organized 
crime-related organisations, or state actors. 

Correspondingly, attacks are also categorized as: 

• Level 0 – attacks on CPS processes and operational equipment (e.g. sensors, actuators) 
• Level 1 – attacks on the control network (e.g. PLCs, controllers) 
• Level 2 – attacks that target SCADA, monitoring devices 

A threat model is proposed in the following Figure 16 as a general conceptualization [63]. 

 

Figure 16 - Adversary model and attack model components comprising the comprehensive threat model 
architecture [63]. 

The relevance of these categorizations is whether they can be replicated appropriately within an 
Extreme Event case study to an acceptable degree within the time frames required in the context of 
the other modelling work being considered, and whether such simulations add any useful information 
that can be acted upon to improve resilience.  



 

It is noteworthy that within the review, quantification of the probabilities of different attacks is not 
attempted, but rather qualifications of probability are provided (from Low to High), these are assigned 
a numerical value and used to compute a “damage score” to relatively rate different attacks on the 
system. This sidesteps the need for quantifying attack probability which, in this case, is almost 
impossible to do, but instead allows for expert judgment. 

It is useful, therefore, to examine the case studies actually performed within the review as to whether 
they are likely to be necessary to emulate within the simulation platform being proposed. Four are 
proposed, with the following parameters as shown in Table 8 [63]: 

Table 8 - Threat model of the attack case studies [63]. 

 

The details and results of these studies can be found within the report itself, but the major findings are 
useful to note. For example, in the Load-changing attack case, despite changing the attack on a load 
point by as much as 50% in a microgrid on multiple buses, this only causes frequency swings of 
~0.2Hz positively and negatively from a 60Hz nominal frequency. This could be manageable in 
standard operational cases with adequate frequency response provision. In addition, there is usually 
some awareness of network devices and additional capacity in the system, and such an attack would 
necessitate coordination and access to a number of devices (or entities/actors) which might be 
challenging to achieve. However, if an adversary has the level of technology and capacity to carry out 
an attack of this magnitude, it’s also possible that they could attack infrastructure such as EVs or 
flexible demand. Further, seizing control of e.g. an aggregator being relied upon to deliver critical 
services could cause severe system disruption should an ordinary outage occur at a time of acute 
need. 

A directed attack at a power converter maximum point power tracking (MPPT) component 
demonstrates much more significant impacts on the system frequency (nearly a 1Hz drop and 
significant instability in associated system parameters), however this relies on a direct attack on the 
firmware of a controller. This may require physical access to such a component which could be 
difficult to achieve without detection (although not necessarily impossible). In such cases, to avoid 
system instability, a mitigation could be to disconnect the affected device and rely on N-1 security 
design of the system to withstand such an attack, as long as the attack is limited to a single plant. In 
addition, a straightforward mitigation in such cases could also be physical security limiting access to 
the PLC/controllers or alerts if the firmware itself is modified. Modifying the firmware of devices is of 
course also a risk in its own right and could introduce unforeseen consequences across multiple sites 
if there are errors or unwanted features of the code – a faulty software update could have 
indistinguishable consequences to those of an intentional attack, after all. 



 

A far more concerning modelling result emerges from the Time-delay attack. In this case, a relatively 
oblivious attacker delays a load shedding command to a microgrid controller, causing a severe 
frequency excursion before remedial action can taken, potentially leading to a system collapse. The 
scenario itself postulates that a microgrid (MG) disconnects from a main grid through intentional 
islanding, and to mitigate the loss of infeed a simultaneous signal is sent to perform load shedding. 
The time delay attack delays the sending of the load shedding signal, and thus frequency collapses. 

Such a scenario is not necessarily directly transferable in a GB context. Firstly, intentional islanding is 
not a common action taken. Secondly, intentionally islanding a section of network and issuing a 
command to perform remedial action to sustain that then-islanded grid is not necessarily a common 
design approach for such a system to take because it is vulnerable to precisely the attack listed here; 
a reasonable and straightforward preventive measure for this type of attack could be as 
straightforward as ensuring the grid connection is pushed to float before islanding occurs so that both 
sides of the point of coupling remains stable after separation.  

Further, LFDD arrays at 11kV or below would perform this role automatically in the event of a major 
frequency excursion. The attack itself, should this sequence of design features actually be 
implemented, is of course relatively straightforward because an attacker does not need to know 
anything about the topology or parameters of the system under attack, it simply needs to congest the 
network.  

