
www.redjournal.org
BIOLOGY CONTRIBUTION
ClonoScreen3D − A Novel 3-Dimensional
Clonogenic Screening Platform for
Identification of Radiosensitizers for
Glioblastoma
Mark R. Jackson, DPhil,* Amanda R. Richards, MSc,* Abdul-Basit Ayoola Oladipupo, MSc,*
Sandeep K. Chahal, MRes,* Seamus Caragher, MD, MPhil,*,y Anthony J. Chalmers, MD, PhD,* and
Natividad Gomez-Roman, PhD*,z

*Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK; yDivision of Plastic and
Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Massachussetts, USA; and zStrathclyde Institute of
Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
Received Oct 17, 2023; Accepted for publication Feb 18, 2024

Purpose: Glioblastoma (GBM) is a lethal brain tumor. Standard-of-care treatment comprising surgery, radiation, and chemo-
therapy results in median survival rates of 12 to 15 months. Molecular-targeted agents identified using conventional 2-dimen-
sional (2D) in vitro models of GBM have failed to improve outcome in patients, rendering such models inadequate for
therapeutic target identification. A previously developed 3D GBM in vitro model that recapitulates key GBM clinical features
and responses to molecular therapies was investigated for utility for screening novel radiation-drug combinations using gold-
standard clonogenic survival as readout.
Methods and Materials: Patient-derived GBM cell lines were optimized for inclusion in a 96-well plate 3D clonogenic
screening platform, ClonoScreen3D. Radiation responses of GBM cells in this system were highly reproducible and comparable
to those observed in low-throughout 3D assays. The screen methodology provided quantification of candidate drug single
agent activity (half maximal effective concentration or EC50) and the interaction between drug and radiation (radiation interac-
tion ratio).
Results: The poly(ADP-ribose) polymerase inhibitors talazoparib, rucaparib, and olaparib each showed a significant
interaction with radiation by ClonoScreen3D and were subsequently confirmed as true radiosensitizers by full clono-
genic assay. Screening a panel of DNA damage response inhibitors revealed the expected propensity of these com-
pounds to interact significantly with radiation (13/15 compounds). A second screen assessed a panel of compounds
targeting pathways identified by transcriptomic analysis and demonstrated single agent activity and a previously unre-
ported interaction with radiation of dinaciclib and cytarabine (radiation interaction ratio 1.28 and 1.90, respectively).
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These compounds were validated as radiosensitizers in full clonogenic assays (sensitizer enhancement ratio 1.47 and
1.35, respectively).
Conclusions: The ClonoScreen3D platform was demonstrated to be a robust method to screen for single agent and radiation-
drug combination activity. Using gold-standard clonogenicity, this assay is a tool for identification of radiosensitizers. We
anticipate this technology will accelerate identification of novel radiation-drug combinations with genuine translational value.
� 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/)
Introduction
Glioblastoma (GBM) is the most common and most aggres-
sive primary brain tumor.1 Even with trimodal therapy com-
prising surgery, radiation, and chemotherapy
(temozolomide),2 prognosis remains dismal owing to marked
chemo- and radioresistance.3 Multiple molecularly targeted
agents exploiting pathways commonly dysregulated in GBM,
including the receptor tyrosine kinase/Ras/phosphoinositide
3-kinase,3-5 av integrins,6 p53, and retinoblastoma pathways,
have shown therapeutic efficacy in preclinical models of
GBM. However, all these agents have failed in the clinic,
either alone or in combination with standard-of-care radia-
tion therapy and/or chemotherapy.3,5,7,8 These results empha-
size the need for improved experimental models that
translate effectively to the clinic. A 3-dimensional (3D) in
vitro GBM culture system that better reflects patient response
to treatment was previously developed9 and extensively char-
acterized in terms of cell morphology, mRNA and protein
expression, and response to therapies, including radiation,
chemotherapy (temozolomide), and clinically relevant molec-
ular targeted agents (eg, erlotinib, bevacizumab). Comparison
of the 3D system with conventional 2D or neurosphere mod-
els confirmed its superiority for drug discovery in GBM.10

Radiation therapy is a central component of GBM treat-
ment and, although its efficacy in terms of overall survival has
been proven in clinical trials,11 tumor recurrence is seen in
nearly all patients. Radiation dose escalation has not improved
clinical outcomes, and most patients experience disabling neu-
rocognitive toxicity. Enhancing the efficacy of radiation ther-
apy will therefore require the use of radiosensitizing drugs
that potentiate cytotoxicity in a tumor-specific manner.

Ionizing radiation (IR) generates DNA damage in the
form of single-strand breaks and double-strand breaks
(DSB). Detection of such damage leads to activation of the
DNA damage response (DDR), which aims to preserve geno-
mic integrity. DNA damage response signalling, for example
that mediated by Ataxia-telangiectasia mutated (ATM),
Ataxia Telangiectasia and Rad3-related protein (ATR) and
Chk1, promotes cell cycle arrest and activation of DNA
repair.12 Single-strand breaks can be resolved through base
excision repair and DSBs via homologous recombination
(HR) or nonhomologous end-joining, among other
pathways.13,14 Radioresistance in GBM has been linked to a
subpopulation of cells termed “GBM stem-like cells,” which
display preferential activation of the DDR and an increased
DNA repair capacity.15,16 Pharmacologic disruption of the
DDR, when combined with radiation, therefore offers an
attractive strategy to overcome radioresistance and enable
radiation therapy to eliminate this clinically problematic pop-
ulation of tumor cells.

