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Interspecies Förster resonances for Rb-Cs Rydberg d-states for enhanced multi-qubit gate fidelities
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We present an analysis of interspecies interactions between Rydberg d-states of rubidium and cesium. We
identify the Förster resonance channels offering the strongest interspecies couplings, demonstrating the viability
for performing high-fidelity two- and multi-qubit CkZ gates up to k = 4, including accounting for blockade errors
evaluated via numerical diagonalization of the pair potentials. Our results show d-state orbitals offer enhanced
suppression of intraspecies couplings compared to s-states, making them well suited for use in large-scale neutral
atom quantum processors.
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I. INTRODUCTION

Neutral atom arrays provide a versatile platform for
performing both programmable quantum simulation and
quantum computation [1–4]. Arrays of optical tweezers of-
fer a scalable route to creating deterministically loaded,
defect-free qubit registers in up to three dimensions [5–8].
Interactions between qubits can be engineered using highly
excited Rydberg states to perform high-fidelity two- and
multi-qubit gate operations [9–16] for implementing digi-
tal quantum algorithms [17,18] or for encoding solutions
to classical optimization problems using coherent quantum
annealing [19–21]. Using this architecture for quantum sim-
ulation [22,23] has enabled novel topological phases [24] and
quantum spin liquids [25] to be observed. Combining these
approaches with dynamically reconfigurable tweezers [18]
provides a route to observation of fast-scrambling dynamics
[26] or efficient implementation of low-density parity check
codes for quantum error correction [27], with recent demon-
strations of transversal gates between logical qubits making a
first step towards fault-tolerant operation [28].

While there has been significant progress to advance two-
qubit gate fidelities F > 99.5% [29,30] along with recent
demonstrations of scalable nondestructive readout [31] and
midcircuit measurement [32–34], most experiments have used
only a single atomic species. This introduces limitations in
localized qubit readout due to cross-talk between atoms and
in multi-qubit gate operations where fidelities are limited by
parasitic interactions between Rydberg states [13,16,20].

One approach to overcome this limitation is to use dual-
species arrays, which naturally provides a separation in
readout wavelengths to suppress cross-talk, while allowing
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engineering of different inter- and intraspecies couplings.
Additionally, this offers a route to universal quantum com-
putation using globally driven pulses [35]. Early work
demonstrated two-qubit gates and arrays between different
isotopes of rubidium (Rb) [11,36], with recent developments
showing continuous loading and measurement feedback onto
a cesium (Cs)-Rb array [37,38]. This same approach of us-
ing heterogeneous tweezers has enabled assembly of polar
molecules [39–43], leading to first demonstrations of hybrid
systems [44,45] based on coupling a Rydberg atom to a polar
molecule [46].

Previous theoretical work exploring dual-species Rydberg
interactions has focused on studying Rydberg interactions in
s-state orbitals for Rb-Cs [47] and s and d states for Rb-K
atoms [48,49], where suitable Förster resonances have been
identified to obtain strong intraspecies couplings with dis-
persion coefficients calculated in the asymptotic limit. This
forms the basis of proposals for quantum nondemolition read-
out [47], quantum error correction using dual-species surface
codes [50], and high-fidelity heteronuclear C2NOT2 gates
[51], which suppress the unwanted interspecies target-target
and control-control interactions.

In this paper we extend the dual-species analysis to study
interspecies interactions between Cs and Rb Rydberg atoms
in the d-state orbitals, utilizing open source libraries [52,53]
for calculating Rydberg-atom interaction potentials via direct
diagonalization of the dipole-dipole Hamiltonian to go be-
yond evaluating the asymptotic dispersion coefficients. We
identify suitable Förster resonances for maximizing inter-
species coupling strengths, carefully considering the angular
dependence to address applications of performing two- and
multi-qubit gates in neutral atom arrays for different quan-
tization axis choices as illustrated in Fig. 1. We quantify
blockade leakage errors for different Förster-pair states and
further evaluate the intrinsic gate errors based on the canonical
three-pulse controlled phase gate protocol [54] for CkZ gates
up to k = 4, demonstrating enhanced fidelity for multi-qubit
operations compared to single-species approaches. We show
the advantages of using d-state rather than s-state resonances
identified in previous studies due to the inherent reduction
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FIG. 1. Dual-species interactions. (a) Schematic of a dual species
array of Cs and Rb atoms using state-selective optical tweezers.
For performing interspecies CZ or C4Z gates (indicated by dashed
outlines), the orientation of the internuclear axis relative to the quan-
tization axis (ẑ) is important, with quantization along the tweezer axis
in (b) leading to interactions at a range of angles, while quantization
perpendicular to the array plane (c) ensures all interactions occur
for θ = 90◦. (d) Interaction angle θ relative to the quantization axis,
with an example Förster -resonant state occurring when the initial
pair state |a〉A|b〉B is dipole coupled to |α〉A|β〉B with a small energy
defect �.

in intraspecies couplings. These results are relevant to teams
working in both quantum computation and simulation and
provide a guide to appropriate state choice and polarization
when designing dual-species experiments.