There has been research into the impacts of frequency response and the timeliness of responding to 
frequency excursions due to the impact of high RoCoF scenarios [64] for precisely these reasons, 
because the speed of frequency response is an essential factor of its efficacy and if that can be 
delayed then it naturally follows that system disruption is a consequence. 

In noting this, of course, even an attack which simply triggered the LFDD could still be considered a 
success as this would still, for a period of time, cause significant disruption to the power system. 

The final case study investigates the consequences of a more direct attack, manipulating circuit 
breakers (CBs) maliciously to affect power system stability. This does demonstrate more severe 
consequences and there are real life examples of this kind of attack in action (e.g. the Ukrainian 
cyberattacks), however they require a significant amount of knowledge about both the physical 
system (in order to access areas which can significantly impact the system) and of the control 
systems involved (to be able to manipulate those systems). The demonstrator system used, however, 
is of a modified IEEE 9-Bus network model with an expanded node to represent a distribution system. 
While these cases are useful to study to demonstrate the kinds of threats the system could potentially 
face, the complexity of actual MITS might require more detailed and realistic representations which 
might be challenging. 

4.3 Summary of issues related to cyber-physical attacks 
Unlike incidents related to natural hazards, the scale of data available to model and reproduce CPES 
attacks is particularly limited, at least when it pertains to the scale of event which we may deem to be 
an “extreme” event. Therefore, determining the probabilities of these events is particularly 
challenging. 

Less challenging is determining the impacts – at a certain point, whether an action has been taken 
through malice, unfortunate circumstance, or incompetence does not matter if the electrical 
components on the system perceive it the same way. Which is to say, load suddenly dropping on the 
system will cause a frequency excursion whether that is due to a transformer failing or whether a 
hacker has sent out a signal to an aggregator to suddenly disconnect a certain amount of demand at 
an inopportune moment.  



 

If CPES attacks are to be modelled, therefore, it should be based on a qualified assessment of what 
the most likely dangers are to be via modelling their impacts on the power system, e.g. rapid 
variations in demand on the system, malicious control of power converters, etc. Other potential 
impacts of malicious attacks, e.g. intentional destruction of assets, can be modelled using identical 
methods relating to natural hazards, only the attack surfaces and the probabilities are different. For 
example, if a storm hits the power system, we can predict where that storm will impact the power 
system based on weather forecasts. If an attacker wishes to attack SCADA systems, their access will 
instead be determined by factors such as ownership of those assets, manufacturer, type, and network 
design. Ironically, if a lack of modelling of this has been conducted because of the complexity of 
attaining this information, it also means that a CPES attack utilising this information is unlikely, 
through security via obscurity, with the diversity and obscurity of systems unintentionally hedging 
against the ability of attackers to utilise a consistent attack pattern against them. 

This is not to suggest that such attacks should not be studied or mitigated against or to foment 
complacency; CPES attacks are clearly a potential for major disruption across the power system. 
Even attacks which do not cause blackouts could cause damage to system assets or incur significant 
costs through causing uneconomical market behaviours. Nonetheless, further study is almost 
certainly needed to determine what data and modelling are needed in order to incorporate such 
modelling into the framework satisfactorily. 

There are also competing factors in terms of the types of devices which may be attacked and the 
effects of diversity versus standardisation. With standardisation, weaknesses could be well 
understood ahead of attacks and planned around, but this also means that if an attack does succeed 
it increases the probability of a common mode failure affecting all devices of that kind. It is not known 
within the review to what extent standardization could be used to mitigate or exacerbate such threats 
and further research into this should be conducted if possible but it may be outside of the scope of 
this project. 

Conversely, introducing too many devices from different operators, standards, and manufacturers can 
make maintenance of these systems overcomplicated, introduce additional costs, and increases the 
probability of stranded and abandoned software and components with companies no longer 
maintaining devices either through commercial decisions or from going out of business. 

As noted, at a certain point whether an attack is deliberate or a result of human error or poor design is 
indistinguishable to the power system itself, but will affect the restoration and recovery of the system 
from that incident and the attack surface available. Therefore, it is not unreasonable to assume that 
modelling approaches used for standard perturbation scenarios should still, in many ways, be 
appropriate here. 

4.4 Suggested cybersecurity-related case studies 
Some example cyberattacks which could be modelled are suggested, but it is likely significantly more 
information will be needed to determine the probability of these attacks. Modelling e.g. the 
communications network facilitating these outages will almost certainly be out of scope at this stage, 
but replicating the potential impact of these attacks by e.g. adversely changing controllers or demand 
at nodes could be used to emulate the consequences of those attacks. These are described in Table 
9. It is notable that these generally are very similar to the cascading event simulations already 
suggested and analysis at a detailed level will likely involve dynamic simulations. 