Identification of radiosensitizers in vitro is best achieved
using the gold-standard clonogenic survival assay (CSA),
but this is currently labor-intensive and time-consuming.
Furthermore, limitations associated with compressing 2D
CSAs to small growth area formats (eg, 96-well plate)
because of colony size have presented a barrier.17,18 Never-
theless, in addition to nonclonogenic screening methods,
efforts to establish clonogenic or pseudoclonogenic plat-
forms have been made.17-21 However, development of a
medium- or high-throughput clonogenic screen to identify
radiosensitizers using primary GBM cells cultured in 3D
conditions has not previously been reported.

To overcome these obstacles, we modified a clinically rel-
evant 3D clonogenic system to 96-well plate format and
observed that the high surface area of the 3D-Alvetex scaf-
fold supported growth of sufficient numbers of colonies for
large-scale compound screening. To identify novel, clinically
exploitable targets for radiosensitization, we performed
RNAseq analysis of GBM cells grown in 3D before and after
radiation treatment. In addition to the expected DDR candi-
dates, we identified novel potential targets in pathways
including cell cycle progression, mitosis, and DNA synthe-
sis. Our novel screening tool, the ClonoScreen3D platform,
represents an improved experimental strategy for streamlin-
ing identification of novel radiosensitizers and has potential
to transform the landscape of GBM therapy.
Methods and Materials
Cell culture and treatment

Patient-derived G7 and E2 GBM cells were obtained from
Professor Colin Watts, as previously described.22 Gene muta-
tions frequently observed in GBM in these cells are listed in
Table E1. Patient-derived GBML20 GBM cells were obtained
from Dr Dimitris Placantonakis. Cells were cultured as mono-
layers on Matrigel-coated plates (0.2347 mg/mL in Adv/
DMEM) in cancer stem cell enriching serum-free medium
comprising Advanced/Dulbecco’s Modified Eagle medium
(DMEM)/F12 medium (GIBCO) supplemented with 1% B27
and 0.5% N2 (Thermo Fisher Scientific), 4 mg/mL heparin,
10 ng/mL fibroblast growth factor 2 (Merck/Sigma),
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20 ng/mL epidermal growth factor (Sigma) and 1% L-gluta-
mine. G7s cells were grown in suspension conditions as
spheres for routine passage and were then grown as mono-
layers on Matrigel-coated plates for 4 to 7 passages before
seeding on 3D-Alvetex plates. G7m cells were maintained as
monolayers on Matrigel-coated plates. Despite originating
from the same parental line, these 2 models exhibit distinct
features, including radiation responses. Cell lines were grown
for a maximum of 7 passages before inclusion in experiments
at 37 °C, with 5% CO2. All cells were routinely monitored for
mycoplasma contamination.

For 3D-Alvetex (Reprocell) cultures, plates were pre-
treated according to the manufacturer’s instructions
(washed with 70% ethanol, followed by 3 washes with phos-
phate buffered saline (PBS)). 3D-Alvetex scaffolds were
coated with Matrigel (0.2347 mg/mL), using 50 mL/well for
96-well 3D-Alvetex plates or 0.5 mL/well for 12-well 3D-
Alvetex plates.
ClonoScreen3D clonogenic survival assay

Seeding densities were as follows: 180 cells/well for G7s and
150 cells/well for G7m cells. Eighteen hours after seeding,
cells were treated with vehicle (dimethyl sulfoxide or
DMSO) or inhibitor for 2 hours. Cells were irradiated (3
Gy) using an RS225 (XStrahl) x-ray cabinet, at 195 kV,
15 mA with a 0.5-mm copper filter, at a dose rate of
2.47 Gy/min, or sham-irradiated. Details of the inhibitor
compounds are provided in Tables E2 and E3. Colonies
were grown for 14 days at 37 °C, 5% CO2, followed by incu-
bation with thiazolyl blue tetrazolium bromide (MTT) for
4 hours at 37°C. Cells were fixed using 2% paraformalde-
hyde in PBS at room temperature for 15 min and washed
with PBS.
Image acquisition and processing

High resolution images of plates were acquired using a pho-
tographic set-up comprising a white transilluminator to opti-
mize contrast (Voliamart A3 Tracing Board) with a camera
downward copy stand carrying a digital camera (Nikon
D5300+ AF-P 18-55VR). Image capture was performed
using digiCamControl software. Well segmentation was per-
formed with ImageJ software. Colonies composed of >50
cells were counted either manually or in a semiautomated
manner using the open-source software OpenCFU (http://
opencfu.sourceforge.net).
Quantification of single agent activity and
radiosensitizing potential

Colony counts were converted into surviving fraction (SF)
using the plating efficiency of vehicle-treated cells for each
radiation dose, thus correcting the values for the effect of
IR.23-25 For determination of single agent activity, the mean
SFs of sham-irradiated replicates were calculated and mod-
eled using a 4-parameter dose response curve using the drc
package25 in R (3.6.3; https://www.R-project.org). Single
agent activity was expressed in terms of half maximal effec-
tive concentration (EC50). For compounds that lacked single
agent activity or did not conform to a classical dose
response, EC50 was not determined.