The paper is organized as follows. In Sec. II we pro-
vide a brief introduction to Rydberg atom interactions; then
in Sec. III we identify the dominant Förster resonances for
the Rb-Cs d-states, studying the angular dependence and
comparing to previously identified s-state resonances. In
Sec. IV we evaluate the blockade and leakage errors associ-
ated with Förster-resonant pairs, considering the performance
for achieving both strong blockaded interactions for Rb-Cs
pairs and weak intraspecies Rb-Rb and Cs-Cs couplings.
From this analysis the Rb 59d5/2 − Cs 6d3/2 resonance offers
the best performance for extension to CkZ gates and in Sec. V
we provide estimates of gate fidelity, before summarizing our
findings in Sec. VI.

II. RYDBERG ATOM INTERACTIONS

To begin we briefly summarize the methods used to calcu-
late Rydberg atom interactions. For a pair of atoms separated
by distance R at angle θ with respect to the quantization axis,
as illustrated in Fig. 1(b), the dipole-dipole interaction is given
by [55]

V (R) = μA · μB − 3(n̂ · μA)(n̂ · μB)

R3
, (1)

where μA and μB are the electric dipole moments for atom
A and atom B, respectively, for coupling target pair states
|a〉A|b〉B to pair states |α〉A|β〉B and n̂ is the unit vector along
the atom separation axis R.

The sign and strength of the resulting interaction is deter-
mined by the dipole coupled pair state |αAβB〉 ≡ |α〉A|β〉B,
with the smallest energy defect � = (Eα − Ea) + (Eβ − Eb)
with respect to the target pair state |ab〉. For |�| � V (R) the

resulting interaction is in the van der Waals regime of the form
with energy shifts scaling as C6/R6, while for |�| < V (R)
the system experiences a strong first-order energy shift into
branches with energies of ±C3/R3. Alternatively, dc electric
fields can be used to tune a near-resonant pair to achieve
� = 0 [56–58].

To estimate the sign and magnitude of the coupling
strengths for a given pair state, it is instructive to calculate
the C3,k channel coefficient introduced in Ref. [47] defined as

C3,k = e2

4πε0

〈αk||rA||a〉〈βk||rB||b〉√(
2 jαk + 1

)(
2 jβk + 1

) , (2)

where |αA
k βB

k 〉 is a Rydberg pair state which is dipole coupled
to the target pair state |aAbB〉 and 〈φk||rX ||ψ〉 is the reduced
matrix element for transitions between states ψ and φk in
the fine-structure basis for atom X associated with interaction
channel k. jψ is the total angular momentum quantum number
associated to the state ψ .

Asymptotic dispersion coefficients C6 and C3 can be calcu-
lated by summing over the relevant dipole-coupled pair states
[47,59]; however, for the typical atomic separations used in
current tweezer array experiments 3 < R < 15 µm accurate
calculation of the resulting interatomic interactions requires
exact diagonalization of the resulting pair-state Hamiltonian
including higher-order dipole-quadrupole and quadrupole-
quadrupole terms. Below we use the pair-interaction library
[52] to evaluate Rydberg state couplings, which exploits mea-
sured quantum defects and numerical integration of the atomic
wave functions based on model potentials to calculate Ryd-
berg state energies and matrix elements, respectively.

To engineer strong interspecies couplings it is necessary
to identify Förster resonant pair states that have small energy
defects � and large coupling strengths C3,k [47]. For two
independent species or isotopes, this is achieved by choosing
relevant quantum numbers including principal quantum num-
ber and orbital angular momentum, resulting in a large degree
of tunability and control in choosing Forster resonant pairs.
For the intraspecies couplings, however, the energy defects of
a given pair are determined entirely by the inherent quantum
defects for each species, meaning there is typically only a sin-
gle value of n which is near resonant and that predominantly
the intraspecies interactions are in the weaker van der Waals
regime which drops off rapidly with R.

III. RUBIDIUM-CESIUM d-STATE
FÖRSTER RESONANCES

We identify suitable Förster-resonant pairs of Rb and Cs in
d orbital angular momentum states by calculating the energy
defect � and channel coefficient C3,k for all dipole-coupled
pair states from atoms initially in d3/2 or d5/2. Due to the large
number of possible Förster resonant pair states, we follow
the approach of Ref. [47] to consider only resonances with
50 � n � 90 that have |C3,k| > 1 GHz µm3 and an energy
defect |�| < 0.005 of the level spacing. Complete tables of
resonances are given in the Appendixes, but we focus here on
identifying the dominant channels for different combinations
of values of the total angular momentum quantum number j.
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A. Rb d5/2 − Cs d5/2

The nRbd5/2nCsd5/2 pair states are dipole coupled through a
total of nine possible channels associated with angular quan-
tum numbers of n′

Rb p3/2n′
Cs p3/2, n′

Rb f n′
Cs p3/2, n′

Rb p3/2n′
Cs f ,

and n′
Rb f n′

Cs f , where the f states can be either the j =
5/2 or j = 7/2 magnetic sublevels. From the resonances
listed in Table II there is only a single resonance via the
n′

Rb p3/2n′
Cs p3/2 channel, while the strongest coupling coeffi-

cients C3,k occur for the (nRb + 1)p3/2(nCs − 2) f7/2 channel.
Additional dominant channels are (nRb − 2) f (nCs − 2) f and
(nRb − 2) f (nCs + 2)p3/2.