 

Table 9 - suggested cyber-resilience related attacks 

Scenario Electrical parameters 
necessary 

Example 
incident (if 
present) 

Affected 
infrastructure 

Models needed 
(simulation and 
features) 

Temporal 
range 

Malicious 
manipulation of 

demand and 
network topology 

Inertia constants, dispatchable 
generation set points, primary, 
secondary, dynamic containment, 
frequency response capacities, 
demand, storage capacities, 
demand response capacities, 
DER, renewable capacities 

Ukraine 
cyberattacks 

Dispatchable 
generators, 
transmission 
infrastructure, 
distributed generation,  

gas networks and 
demand, demand, 
demand response, 
storage, 
communications 
networks 

EMTs, generator 
tripping models, 
demand response, 
storage, renewables 
capacities, RMS 
modelling, controller 
models, renewable 
generation 

Milliseconds 
- days 

Malicious 
manipulation of 

power converter 
controllers (e.g. 

changing setpoints 
and 

measurements) 

Inertia constants, dispatchable 
generation set points, primary, 
secondary, dynamic containment, 
frequency response capacities, 
demand, storage capacities, 
demand response capacities, 
DER, renewable capacities, 
controller models for power 
converters 

N/a Dispatchable 
generators, 
transmission 
infrastructure, 
distributed generation, 
gas networks and 
demand, demand, 
demand response, 
storage, 
communications 
networks, renewable 
generation 

EMTs, generator 
tripping models, 
demand response, 
storage, renewables 
capacities, RMS 
modelling, controller 
models, renewable 
generation 

Milliseconds-
days 



 

5 Conclusion and Recommendations 
This report has attempted to understand the various issues arising from modelling “extreme events” through 
examining recent, directly related literature on the matter. To this end, various issues have become evident 
relating not only to how to classify extreme events, but also how to simulate them and understand them in the 
context of wider power system reliability and resilience. 

5.1 Defining an “extreme event” 
Typical definitions of resilience tend to relate to HILP as a categorization of resilience-related extreme events. 
That is, related to both the probability and impact of those events. A heuristic for this could be to view anything N-
1 related as “reliability” focussed, and anything more extreme than that as “resilience” oriented. However, an 
event can have major consequences even if nothing on the system breaks, for example in an extended 
heatwave, during a dunkelflaute, or during a cold snap.  

Weather-specific categorizations of “extremity” should be left to the meteorologists, as suggested by ESIG, 
because that is their domain of expertise. The duty of translating these weather events into power system 
consequences should be charged to those with expertise in modelling the power system itself with understanding 
of its working. 

A suggested approach for defining an “extreme” power system event is  

• “any event that, without suitable mitigating actions, would cause, as a result of conditions arising 
from that event:   

o Interruptions to a large number of end users’ supply of energy, beyond those that could be 
expected due an outage of any single item of energy system plant;  

o extraordinary energy market conditions, or 
o interruptions of energy supply to significant elements of critical national infrastructure ”  

This definition could apply to any N-1-k scenario, to interconnected outages across systems, to a heatwave which 
forces derating of power system assets to maintain stable operation, or even to a cyberattack which results in 
market operators having to change dispatch because suboptimal operation is induced by cyberattacks. It is also 
agnostic to probability, which would allow expert elicitation to address extreme events of which the probability is 
difficult or impossible to quantify and does not define explicitly a time horizon to allow longer term events to be 
considered. 

5.2 Data concerns and model priorities 
Access to data, be that weather or electrical power system, is an endemic challenge for modelling power system 
resilience. There is a conflicting challenge between the need to ensure model accuracy and robust representation 
of weather-related phenomena, without models that imply false realism and modelling bloat if the parametric 
relationships used within any model are not statistically significant or robust.  

All models should be “as simple as they can be, but never too simple” [58], and the specific requirements for test 
system parameters has long been a subject of debate and discussion [65]. A major weakness of the Oxford/NIC 
work was attempting to do too much all at the same time to the extent it  weakened significantly the ultimate 
findings. The nature of the modelling conducted will depend not only on what data is available but also on what 
questions we want to have answered by the modelling which is conducted – are we looking to mitigate outage 
times, mitigate aggregated scale of customer disruption, or prevent incidents altogether?  