Radiosensitizing potential was quantified by calculation of a
novel parameter: the radiation interaction ratio (RIR). The lin-
ear interpolation area under the curve (AUC) of SF against
log10(drug concentration) was computed for individual biologic
replicates at each radiation dose using the MESS package.23

The replicate AUCs were subjected to a ratio t test from the
mratios package24 with ratio under the null hypothesis r = 1,
to determine the statistical significance of the interaction with
IR. P values were adjusted for multiple comparison using the
false discovery rate method. Thus, RIR was defined as

1
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; i ¼ 1; . . . ;n

where AC is the AUC of the sham-irradiated control and AR

is the AUC of the irradiated sample. An example R script
for computation of RIR can be found in the Supplementary
Materials accompanying file. Where data conformed to a
dose-response curve, the EC50 values of the sham and irradi-
ated samples were additionally compared by t test of coeffi-
cient ratio.
3D CSA for full radiation dose response

Twelve-well plate 3D-Alvetex CSAs were performed as pre-
viously described.22 Briefly, seeding densities for all cell line
cells varied according to radiation dose: 300 cells/well for 0,
1, and 2 Gy; 500 cells/well for 3 Gy; 800 cells/well for 4 Gy;
and 1000 cells/well for 5 Gy. Eighteen hours after seeding,
cells were treated with vehicle (DMSO) or inhibitor for
2 hours at 37 °C (5% CO2) and subsequently sham-irradi-
ated or exposed to different radiation doses (1-5 Gy). Colo-
nies were grown for 18 to 21 days at 37 °C, 5% CO2,
followed by incubation with MTT for 4 hours at 37°C and
fixed with 2% paraformaldehyde in PBS at room tempera-
ture for 15 min and washed with PBS. Plates were stored in
PBS at 4 °C, which was removed immediately before imag-
ing and automated colony counting. Drug sensitizer
enhancement ratios (SER) were calculated using mean inac-
tivation doses determined from linear quadratic fits as
described in Ekstrøm et al.23
Gene expression analysis

Four days after plating cells in 3D conditions (3D-Alvetex),
RNA was extracted with TRIzol reagent. RNAseq analysis
was performed using the IlluminaNextSeq500 for a PolyA
selection RNA library, with a paired-end sequencing model
and 33M depth for triplicate experimental repeats of 2D
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and 3D culture of G7m and E2 cells. RNAseq analysis was
performed as previously described.9
Results
Optimization of the ClonoScreen3D platform

Five patient-derived GBM cell lines O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylated
G7s, G7m, and E2, and MGMT promoter unmethylated S2
and GBML20 were used to evaluate the feasibility of con-
verting the 3D CSA from 12-well format to 96-well format.
G7s, G7m, and GBML20 cell lines formed distinct colonies
with plating efficiencies of 30% to 50% compared with dif-
fuse growth and low-plating efficiency (<20%) observed for
E2 and S2 (Fig. 1A). Accordingly, further assay development
was performed using G7s cells. Seeding density and colony
growth times were optimized to obtain sufficient countable
colonies under control and irradiated conditions. To vali-
date the screen with radiation, G7s cells were exposed to 3
Gy (Fig. 1B), a dose selected based on survival responses to
radiation alone and in combination with various com-
pounds (rucaparib example shown in Fig. 1C). Colony
forming ability and radiation/drug responses were not sig-
nificantly affected by the transition to 96-well format.

To maximize efficiency, an automated colony counting
process was developed using the open-source software pack-
ages ImageJ (https://imagej.net/software/fiji/) and Open-
CFU26 and compared against manual counting. Manual and
automated counts showed a strong positive correlation,
although some small differences in absolute values were
noted (Spearman’s rho 0.91; P < .001; Fig. E1). Importantly,
using drug response as the critical endpoint, near identical
responses to erlotinib (Fig. 1D) and AZD1775 (Fig. 1E)
were observed, with or without radiation. These plots show
data normalized for IR effects to highlight interactions
between drug and radiation as shifts in drug response.
Because only a single radiation dose was tested, we describe
these plots as indicating radiosensitizing potential rather
than radiosensitization per se, which generally requires mul-
tiple radiation dose points. Notably, the 96-well 3D-CSA
enabled quantification of single agent activity (SAA) as well
as IR interactions, thereby also informing selection of drug
concentration(s) for further radiosensitization studies.
RIR to quantify interaction between drugs and
radiation

Initial characterization of ClonoScreen3D used NU7441, a
known radiosensitizer that inhibits the key DSB repair pro-
tein DNA-dependent protein kinase (DNA-PK).27 Although
NU7441 showed weak SAA in the G7s cell line (Fig. 1F), it
exhibited the expected marked interaction with IR, as indi-
cated by the shift in drug dose response curve.
Although SAA can be readily parameterized in terms of
drug EC50, no analysis method has been developed to quan-
tify the interaction with radiation. For drugs exhibiting
SAA, comparison of EC50 values for drug alone and in com-
bination with IR is indicative of radiosensitizing activity.28

However, this approach is not applicable when drugs lack
SAA or do not conform to a classical dose response, as in
Figure 1F (0 Gy), where EC50 cannot be estimated with
meaningful confidence. In such situations, statistical com-
parison of EC50 values fails to capture even marked shifts in
dose response (Fig. 1F; P = 0.129). To address this issue, we
determined AUC values for control and irradiated samples,
an approach inspired by the widely used mean inactivation
dose parameter.29 This generated a novel value, which we
termed the “radiation interaction ratio” (RIR), which is
defined as the ratio of AUCs and captures the relative shift
in dose response curves, thus providing a quantitative read-
out of radiosensitizing potential. In the example shown in
Figure 1F, the RIR was found to be 3.99 (P = .016), confirm-
ing statistical significance and quantifying the observed
interaction between NU7441 and IR.
Quantification of radiosensitizing activity of poly
(ADP-ribose) polymerase inhibitors using the
ClonoScreen3D platform