Using these states we now examine the characteristic
pair potentials for each of these channels via direct matrix
diagonalization, calculating potentials for θ = 0◦ and con-
sidering atoms in magnetic sublevels mRb

j = mCs
j = +5/2.

For the (nRb − 2) f (nCs − 2) f channel, Fig. 2(a) shows the
coupling for Rb 72d5/2 − Cs 63d5/2, which is resonant with
Rb 70 f − Cs 61 f states with �/2π = 19.1MHz, with data
point intensity colored to reflect the overlap of the target state
with the calculated eigenstate |φi〉 as |〈rr|φi〉|2. While this
resonance possesses a strong channel coefficient of |C3,k| =
7.64 GHz µm3, it is evident that rather than a strong reso-
nant interaction at short range (R < 10 µm), the off-resonant
coupling to other pair states suppresses the shift of the upper
excitation branch, leading to a weak interaction that is poorly
suited to realizing strongly blockaded excitation.

In Fig. 2(b) we show the Rb 74d5/2 − Cs 82d5/2 state,
which is near resonant with Rb 72 f − Cs 84p3/2 states.
Around R = 4–6 µm we observe the f states split due to cou-
pling with other branches, resulting in a strongly shifted upper
excitation branch and mixing in a third eigenstate that is only
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FIG. 2. Example Rb-Cs nRbd5/2nCsd5/2 resonances. (a) Rb
72d5/2 − Cs 63d5/2, resonant with Rb 70 f − Cs 61 f , (b) Rb 74d5/2 −
Cs 82d5/2, resonant with Rb 72 f − Cs 84p3/2, and (c) Rb 70d5/2 −
Cs 80d5/2, resonant with Rb 71p3/2 − Cs 78 f . Calculated for θ = 0◦

and mRb
j = mCs

j = +5/2.

weakly shifted and preventing use of the (nRb − 2) f (nCs +
2)p3/2 resonances for high-fidelity gates.

In Fig. 2(c) we show the 72d5/2 − Cs 80d5/2, which is
strongly coupled to the resonant Rb 72 f − Cs 84p3/2 states

TABLE I. Summary of the strongest Rb-Cs d-state Förster resonances offering P1r (tπ ) ∼ 0.999 for a pair of Rb-Cs atoms separated by
R = 6 µm calculated at 90◦ for (mRb

j , mCs
j ) = (+ jRb, − jCs) assuming a single-photon Rabi frequency of 
/2π = 2MHz compared against the

blockade errors expected for multi-qubit gates due to intraspecies coupling for Rb-Rb and Cs-Cs atoms at 8.5 µm. Along with the asymptotic
pair energy defect � and channel coefficient C3,k , we give the effective C̃3 and C̃6 coefficients obtained by fitting the pair potentials in the
region 4 < R < 15 µm. States labeled with an asterisk (∗) are suitable for multi-qubit gate with weak intraspecies couplings. Also shown is
the only s-state resonance achieving P1r (tπ ) > 0.999.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

*55d5/2 - 63d5/2 56p3/2 - 61 f5/2 12.66 −2.24 0.9969 −11.30 0.9989 21.5 0.9840 −98.8
62d5/2 - 71d5/2 63p3/2 - 69 f5/2 −9.53 −3.66 0.9997 15.79 0.9855 64.1 0.7747 −416.8
69d5/2 - 79d5/2 70p3/2 - 77 f7/2 −19.14 −21.97 0.9998 26.34 0.7855 192.8 0.0013 −1448.9
70d5/2 - 80d5/2 71p3/2 - 78 f7/2 13.69 −23.21 0.9990 −29.03 0.7442 223.9 0.0238 −1812.1
76d5/2 - 87d5/2 77p3/2 - 85 f5/2 −19.30 −8.41 0.9997 40.58 0.1156 450.0 0.0388 −4482.5
*52d5/2 - 60d3/2 53p3/2 - 58 f5/2 15.19 −6.70 0.9964 −8.37 0.9997 12.2 0.9958 −45.0
*59d5/2 - 68d3/2 60p3/2 - 66 f5/2 13.40 −11.23 0.9992 −14.36 0.9951 41.6 0.9410 −206.1
66d5/2 - 76d3/2 67p3/2 - 74 f5/2 11.12 −17.74 0.9997 −22.84 0.9176 114.4 0.4467 −692.9
79d5/2 - 91d3/2 80p3/2 - 89 f5/2 −12.53 −36.95 0.9999 49.07 0.0070 619.2 0.0052 −3596.5
80d5/2 - 92d3/2 81p3/2 - 90 f5/2 7.42 −38.76 0.9999 −51.12 0.0233 705.2 0.0144 −5756.9
*53d3/2 - 60d5/2 54p1/2 - 58 f5/2 −4.41 −1.97 0.9968 7.12 0.9989 19.7 0.9938 −57.00
76d3/2 - 87d5/2 77p3/2 - 85 f5/2 6.49 2.81 0.9986 −52.91 0.0129 723.9 0.0186 −5038.3
65d3/2 - 74d3/2 66p1/2 - 72 f5/2 −13.07 −17.02 0.9974 16.67 0.7416 234.6 0.8297 −375.1
73d3/2 - 83d3/2 74p1/2 - 81 f5/2 −0.70 −27.26 0.9995 28.54 0.1360 452.0 0.1082 −2156.1
80d3/2 - 91d3/2 81p1/2 - 89 f5/2 −13.66 −39.62 0.9998 48.51 0.0440 1263.6 0.0234 −3178.2
81d3/2 - 92d3/2 82p1/2 - 90 f5/2 4.39 −41.55 0.9997 −47.30 0.0590 1411.2 0.0153 −3836.9
72s1/2 - 70s1/2 71p3/2 - 70p1/2 −7.90 8.51 0.9992 9.82 0.0040 −1106.6 0.4005 −605.3
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TABLE II. Rb-Cs Förster resonances from Rb d5/2 − Cs d5/2 states with |�|/2π < 20 MHz and |C3,k | > 1 GHz µm3. P1r (tπ ) and Prr (tπ )
along with fitted C̃3 and C̃6 coefficients are calculated for θ = 90◦ and (mRb