It is highly unlikely that it is possible for a single model to be able to capture all of the features discussed in this 
report (e.g. from frequency response to water demand), though a multi-agent model that considers different 
features and combines their inputs into an aggregated form, with qualified assessments of various model inputs, 
could be a reasonable approximation. These models do not all have to be developed at the same time by the 
same people. Different models can be ‘soft-linked’ given definitions of suitable interfaces. A modular model which 
allows for additional modules to be added to improve realism (e.g. to correct restoration times on assets if a 
transportation model is added) could be one avenue of enabling ever more realistic modelling of extreme events.  



 

Reanalysis weather data, such as from ERA-5, should be used, as per the recommendations in the ESIG report, 
but this might not capture the effects of climate change. Different climate models might be used  with expert 
advice from meteorologists.  

In stochastic models it is important that accurate data are used for failure and, depending on the nature of the 
study, repair rates. Because failure rates, especially for overhead lines, change by many orders of magnitudes 
between ‘normal’ and ‘adverse; conditions, these should be appropriate for the weather conditions that are being 
modelled. Utility statistics gathered over many years for large populations of key asset types should be used 
wherever possible. If fragility curves for overhead lines are to be used, the data sources linked in [20] can be 
referenced. In the absence of anything better, data from other countries might be used, such as from TADS 
(Transmission Availability Data System) [41], albeit with clearly presented caveats. As a last resort, failure rates 
from sources such as the 1996-Reliability Test System might be used as stand-in sources [40]. 

For the immediate future, however, the focus should be on modelling or representing the fundamentals of power 
system resilience studies. That is: 

• Topological (node-branch) models with capture of connections to other critical infrastructure 
• Power flows 
• Frequency response 
• Renewable generation projections 
• Demand projection 
• LFDD regimes 
• Basic restoration modelling 

These represent the most versatile and immediately useful models and allow for a wide range of modelling to be 
performed. It ought to be relatively straightforward to obtain representative models from project partners. In their 
absence and for the purpose of testing prototype modelling approaches, IEEE standard networks might be used 
as placeholders until those models are made available in a limited fashion. A next step, to model more specific 
phenomena, could be to incorporate features which include: 

• Electro-mechanical dynamics in “RMS” simulations, including controller models  
• Weather modelling 
• Dependency of asset failure probability on weather conditions such as represented by fragility curves 
• Markets 
• Distributed generation 
• Demand response and load prioritisation 

More detailed modelling could then incorporate: 

• In order to fully assess the impact of behaviour of inverter-based resources (such as wind farms and HVDC 
interconnections and embedded links) and their control, “EMT” simulations. 

• Communications networks 
• Transportation networks 
• Water networks 
• Bus-breaker representation 
• Optimised restoration 

The first group of models and data would allow basic studies to be conducted and could be cause-agnostic so 
could cover a wide array of scenarios. Projections of e.g. wind power can be based on historical data as a 
placeholder and later updated. Further refinements then allow more complex modelling to be performed with 
more detailed scenarios. Complex behaviours that can render models of large systems or interconnected 
systems unwieldy or impractical may need to abstractions that are broadly representative of key behaviours, with 
the caveat that there is some degree of ‘state of knowledge’ uncertainty, i.e. epistemic uncertainty.  

Some research has been conducted into modelling restoration times subject to extreme weather and restoring 
power systems subject to storms, such as in [43] and [66], so abstractions are possible to improve restoration 



 

time modelling. If data or models are not available, it is still worthwhile to categorise what these data and models 
are to direct future research or to describe it in qualitative terms. The ESO and academia have a wide range of 
tools at their disposal, but these are not universal; a clear categorisation and inventory of such tools would be of 
great use. 

The key priority should be facilitating models which can represent a range of initial conditions of the system, and 
simulate the system being perturbed, capturing the degree to which adverse impacts can be contained and 
recovered from, and allowing the nature of adverse impacts to be better understood thus informing potential 
mitigation actions.  

5.3 Model purpose and value 
A power system simulation model is a tool which should be used to answer a question and is not in and of itself 
an answer to a question. Choice of a modelling approach should be made having in mind what the answers it is 
providing should actually be used for. There are multiple potential purposes which will all require subtly different 
approaches: 

• To inform the deployment and design of “last resort” containment ‘defence plans’ such as LFDD/UFLS or 
under-voltage load shedding 

• To mitigate events before they come to rely on “last resort” interventions 
• To plan investment strategies for infrastructure 
• To plan dispatch policies to manage resource shortages 
• To inform revised system security standards 
• To justify ‘asset hardening’, either targeted at specific locations or more generally through revised design 

standards or policies 

Modelling such as OPFs are a proxy for human decision-making, and can be used to better inform those 
decisions, but there is no “one-size-fits-all” approach to power system models. Dynamic simulations such as 
“RMS” or “EMT” models are limited by computational expense and cannot be used within the same simulation 
model as, for example, a unit commitment problem, but can be used within a framework which uses network 
simplifications or reductions as part of a trade-off between spatial coverage and temporal detail. 