Because the DNA repair enzyme poly(ADP-ribose) poly-
merase 1 (PARP-1) is overexpressed in GBM and shows
very low expression in healthy brain tissue, it is a promising
therapeutic target.30 PARP inhibitors (PARPi) have consis-
tently shown radiosensitizing effects in preclinical models of
GBM both in vitro and in vivo31-33 and are currently under
investigation in phase I and II clinical trials.34

To validate ClonoScreen3D as a radiosensitizer screening
tool, we evaluated the radiation interactions of 3 PARPi:
rucaparib, talazoparib, and olaparib, the latter 2 known to
radiosensitize GBM.16,35 Using ClonoScreen3D, these com-
pounds all exhibited radiation interactions in G7s cells
(Fig. 2A), with talazoparib having the highest RIR value
(RIR 2.53; P < .001), followed by rucaparib (RIR 1.95;
P = .002) and olaparib (RIR 1.56; P = .003). Analysis by Clo-
noScreen3D also revealed that talazoparib exhibited potent
SAA (EC50 32 nmol/L; 95% CI, 27-37 nmol/L), unlike the
other PARPi tested to date.

To confirm true radiosensitizing activity, PARPi were
tested in 12-well 3D-CSA with multiple radiation dose (0-5
Gy). Based on ClonoScreen3D data, olaparib and rucaparib
were dosed at 1 mmol/L and talazoparib at 5 nmol/L owing
to its potent SAA. As expected, all 3 PARPi caused significant
radiosensitization (SER >1), confirming the ability of RIR to
detect radiosensitizers (Fig. 2B, Table E4). Furthermore, RIR
values exhibited a monotonic relationship with gold-standard
SER in G7s cells across the 3 PARPi tested (Fig. 2C).

To assess the generalizability of RIR to identify GBM
radiosensitizers, we determined RIR values for PARPi in a
second GBM model (G7m), which had been optimized for
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Fig. 1. Optimization of the ClonoScreen3D screening clonogenic assay format. (A) Representative images of thiazolyl blue
tetrazolium bromide−stained and formalin fixed colonies of patient-derived cell lines G7s, G7m, E2, S2, and GBML20 seeded
in 96-well 3D-Alvetex plates under stem-enriched conditions at 50, 100, and 200 cells per well, incubated for 14 days. (B) Clo-
nogenic plating efficiency of G7s cells after sham irradiation or exposure to 3 Gy in 12- and 96-well clonogenic assay format, n
≥ 6. (C) Clonogenic survival of G7s cells treated with 3 Gy alone or in combination with rucaparib (1 mmol/L) in 12- and 96-
well clonogenic assay format, n = 6. Boxplots presented according to the Tukey method. (D) Clonogenic survival of G7s cells
after treatment with erlotinib or vehicle 2 hours before ionizing radiation (3 Gy) calculated using manual or automated colony
counting. (E) Clonogenic survival of G7s cells after treatment with AZD1775 or vehicle 2 hours before ionizing radiation (3
Gy) calculated using manual or automated colony counting. (F) Clonogenic survival of G7s cells after treatment with NU7441
or vehicle 2 hours before ionizing radiation (3 Gy) calculated from automated colony counts. The radiation interaction ratio is
calculated by comparison of areas under the curve of the control (0 Gy) and irradiated (3 Gy) samples after log-transformation
of concentration. The surviving fraction of irradiated samples was computed using the plating efficiency of the vehicle + 3 Gy
control, normalizing for the effect of radiation alone. Points represent mean § SD, n = 3. Half maximal effective concentration
or EC50 (mmol/L) with 95% CI calculated by fitting of a 4-parameter dose response curve. EC50 values compared by testing
means of ratios.
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Fig. 1. Continued.
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ClonoScreen3D (Fig. E2). Consistent with the previous
result, talazoparib was the only PARPi to exhibit potent
SAA (EC50 76 nmol/L; 95% CI, 42-110 nmol/L) and also
showed the greatest interaction with IR (RIR 1.96; P = .003),
followed by rucaparib (RIR 1.37; P = .004) and olaparib
(RIR 1.26; P = .048; Fig. 2D). Significant radiosensitization
was observed in full CSA for each PARPi in G7m cells
(Fig. 2E), which again correlated monotonically with RIR
(Fig. 2F). Together, these findings demonstrate the utility of
RIR for identification and prioritization of candidate radio-
sensitizers.
Quantitative comparison of radiosensitizing
effects of different DDR inhibitors

Although the radiosensitizing activities of multiple DDR
inhibitors have been studied individually, direct comparison
of inhibitors targeting different pathways has not been widely
reported. We screened 15 inhibitors targeting proteins
involved in DDR processes including DNA repair and signal-
ling (Table E2) using G7s cells and the ClonoScreen3D assay
workflow summarized in Figure 3. Five compounds exhibited
potent SAA (EC50 < 2 mmol/L; Fig. 4A,B; Table E5), with
talazoparib displaying the highest activity, followed by inhibi-
tors targeting Chk1/2 and ATR. Compounds were ranked by
RIR adjusted P value (Fig. 4A), to encapsulate both the mag-
nitude and reproducibility of the interaction with IR. In addi-
tion to summary graphics, individual drug response curves
are presented in Figures E3 and E4, and numerical results are
reported in Tables E5 and E6.