j , mCs
j ) = (5/2, −5/2) assuming 
/2π = 2MHz.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

55d5/2 - 53d5/2 57p3/2 - 50 f7/2 18.71 −2.73 0.9860 −3.13 0.9989 21.4 0.9999 −7.4
55d5/2 - 63d5/2 56p3/2 - 61 f5/2 12.66 −2.24 0.9969 −11.30 0.9989 21.5 0.9840 −98.8
55d5/2 - 61d5/2 53 f7/2 - 63p3/2 −12.19 −1.78 0.9747 2.08 0.9989 21.4 0.9923 −62.1
62d5/2 - 71d5/2 63p3/2 - 69 f5/2 −9.53 −3.66 0.9997 15.79 0.9855 64.1 0.7747 −416.8
69d5/2 - 79d5/2 70p3/2 - 77 f7/2 −19.14 −21.97 0.9998 26.34 0.7855 192.8 0.0013 −1448.9
69d5/2 - 66d5/2 71p3/2 - 63 f5/2 −4.29 −1.79 0.9933 7.49 0.7855 192.8 0.9538 −164.5
77d5/2 - 88d5/2 78p3/2 - 86 f7/2 1.91 −34.24 0.9998 −47.42 0.2966 393.5 0.0282 −4303.1
74d5/2 - 82d5/2 72 f7/2 - 84p3/2 5.63 −6.15 0.9967 −16.85 0.3269 367.5 0.1115 −2258.4
70d5/2 - 80d5/2 71p3/2 - 78 f7/2 13.69 −23.21 0.9990 −29.03 0.7442 223.9 0.0238 −1812.1
76d5/2 - 87d5/2 77p3/2 - 85 f5/2 −19.30 −8.41 0.9997 40.58 0.1156 450.0 0.0388 −4482.5
84d5/2 - 80d5/2 86p3/2 - 77 f7/2 11.74 −15.58 0.9996 −24.33 0.0514 1318.7 0.0148 −1692.0
80d5/2 - 70d5/2 78 f7/2 - 68 f5/2 −18.70 3.05 0.9932 2.38 0.0229 698.0 0.8301 −356.6
83d5/2 - 79d5/2 85p3/2 - 76 f7/2 −10.78 −14.80 0.9975 12.46 0.0957 1108.5 0.0013 −1448.9

with |C3,k| = 23 GHz µm3. This reveals the expected symmet-
ric splitting and 1/R3 scaling, making the (nRb + 1)p3/2(nCs −
2) f7/2 resonances ideal for engineering strong interspecies
couplings at θ = 0◦. These results highlight the importance
not only of evaluating the pair defects and channel couplings,
but also examining the real pair curves over the desired
separation ranges.

B. Rb d3/2 − Cs d3/2

For the Rb d3/2 − Cs d3/2 states there are again nine
possible channels associated with orbital angular momen-
tum quantum numbers of n′

Rb pn′
Cs p, n′

Rb pn′
Cs f5/2, n′

Rb f5/2n′
Cs p,

and n′
Rb f5/2n′

Cs f5/2, where p can be either j = 1/2 or 3/2.
Table III shows the filtered resonances, with the strongest
|C3,k| channel coupling via the (nRb + 1)p1/2(nCs − 2) f5/2

resonances.
In Fig. 3 example resonances for the different channels are

plotted, with similar behavior observed as for the d5/2 − d5/2

resonances where the channels with pair states resonant with
Rb f5/2 states [shown in (a) and (b)] provide unsuitable
resonances at short range. The strongest resonance is for
Rb 73d3/2 − Cs 83d3/2, which is coupled to Rb 74p1/2 − Cs
81 f5/2 with �/2π = −0.84MHz and C3,k = −27.3 GHz µm3

plotted in Fig. 3(c) showing a strong Förster resonant coupling
at short range, with similar behavior observed for resonances
for pairs involving the Rb p3/2 state but with a weaker cou-
pling due to the larger defects. At short range (R < 5 µm),
comparing the result here to the approximately equivalent res-
onance shown in Fig. 2(c) at comparable quantum numbers,
the d3/2 − d3/2 resonance mixes with more pair states than the
d5/2 − d5/2 case, leading to the two characteristic branches
splitting with the target pair state now appearing across a
larger number of pair eigenstates.