The choice of events against which to evaluate system resilience or test the need for new interventions will be 
key to what questions are able to be answered. Events such as the August 2019 outages were not directly 
caused solely by a significant exogenous threat, but by compounding of independent, flawed protection or control 
actions – “hidden failures” that were already present on the system and were revealed by the initial short circuit 
event within the system which caused a cascading of outages. The “last resort” interventions, though causing 
inconvenience, functioned to prevent a more severe cascading outage or blackout scenario. 

As is discussed within Section 4, it is the case that for a given set of inappropriate actions it is often 
indistinguishable whether a bad or wrong action taken is malice or misfortune. This can also be true of control or 
protection actions. While an individual component may react “correctly” and according to its settings, if those 
settings are incorrect, the action could exacerbate or, in and of itself, cause a series of events leading to a 
cascading outage. This is also true of human attempts to restore the system following a significant outage.  

If there is a serious attempt to model cascading outages on some level at least basic consideration of protection 
actions such as generator tripping, RoCoF actions, loss-of-mains protection, or overload protection on lines will 
have to be considered at some point. But this, in turn, depends on the temporal granularity of the model, or 
models, and how they interact, as well as an understanding of the initial conditions of the model and the settings 
of these protection devices.  

Similarly, credible modelling of restoration can only be done if the circumstances under which restoration is 
needed are modelled. For example, restoration of electricity supplies on August 9th 2019 was relatively 
straightforward as there was no equipment damage- though restoration of rail services was another matter. 
Restoration of disconnected supplies during Storm Arwen was highly challenging due to damage to network 
assets and the storm’s hindering of access by repair teams. In order to replicate an event like August 2019 you 
have to be able to simulate the events which caused it as well as the cascading events within the power system 



 

which resulted. Having this infrastructure within the model then allows you to model mitigations to prevent LFDD 
deployment (which, again, can only be incorporated in the model if you model if you put it there). 

Extreme events can emerge both from severe exogenous threats and from endogenous weaknesses within the 
system, even if multiple systems independently operate appropriately the sum total of their actions can 
accumulate to an adverse overall outcome. 

If we are looking to model mitigations and preventive actions, it needs to be clear what models are to be used 
and when. Different phases of an outage and impacts will happen at different speeds – inverter control respond 
within milliseconds; frequency excursions and associated outages can happen in a matter of seconds. Outages 
associated with line damage can occur over a period of hours, and can take days to repair, but the loss of 
demand or generation which can occur with damage to the network can have immediate consequences. 
Similarly, features such as Loss-of-Mains protection can cause common mode outages from DER which have 
common settings. Resource adequacy and actions to ensure it are typically assessed some years in advance 
and involve modelling, as a minimum, of annual peak demand conditions or, for greater confidence, whole years 
of operation. Each of these different phenomena, to the extent that are modelled today, are assessed with 
different models using different sets of equations and sets of parameters. 

Setting the initial conditions of these simulations will therefore be a key proxy for how an organisation would 
actually seek to prepare the system for an extreme event. Presumptions about protection settings and generator 
tripping behaviour can be asserted and refined later; but they still need to be made. The system operator will 
need to deploy frequency response correctly in accordance with prevailing system conditions, including the level 
of demand, the availability of power from renewables, the unconstrained level of system inertia and the 
likelihoods of different levels of loss of infeed. Modelling of what would happen to system frequency under 
different conditions must take such decisions into account. 

Model complexity should match the likely phenomena which can occur. In a distribution system, which is typically 
radial, it is unlikely to be necessary to model the full dynamics relating to, for example, system frequency and 
angle stability – a lost connection will simply result in loss of service to those customers, usually with a limited 
impact on the transmission system. However, disruptions to the Main Interconnected Transmission System 
(MITS) will, particularly in high-renewables scenarios, almost always require some level of dynamic simulation, 
even if it is not contained within the same simulation package. 

In summary, defining clearly the scope and scale of modelling will be essential to determining its value and 
purpose. A suggested action is to have a workshop across sectors with power system modelling experts to 
determine a “toolkit" or inventory of models and to match these models to different scenarios which will be 
modelled.   
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