To assess the specificity of the assay, an inactive control
compound was included. PDD00031704 is a modified vari-
ant of a Poly (ADP-ribose) glycohydrolase (PARG) inhibi-
tor, with on-target EC50 >100 mmol/L. In the
ClonoScreen3D assay, this compound ranked lowest for
interaction with radiation in G7s and G7m cells (Figs. 4A,C
and E4). In G7s cells, the ATM inhibitor AZD1390 exhib-
ited a marked interaction with IR (RIR 2.98; P < .001), and
the less potent ATM inhibitor KU55933 showed limited
(nonsignificant) activity only at 10 mmol/L (Fig. 4D). The
next highest ranked compound was SCH 900776, an inhibi-
tor of Chk1/2 (RIR 1.85; P = .013; Fig. 4E), and another
Chk1/2 inhibitor AZD7762 was also identified as a hit (RIR
2.47; P = .017). Two ATR inhibitors, AZD6738 (RIR 2.16;
P = .017) and VX970 (RIR 2.33; P = .017), were also identi-
fied as interacting significantly with IR (Fig. 4F). The DNA-
PK inhibitor NU7441 exhibited the greatest absolute inter-
action with IR (RIR 3.99; P = .016; Fig. 1F), although its
ranking was reduced by inter-replicate variability. By con-
trast, a second DNA-PK inhibitor, NU7026, showed no sig-
nificant activity. Two HR-targeting inhibitors exhibited
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Fig. 2. Validation of the ClonoScreen3D platform for identification of radiosensitizers using PARP inhibitors. (A) Clonogenic
survival of G7s cells after treatment with PARP inhibitors or vehicle 2 hours before IR (3 Gy). The surviving fraction of irradiated
samples was computed using the plating efficiency of the vehicle + 3 Gy control, normalizing for the effect of radiation alone.
Data fitted with a 4-parameter dose response curve. (B) Full 3-dimensional radiation dose response clonogenic survival of G7s
cells treated with olaparib (1 mmol/L), rucaparib (1 mmol/L), and talazoparib (5 nmol/L) 2 hours before IR. Data fitted using the
linear quadratic model. SER calculated using linear quadratic mean inactivation dose and subject to 1-tailed ratio t test. (C) Corre-
lation of radiation interaction ratio and SER values determined for PARP inhibitors in G7s cells. Points represent values calculated
from 3 independent experiments, and error bars indicate coefficient 95% CIs. (D) Clonogenic survival of G7m cells after treatment
with PARP inhibitors or vehicle 2 hours before IR (3 Gy). The surviving fraction of irradiated samples was computed using the
plating efficiency of the vehicle + 3 Gy control, normalizing for the effect of radiation alone. Data fitted with a 4-parameter dose
response curve. (E) Full 3-dimensional radiation dose response clonogenic survival of G7m cells treated with olaparib (1 mmol/L),
rucaparib (1 mmol/L), and talazoparib (5 nmol/L) 2 hours before IR. Data fitted using the linear quadratic model. SER calculated
using linear quadratic mean inactivation dose and subject to 1-tailed ratio t test. (F) Correlation of radiation interaction ratio and
SER values determined for PARP inhibitors in G7m cells. Points represent values calculated from 3 independent experiments, and
error bars indicate coefficient 95% CIs. Unless otherwise stated, points represent mean § SD, n = 3. Abbreviations: IR = ionizing
radiation; PARP = poly(ADP-ribose) polymerase; RIR = radiation interaction ratio; SER = sensitizer enhancement ratios.
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limited radiation interaction, which was statistically signifi-
cant only for B02 (RIR 1.23; P = .017; Fig. 4G); this may be
explained by their low drug potencies, having EC50 values in
the micromolar range.

Of the 15 DDR inhibitors tested, 8 compounds showed a
significant interaction with radiation in both G7s and G7m
cells (Figs. 4A,D-G and E4). A further 5 compounds showed
radiosensitizing potential in a single cell line.
Identification of novel targets for
radiosensitization of GBM cells

To identify novel radiosensitization targets, we performed
RNAseq analysis on samples obtained from 2 patient-
derived GBM cell lines, E2 and G7m, that had been cultured
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Fig. 4. Quantitative comparison of the radiation interaction of DNA damage response inhibitors using the ClonoScreen3D
platform. (A) A panel of DNA damage response inhibitors was screened for interaction with radiation using the Clono-
Screen3D platform in G7s cells. Cells were incubated with drugs for 2 hours before irradiation (3 Gy). Radiation interaction
ratio values were computed and compounds ranked by false discovery rate (FDR)-adjusted P value, after 1-tailed ratio t test-
ing. Drug single agent activity was quantified as half maximal effective concentration (EC50) after fitting of a 4-parameter dose
response model to sham-irradiated samples. The target pathway or protein is indicated. Data generated in 3 independent
experiments. (B) DNA damage response inhibitors demonstrating single agent activity in G7s cells. Bars represent EC50 with
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error bars indicating 95% CI. (C) Clonogenic survival of G7s cells treated with an inactive control compound, PDD00031704,
and IR (3 Gy). (D) Clonogenic survival of G7s cells treated with Ataxia-telangiectasia mutated (ATM) inhibitors and IR (3
Gy). (E) Clonogenic survival of G7s cells treated with Chk1/2 inhibitors and IR (3 Gy). (F) Clonogenic survival of G7s cells
treated with Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors and IR (3 Gy). (G) Clonogenic survival of G7s
cells treated with the homologous recombination inhibitor B02 and IR (3 Gy). The surviving fraction of irradiated samples was
computed using the plating efficiency of the vehicle + 3 Gy control, normalizing for the effect of radiation alone. Data fitted
with a 4-parameter dose response curve. Points represent mean § SD, n = 3. Abbreviations: HR = homologous recombination;
IR = ionizing radiation; ND = not determined; NHEJ = nonhomologous end-joining; PAR = poly(ADP-ribose); RIR = radia-
tion interaction ratio.
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Volume 120 � Number 1 � 2024 Clonoscreen3D − a novel 3-dimensional clonogenic screening platform 171