C. Rb d3/2 − Cs d5/2 and Rb d5/2 − Cs d3/2

Förster resonances for the Rb d3/2 − Cs d5/2 and Rb d5/2 −
Cs d3/2 states are presented in Tables V and IV, respectively.
These mixed j pairs follow a similar trend to those above, with

the strongest resonances observed for (nRb + 1)p jRb−1(nCs −
2) f jCs+1 couplings and resonances with Rb p and Cs f states
producing the desired 1/R3 resonant splitting at θ = 0◦. In
comparison to the Rb d3/2 − Cs d5/2 states, Rb d5/2 − Cs d3/2

pairs typically have larger � values; however, there are more
states with strong C3,k at lower values of nRb.

As will be shown below in Sec. V, the resonances via Rb
d3/2 states are also less favorable for scaling to multi-qubit
interactions due to the presence of a near Förster resonance
for Rb 58d3/2–Rb 58d3/2, leading to anomalously large in-
traspecies C6 coefficients for nearby nRbd3/2 states.
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FIG. 3. Example Rb d3/2 − Cs d3/2 Förster resonances. (a) Rb
76d3/2 − Cs 67d3/2, resonant with Rb 74 f5/2 − Cs 65 f5/2, (b) Rb
70d3/2 − Cs 77d3/2, resonant with Rb 68 f5/2 − Cs 79p1/2, and (c) Rb
73d3/2 − Cs 83d3/2, resonant with Rb 74p1/2 − Cs 81 f5/2. Calculated
for θ = 0◦ and mRb

j = mCs
j = +3/2.
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TABLE III. Rb-Cs Förster resonances from Rb d3/2 − Cs d3/2 states with |�|/2π < 20 MHz and |C3,k | > 1 GHz µm3. P1r (tπ ) and Prr (tπ )
along with fitted C̃3 and C̃6 coefficients are calculated for θ = 90◦ and (mRb

j , mCs
j ) = (3/2, −3/2) assuming 
/2π = 2MHz.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

51d3/2 - 59d3/2 52p3/2 - 57 f5/2 −18.12 2.08 0.9912 0.83 0.9995 13.8 0.9995 −15.8
50d3/2 - 57d3/2 51p1/2 - 55 f5/2 16.13 −5.82 0.9958 −6.33 0.9997 11.4 0.9998 −10.9
51d3/2 - 62d3/2 50 f5/2 - 59 f5/2 −15.98 4.52 0.9814 3.15 0.9995 13.8 0.9995 −13.2
65d3/2 - 75d3/2 66p3/2 - 73 f5/2 8.32 5.58 0.9955 −36.55 0.7416 234.6 0.7704 −440.2
69d3/2 - 66d3/2 71p1/2 - 63 f5/2 −6.16 −7.35 0.9979 6.81 0.4719 224.4 0.9706 −141.0
64d3/2 - 61d3/2 66p3/2 - 58 f5/2 3.96 1.64 0.8913 −0.35 0.7767 211.9 0.9939 −63.6
65d3/2 - 74d3/2 66p1/2 - 72 f5/2 −13.07 −17.02 0.9974 16.67 0.7416 234.6 0.8297 −375.1
76d3/2 - 67d3/2 74 f5/2 - 65 f5/2 2.04 8.99 0.9868 −12.99 0.0129 723.9 0.9587 −163.3
77d3/2 - 73d3/2 79p3/2 - 70 f5/2 −6.12 3.50 0.9789 3.82 0.0692 820.6 0.8729 −308.5
71d3/2 - 79d3/2 69 f5/2 - 81p3/2 9.09 1.63 0.9944 −11.82 0.2858 329.2 0.3238 −545.4
70d3/2 - 77d3/2 68 f5/2 - 79p1/2 7.97 −5.30 0.9961 −10.84 0.3789 287.4 0.6138 −629.1
72d3/2 - 83d3/2 73p3/2 - 81 f5/2 10.33 8.46 0.9985 −42.76 0.2049 390.5 0.1082 −2156.1
79d3/2 - 91d3/2 80p3/2 - 89 f5/2 10.38 12.33 0.9998 −51.08 0.1280 1112.0 0.0234 −3178.2
78d3/2 - 90d3/2 79p3/2 - 88 f5/2 −10.66 11.75 0.9998 21.39 0.1607 957.1 0.0262 −2568.1
73d3/2 - 83d3/2 74p1/2 - 81 f5/2 −0.70 −27.26 0.9995 28.54 0.1360 452.0 0.1082 −2156.1
81d3/2 - 92d3/2 82p1/2 - 90 f5/2 4.39 −41.55 0.9997 −47.30 0.0590 1411.2 0.0153 −3836.9
84d3/2 - 74d3/2 82 f5/2 - 72 f5/2 −8.89 13.56 0.9906 3.10 0.0368 1937.6 0.6502 −484.5
84d3/2 - 80d3/2 86p1/2 - 77 f5/2 11.47 −16.47 0.9953 −24.02 0.0368 1937.6 0.7637 −388.1
80d3/2 - 89d3/2 78 f5/2 - 91p3/2 4.98 2.68 0.9966 −21.96 0.0440 1263.6 0.0135 −2640.7
80d3/2 - 88d3/2 78 f5/2 - 90p1/2 −3.06 −9.23 0.9357 9.12 0.0440 1263.6 0.0007 −2226.4
80d3/2 - 91d3/2 81p1/2 - 89 f5/2 −13.66 −39.62 0.9998 48.51 0.0440 1263.6 0.0234 −3178.2
83d3/2 - 79d3/2 85p1/2 - 76 f5/2 −10.65 −15.65 0.9983 10.75 0.0603 1610.2 0.0904 −1035.9