−3 −2 −1 0 1 2 3

0

1

2

3

4

5 Gy vs 0 Gy

log2(fold change)
−l

og
10

 (P
−v

al
ue

)

CDK18

CDKN1B

CDKN2C
CDC25ACDC25C
NFKBIA

NFKBIE

RAD51
NFKB2BUB1

PLK1

RIR

3.52.251

Ketoconazole
Erlotinib

Galunisertib
ALK5i II
ALK5i I

MK2206
Mifepristone

HAMNO
CBP CREBi

Dexamethasone
INI 43

PD0166285
Importazole
NSC 663284

Cytarabine
CHCA

AZD1775
AZD3965
Perifosine
Dinaciclib

Resveratrol

Adj.P=0.8716
Adj.P=0.8716
Adj.P=0.8529
Adj.P=0.8529
Adj.P=0.8529
Adj.P=0.7800
Adj.P=0.7143
Adj.P=0.6841
Adj.P=0.6537
Adj.P=0.6537
Adj.P=0.6537
Adj.P=0.5607
Adj.P=0.4594
Adj.P=0.3028
Adj.P=0.3028
Adj.P=0.2449
Adj.P=0.1406
Adj.P=0.1406
Adj.P=0.1297
Adj.P=0.0471
Adj.P=0.0465

Single agent EC50 ( μmol/L):

10 or ND
< 10
< 1
< 0.1

Drug target:
DNA synthesis
Cell cycle
NF B
RTK: signal
TGF
Metab: MCT1
Glucocorticoid
Transcription (CRE)

EC
50

 (
μm

ol
/L

)

0.01

0.1

1

Dinacic
lib

AZD1775

Cytarabine

PD0166285

G7s

Cell cycle DNA synthesis Erlotinib

[Erlotinib] ( μmol/L)

Su
rv

iv
in

g 
fr

ac
tio

n

0 0.1 1 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2 0 Gy
3 Gy

G7s

RIR 0.94
P=0.872

A

B

C D

Fig. 5. Evaluation of drug-radiation combinations using the ClonoScreen3D platform for identification of novel radiosensi-
tizers. (A) Transcriptomic changes in G7m cells cultured in 3-dimensional conditions were measured 4 hours after exposure to
5 Gy. Selected significantly upregulated and downregulated genes of interest are annotated, n = 3. (B) A panel of commercially
available inhibitors targeting pathways identified by transcriptomic analysis was screened for interaction with radiation using
the ClonoScreen3D platform in G7s cells. Cells were incubated with drugs for 2 hours before irradiation (3 Gy). Radiation
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Fig. 5. Continued.
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selected for evaluation as potential radiosensitizers using
ClonoScreen3D (Table E3). Where several genes from the
same biologic pathway were identified, additional com-
pounds targeting the pathway were included, such as the
WEE1 inhibitor AZD1775 to target mitosis and the cyclin-
dependent kinase (CDK) inhibitor dinaciclib for cell cycle
progression.

In this prospective screen, inhibitors targeting cell cycle
regulation, in particular the G2/M checkpoint, demon-
strated marked SAA in G7s cells (Figs. 5B,C and E5,
Table E7). Dinaciclib, a potent small molecule inhibitor of
CDK1, CDK2, CKD5, and CDK9, exhibited the highest
SAA (EC50 13 nmol/L; 95% CI, 4-21 nmol/L). Inhibitors tar-
geting mitotic progression (AZD1775, PD0166285) also
interaction ratio values were computed and compounds ranked b
ratio t testing. Drug single agent activity was quantified as half
dose response model to sham-irradiated samples. The target path
experiments. (C) Inhibitors demonstrating single agent activity
95% CI. (D) Clonogenic survival of G7s cells treated with erlotini
with dinaciclib or resveratrol and IR (3 Gy). (F) Clonogenic surv
surviving fraction of irradiated samples was computed using the
for the effect of radiation alone. Data fitted with a 4-parameter
Abbreviations: CRE = cAMP response element; DDR = DNA dam
RIR = radiation interaction ratio; RTK = receptor tyrosine kinase.
showed potent SAA, as did cytarabine, a pyrimidine nucleo-
side analog that inhibits DNA synthesis.9,36 A similar pat-
tern of SAA was observed in G7m cells (Fig. E6, Table E8).
Targeting DNA synthesis and CDKs induces
radiosensitization of GBM cells

In keeping with previous 3D CSA and clinical trials,9,36

erlotinib exhibited no SAA or radiation interaction in
G7s (RIR 0.94; P = .872; Fig. 5D) or G7m cells (RIR
1.06; P = .104; Fig. E6). Of the compounds targeting
radiation-response processes identified by transcriptomic
analysis, only 2 exhibited a robust interaction with
y false discovery rate (FDR)-adjusted P value, after 1-tailed
maximal effective dose (EC50) after fitting of a 4-parameter
way or protein is indicated. Data generated in 3 independent
in G7s cells. Bars represent EC50 with error bars indicating
b and IR (3 Gy). (E) Clonogenic survival of G7s cells treated
ival of G7s cells treated with cytarabine and IR (3 Gy). The
plating efficiency of the vehicle + 3 Gy control, normalizing
dose response curve. Points represent mean § SD, n = 3.
age response; IR = ionizing radiation; Metab = metabolism;
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Fig. 6. Dinaciclib and cytarabine exhibit radiosensitizing activity in GBM cells. (A) Full 3-dimensional radiation dose
response clonogenic survival of G7s, G7m, and E2 GBM cells treated with dinaciclib (1 and 10 nmol/L) 2 hours before ionizing
radiation. (B) Full 3-dimensional radiation dose response clonogenic survival of G7s, G7m, and E2 GBM cells treated with
cytarabine (50 and 100 nmol/L) 2 hours before ionizing radiation. Data fitted using the linear quadratic model. Sensitizer
enhancement ratios calculated using linear quadratic mean inactivation dose and subject to 1-tailed ratio t test. Points repre-
sent mean § SD, n = 3. Abbreviation: GBM = glioblastoma; SER = sensitizer enhancement ratios.
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radiation after correction of P values for multiple compari-
son. Resveratrol, an NFkB inhibitor, demonstrated a mod-
est interaction with IR in G7s cells (RIR 1.26; P = .047;
Fig. 5E). In addition to potent SAA, dinaciclib exhibited an
interaction with IR in G7s cells (RIR 1.28; P = .047).
Despite failing to achieve statistical significance because of
inter-replicate variability, the DNA synthesis inhibitor
cytarabine exhibited the highest RIR value in this screen,
in both G7s and G7m cells (G7s: RIR 1.90; P = .303; G7m:
RIR 1.76; P = .104; Figs. 5F and E6). Because the RIR mag-
nitude was high, the interaction with IR was additionally
tested by statistical comparison of EC50 values between the
combination and radiation-only samples. A significant
reduction in EC50 was observed when cytarabine was com-
bined with IR in G7m (P = .017) but not G7s (P = .119)
cells (Fig. E7). This result and the SAA of cytarabine justi-
fied its selection for further investigation.

To confirm the ability of the ClonoScreen3D platform to
identify bona fide novel radiosensitizers, gold-standard full
radiation dose response CSAs (12-well) were performed for
the novel hit compounds dinaciclib and cytarabine. Dinaci-
clib significantly radiosensitized G7s (SER 1.47; P = .010),
G7m (SER 1.25; P = .002), and E2 (SER 1.55; P = .001) cells
at 10 nmol/L, with E2 cells also radiosensitized at 1 nmol/L
(SER 1.17; P = .031; Fig. 6A and Table E9).

Significant radiosensitization was also elicited by cytara-
bine (100 nmol/L) in G7s (SER 1.35; P = .020) but not G7m
cells (Fig. 6B). E2 cells were significantly radiosensitized by
cytarabine at 50 nmol/L (SER 1.35; P = .001). These studies
confirmed concentration-dependent radiosensitizing activ-
ity of dinaciclib and cytarabine in primary GBM cells cul-
tured in 3D.
Discussion
Preclinical research is urgently required to identify thera-
peutic strategies for GBM that will translate into the clinic.
Radiation therapy is a mainstay of GBM treatment but does
not achieve cure, and radiation dose escalation is prohibited
by lack of efficacy and normal brain toxicity.37 The develop-
ment of combination strategies to selectively sensitize GBM
cells to IR is an attractive approach but has been severely
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limited by the low throughput and/or low fidelity of the pre-
clinical models currently available.

We have successfully refined an in vitro 3D model of
GBM with demonstrable clinical relevance for use as a
screening platform for novel radiation therapy drug
combinations, with gold standard clonogenic survival as
the readout. This is a major advance on existing screens
involving IR, which generally rely on cell proliferation or
short-term viability as readouts,38 on combining cell pro-
liferation with computational large-scale isobolographic
analysis,39 or on imaging readouts of longitudinal spher-
oid growth.40,41 These assays have limitations: (1) viabil-
ity readouts fail to discriminate cells that have lost their
capacity to reproduce indefinitely; (2) they are performed
at early timepoints, measuring responses after only 1 or
2 mitoses, whereas radiation-induced damaged cells may
divide several times before succumbing to reproductive
death; (3) or, in the context of spheroid models, altera-
tions in structure due to treatment may lead to the for-
mation of enlarged spheroids, posing a challenge in
accurately interpreting the response. The CSA is the
only bona fide long-term reproductive integrity assay
and hence the most clinically relevant.

Increasing the throughput of radiosensitizer identifica-
tion experiments required reformatting of the CSA, a feat
made possible by the increased growth surface area of 3D
scaffold systems allowing statistically robust colony counts,
in contrast to a 2D assay. Importantly, conversion of the
ClonoScreen3D platform to 96-well format did not signifi-
cantly influence treatment responses − a limitation reported
previously.18,42 This enabled the platform to compare a
broad range of DDR inhibitors as well as enabling screening
of expansive drug libraries in 3D cultures of primary GBM
cells for this first time.