D. Angular dependence

In the analysis above we consider atoms at θ = 0◦, which
results in the total magnetic quantum number M = mA

j + mB
j

being preserved by the dipole-dipole interaction with �M =
0 selection rules. For experiments in 2D tweezer arrays,
this condition is only met for the case of atoms oriented
with the internuclear axis along the quantization axis. For

performing multi-qubit gate operations, or exploiting long-
range couplings for quantum simulation, placing a quantiza-
tion axis parallel to one of the axis coordinates results in atoms
interacting across a range of angles from θ = 0◦ to 90◦ as
shown in Fig. 1(b). Alternatively, the quantization axis can be
aligned normal to the array plane, meaning all atoms interact
at 90◦ as shown in Fig. 1(c), providing an isotropic coupling of

TABLE IV. Rb-Cs Förster resonances from Rb d5/2 − Cs d3/2 states with |�|/2π � 20 MHz and |C3,k | > 1 GHz µm3. P1r (tπ ) and Prr (tπ )
along with fitted C̃3 and C̃6 coefficients are calculated for θ = 90◦ and (mRb

j , mCs
j ) = (5/2, −3/2) assuming 
/2π = 2MHz.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

59d5/2 - 68d3/2 60p3/2 - 66 f5/2 13.40 −11.23 0.9992 −14.36 0.9951 41.6 0.9410 −206.1
50d5/2 - 37d3/2 49 f7/2 - 38p1/2 −5.91 −2.93 0.9864 3.87 0.9999 8.2 1.0000 −0.2
52d5/2 - 60d3/2 53p3/2 - 58 f5/2 15.19 −6.70 0.9964 −8.37 0.9997 12.2 0.9958 −45.0
66d5/2 - 76d3/2 67p3/2 - 74 f5/2 11.12 −17.74 0.9997 −22.84 0.9176 114.4 0.4467 −692.9
68d5/2 - 60d3/2 66 f5/2 - 58 f5/2 −8.50 1.52 0.9272 3.71 0.8373 170.4 0.9993 −18.9
60d5/2 - 66d3/2 58 f7/2 - 68p1/2 −14.00 −2.87 0.9906 2.65 0.9929 48.3 0.9698 −144.1
67d5/2 - 49d3/2 66 f7/2 - 50p1/2 −5.80 −9.64 0.9932 11.22 0.8889 142.5 1.0000 −2.7
78d5/2 - 74d3/2 80p3/2 - 71 f5/2 2.73 −11.14 0.9977 −16.52 0.0056 557.1 0.8297 −375.1
79d5/2 - 91d3/2 80p3/2 - 89 f5/2 −12.53 −36.95 0.9999 49.07 0.0070 619.2 0.0052 −3596.5
73d5/2 - 84d3/2 74p3/2 - 82 f5/2 9.09 −26.72 0.9949 −36.07 0.4852 314.6 0.1085 −2230.7
77d5/2 - 56d3/2 76 f7/2 - 57p1/2 −20.99 −16.90 0.9912 17.86 0.2966 393.5 0.9996 −14.4
81d5/2 - 90d3/2 79 f7/2 - 92p3/2 16.57 2.90 0.9953 −19.25 0.0649 765.4 0.0024 −3282.6
83d5/2 - 73d3/2 81 f5/2 - 71 f5/2 15.70 3.43 0.9939 −12.68 0.0957 1108.5 0.8729 −308.5
81d5/2 - 89d3/2 79 f5/2 - 91p1/2 5.56 −2.58 0.9802 −23.45 0.0858 839.1 0.0261 −2866.1
84d5/2 - 61d3/2 86 f7/2 - 61p3/2 −6.70 −0.00 0.9991 26.62 0.0774 1227.1 0.9939 −63.6
80d5/2 - 92d3/2 81p3/2 - 90 f5/2 7.42 −38.76 0.9999 −51.12 0.0233 705.2 0.0144 −5756.9
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TABLE V. Rb-Cs Förster resonances from Rb d3/2 − Cs d5/2 states with |�|/2π � 20 MHz and |C3,k | > 1 GHz µm3. P1r (tπ ) and Prr (tπ )
along with fitted C̃3 and C̃6 coefficients are calculated for θ = 90◦ and (mRb

j , mCs
j ) = (3/2, −5/2) assuming 
/2π = 2MHz.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

59d3/2 - 57d5/2 61p1/2 - 54 f5/2 2.93 −1.03 0.9823 −5.56 0.6608 187.8 0.9981 −32.2
53d3/2 - 60d5/2 54p1/2 - 58 f5/2 −4.41 −1.97 0.9968 7.12 0.9989 19.7 0.9938 −57.0
64d3/2 - 71d5/2 62 f5/2 - 73p3/2 4.08 −3.26 0.9909 −7.31 0.7767 211.9 0.7383 −435.9
78d3/2 - 88d5/2 79p1/2 - 86 f5/2 6.51 −9.49 0.9915 −39.56 0.1607 957.1 0.0085 −5492.7
76d3/2 - 87d5/2 77p3/2 - 85 f5/2 6.49 2.81 0.9986 −52.91 0.0129 723.9 0.0186 −5038.3
80d3/2 - 70d5/2 78 f5/2 - 68 f5/2 3.69 2.95 0.9920 −11.62 0.0440 1263.6 0.8048 −377.9
83d3/2 - 79d5/2 85p3/2 - 76 f7/2 8.93 4.92 0.9918 −32.33 0.0522 1813.4 0.0000 −1466.9
90d3/2 - 86d5/2 92p1/2 - 83 f5/2 2.55 −5.81 0.9961 −40.04 0.0066 3762.9 0.0201 −4212.1

an atom to its neighbors, where at this angle V (R) couples pair
states with �M = 0,±2. In this section we explore the angu-
lar dependence of the d-state Förster resonances, considering
the impact on choice of magnetic sublevel. All calculations
below are performed using a magnetic field of 6 G [31] to
define the quantization axis.

Figure 4 shows angular potentials for the Förster resonance
between Rb 55d5/2 − Cs 63d5/2 for different combinations

FIG. 4. Angular dependence of the Rb 55d5/2 − Cs 63d5/2

Förster resonance for different (mRb
j , mCs

j ). (a) θ = 0◦, (5/2, 3/2),
(b) θ = 90◦, (5/2, 5/2), (c) θ = 0◦, (5/2, −5/2), and (d) θ = 90◦,
(5/2, −5/2). Interspecies pair potentials are plotted black with
opacity proportional to state overlap. Also shown are intraspecies in-
teraction curves for Rb-Rb in 55d5/2 (red) and Cs-Cs in 63d5/2 (blue).
(e),(f) The variation of energy eigenstates with θ for (5/2, ±5/2)
calculated at R = 6 µm revealing the Förster resonance can only be
used at 0◦ and 90◦.

of (mRb
j , mCs

j ) = (5/2,±5/2) and for angles θ = 0◦ and 90◦.
Considering first the (5/2, 5/2) combination, Fig. 4(a) shows
at 0◦ we obtain a strong Förster resonance splitting; however,
at 90◦ the additional coupling terms driving �M = ±2 cause
the target Rydberg states to be mixed with a large number
of other pair eigenstates, several of which have weak or
vanishing interaction shifts. Conversely, for the (5/2,−5/2)
combination with M = 0 we see a strong suppression of the
interaction at 0◦ in Fig. 4(c) leading to a flat potential curve
for R > 5 µm due to the presence of a Förster zero in the
interaction channel [60], while for 90◦ we recover the desired
Förster splitting as shown in Fig. 4(d). Comparing the results
in (a) and (d) shows that the θ = 90◦ offers improved symme-
try between upper and lower excitation branches of the pair
potentials with respect to the unshifted pair state, extending
the useful blockade range which is limited by the smallest
shift of either branch. This shows that operation at 90◦ with a
(5/2,−5/2) combination is preferable not only for achieving
isotropic couplings across the array, but also for improved
long-range interactions.

Alongside the Rb-Cs pair potentials, the figures also show
intraspecies interaction curves for Rb 55d5/2 − 55d5/2 in blue
and Cs 63d5/2–63d5/2 in red. For both Figs. 4(a) and 4(d) with
strong interspecies Förster resonance, we see the intraspecies
interaction curves remain flat until R � 5 µm before showing
a van der Waals like C6/R6 shift. Despite having a lower
quantum number of nRb = 55, the Rb-Rb C6 coefficient is
comparable to that of the nCs = 63 due to the Rb quantum de-
fects yielding smaller pair defects for the intraspecies d-states
than that of Cs. This also shows the advantage of using dual-
species interactions, with the Rb-Cs coupling offering a strong
blockaded interaction at R = 6 µm, where the intraspecies
coupling is negligible.

For intermediate angles, Figs. 4(e) and 4(f) show the
pair-state eigenenergies as a function of θ calculated for a
separation of R = 6 µm. Unlike the characteristic C3 ∝ [1 −
3 cos2(θ )] dependence obtained for single-species couplings
between atoms in identical states [61], the angular profiles
show that operating more than around 5◦ away from the op-
timal values of θ = 0◦ and π/2 the pair potentials show a
complex energy landscape with a large number of additional
eigenstates appearing that have weak or vanishing energy
shifts, preventing realization of strong blockaded interactions
at these intermediate angles.
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FIG. 5. Comparison of d and s state Förster resonances with θ =
90◦ with magnetic sublevels denoted (mRb

j , mCs
j ). (a) Rb 59d5/2 − Cs

68d3/2 Förster resonance for (5/2, −3/2) and (b) Rb 72s1/2 − Cs
75s1/2 Förster resonance for (1/2, −1/2). Interspecies pair poten-
tials are plotted black with opacity proportional to state overlap.
Intraspecies interaction curves are shown for Rb (red) and Cs (blue).