A novel analytical parameter, the RIR, was developed
based on established radiobiological approaches to enable
flexible, reproducible, and statistically quantifiable assess-
ment of the interactions between radiation and drugs, even
when drug activity is not known a priori. Although mod-
estly overestimating magnitude (reducing the likelihood of
false-negative results), the RIR values for PARPi correlated
with SER values determined using full CSA, confirming the
utility of this novel parameter. In contrast to EC50 compari-
son, well-defined SAA drug activity is not required for RIR
computation, rendering it highly advantageous for screening
applications. This parameter accurately predicted activity of
known radiosensitizers43 and discriminated nonactive com-
pounds (eg, PDD00031704,44 erlotinib9,36) included as nega-
tive controls. Pragmatically, the relative probabilities of
false-negative and false-positive findings can be tuned
through P value adjustment methodology. For example, the
significance of dinaciclib’s interaction with radiation was
not maintained after P value correction in G7m cells, but it
was subsequently validated as a true radiosensitizer. To
ensure robustness, hits identified in the ClonoScreen3D
assay should be subject to full radiation dose CSA, to con-
firm and quantify radiosensitizing activity.
A recently published 2D CSA screening methodology
included an established GBM cell line.18 Comparison of this
system with ClonoScreen3D suggested several advantages of
our platform, in addition to the notable improvement in clini-
cal relevance offered by 3D culture.9,45 The method of Gomes
et al18 required viral transduction for colony detection, which
may have consequences for cell behavior. The assay also used
high radiation doses (9 Gy) and a single drug concentration,
meaning that narrow therapeutic combination windows may
be missed. Furthermore, a secondary round of screening was
required to distinguish between single agent and combination
activity, whereas ClonoScreen3D quantifies both simulta-
neously and informs on drug concentrations for validation
experiments. Lastly, the use of RIR to quantify drug-radiation
interactions may be more intuitive and familiar to radiation
biologists or oncologists than Z-score based metrics.

Given their critical role in the radiation response, inhibi-
tion of DDR proteins is expected to potentiate treatment
efficacy.46 As quantified by RIR, 13/15 (87%) of the DDR
inhibitors tested showed a significant interaction with IR
in at least 1 GBM cell context, confirming the assay’s
ability to detect potential radiosensitizing activity. The Clo-
noScreen3D platform also confirmed therapeutic interac-
tions mediated by drugs targeting other pathways
previously suggested to radiosensitize GBM cells, albeit in
2D conditions, for example, NFkB signalling (resveratrol).47

ClonoScreen3D also identified novel radiosensitizing
compounds including the Food and Drug Administration
−approved compound dinaciclib. Dinaciclib is a selective
and potent inhibitor of CDK1, CDK2, CDK5, and CDK9
with EC50 values of 1 to 4 nmol/L across the target
CDKs.48 This compound has been well tolerated in clinical
trials, exhibiting efficacy in patients with chronic lympho-
cytic leukemia49 and relapsed multiple myeloma.50 Consis-
tent with our findings, SAA of dinaciclib has been
previously reported in 2D and 3D GBM cells.51,52 A second
Food and Drug Administration−approved drug, cytara-
bine, was also identified as a radiosensitizer. Cytarabine
has exhibited clinical activity in 2 patients with astrocy-
toma after intraventricular administration of a liposomal
formulation.53 Regrettably, this study was terminated pre-
maturely because of slow recruitment. Crucially, after iden-
tification by ClonoScreen3D, dinaciclib and cytarabine
were validated as true radiosensitizers in the gold-standard
radiation dose-response 3D CSA.

Undertaking medium or high throughput clonogenic
survival screens in 2D culture is largely unworkable
because of insufficient surface area in each well of a 96-
well plate. The large increase in surface area (and hence
colony numbers) per well provided by 3D culture sys-
tems provides an immediate advantage for radiosensiti-
zation studies. Three-dimensional systems have also
shown biologic superiority over 2D cultures in terms of
reproducing therapy response-relevant phenotypes, such
as membrane microtube formation, and predicting clini-
cal efficacy.9,10,36 Consistent with this, the epidermal
growth factor receptor inhibitor erlotinib, which showed
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radiosensitizing activity in 2D culture but no efficacy in
clinical trials,7,9 was successfully rejected by the Clono-
Screen3D assay. The use of ClonoScreen3D is thus antic-
ipated to reduce development of ineffective drugs that
display spurious radiosensitizing activity in 2D culture.

The work presented here describes a novel drug-
screening methodology for identification of radiosensi-
tizers using cell culture technology that reproduces clinical
treatment responses. This technology allowed comparison
of multiple compounds undergoing evaluation in clinical
trials. Our findings support the notion that targeting the
DDR is likely to provide multiple opportunities for
radiosensitization of GBM, for example with inhibitors of
PARP (talazoparib), ATM (AZD1390), DNA-PK
(NU7441), and Chk1 (SCH900776 and AZD7762), as
long as they exhibit sufficient tumor penetration and do
not exacerbate neurotoxicity.

Inhibitors of other DDR proteins, for example PARG,
interacted with IR in a cell context-dependent manner,
confirming the need to validate compounds in multiple
primary cell lines. Finally, the paucity of translatable
inhibitors of HR repair54 was highlighted by the screen.
The majority of non-DDR targeting drugs included in
our initial screen showed little radiosensitizing potential,
highlighting the strategic importance of DDR modulators.
Advantageously, ClonoScreen3D allows newly identified
candidate drugs to be benchmarked against established
radiosensitizers.
Conclusion
The current dismal prognosis despite aggressive treatment
suggests that novel combination approaches will have a cru-
cial role in GBM therapy. Our results validate the Clono-
Screen3D assay platform for identification and comparison
of novel radiosensitizers for GBM, which has clear potential
for extension to other cancer types. This assay provides a
new technology that will underpin an improved drug devel-
opment pipeline, accelerating development of lead com-
pounds to augment the efficacy of radiation therapy.
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