For the other interaction channels, a similar behavior is
observed with stable resonances observed for (mRb

j , mCs
j ) =

(+ jRb,+ jCs) at θ = 0◦ and (+ jRb,− jCs) at 90◦. An example
resonance for the Rb 59d5/2 − Cs 68d3/2 resonance at θ = 90◦
and (5/2,−3/2) is shown in Fig. 5(a), which provides one of
the best states for achieving low blockade and leakage errors
as detailed later.

E. Comparison to s-state Förster resonances

To illustrate the advantage of the d-state resonances over
s-states, Fig. 5(b) shows an example Förster resonance for the
Rb 72s1/2 − Cs 70s1/2 state previously identified in Ref. [47]
for θ = 90◦ and (mRb

j , mCs
j ) = (1/2,−1/2). This reveals a

strong interspecies resonance with comparable magnitude to
that of Rb 59d5/2 − Cs 68d3/2 shown in Fig. 5(a), but with
the downside being that the intraspecies Rb-Rb and Cs-Cs
interactions have a similar magnitude, negating the advantage
of being able to exploit strong Rb-Cs interaction while sup-
pressing the intraspecies couplings.

A further benefit is that, when performing two-photon exci-
tation to the Rydberg states, the dipole-matrix elements to the
intermediate state scale as n−3/2. As well as obtaining com-
parable interspecies interactions at lower principal quantum
numbers, the d-states have a prefactor in this scaling approxi-
mately twice as strong as the s-states yielding enhanced Rabi
frequencies at the same laser power.

IV. BLOCKADE LEAKAGE ERRORS

In order to exploit Rydberg atom interactions for per-
forming high-fidelity controlled gate operations, we use the
blockade regime where the interaction strength V greatly
exceeds the excitation linewidth determined by the Rabi
frequency 
 describing the rate of coupling from the com-
putational ground state to the target Rydberg state, preventing
more than a single Rydberg excitation from being created.

For the Förster resonances identified above, the exact pair
potentials include coupling not just to a single level, but to
many pair eigenstates |φi〉 each with energy εi, and it is nec-
essary to consider not only the blockade effect arising from
the strongly shifted eigenstates but also blockade leakage due
to coupling to weakly shifted eigenstates. To determine the

blockade leakage error for a given target pair state |rA
t , rB

t 〉,
we calculate the probability of exciting this double Rydberg
state following a resonant π pulse applied to atom A for
atoms initialized at time t = 0 in the state |�(0)〉 = |1A, rB

t 〉,
where |1A〉 is the computational state of atom A, taking into
account coupling to all possible eigenstates |φi〉 found through
diagonalizing the pair state interactions.

The Hamiltonian for the coupled system is given by

Ĥ = h̄
∑
i=1

([
ηi


2
|φi〉

〈
0A, rB

t

∣∣ + H.c.

]
− εi|φi〉〈φi|

)
, (3)

where 
 is the Rabi frequency for coupling |1A〉 → |rA
t 〉 and

ηi = 〈rA
t , rB

t |φi〉 denotes the relative overlap of the target pair
state with the energy eigenstate, and the sum is taken for all
eigenstates with |ηi| > 10−3. The resulting wave function at
time t is given by |�(t )〉 = e−iĤt/h̄|�(0)〉, from which the
probability of a double Rydberg excitation is given by

Prr (t ) =
∑
i=1

|〈φi|�(t )〉|2 (4)

and the probability of finding the atom in the initial ground
state is P1r (t ) = |〈1A, rB

t |�(t )〉|2.
For each of the possible Förster-resonant pairs, we evaluate

the blockade leakage error calculated for an Rb-Cs pair at a
spacing of R = 6 µm for θ = 90◦ and using (+mRb

j ,−mCs
j )

following application of a resonant π pulse for assuming a
value of 
/2π = 2MHz. Results are presented in Table I,
which is filtered to select states with P1r (tπ ) > 0.999 consis-
tent with strong blockade and leakage errors below 10−3. For
the Rb d3/2 − Cs d5/2 interactions no pair states reach this
limit, with two example resonances included for complete-
ness, while for the other interaction channels several candidate
pair states are identified with leakage errors as low as 10−4 for
Rb 79d5/2 − Cs 91d3/2 and Rb 80d5/2 − Cs 92d3/2.

Since one of the motivations for using dual species inter-
actions is not only to obtain strong Rb-Cs couplings, but also
to provide a route to realizing multiqubit gates suppressing
target-target and control-control couplings, we additionally
consider the impact of intraspecies interactions. We assume
atoms are arranged on a square lattice as shown in Fig. 1 and
calculate the probability of creating doubly excited Rb-Rb and
Cs-Cs pair states at a minimum distance of

√
2R = 8.5 µm.

For these states we evaluate both the probability of creating
a double excitation after a π pulse and of returning back to
the initial state following a 2π pulse, which in the ideal case
of zero intraspecies interactions would return unity in both
cases. We also tabulate the effective C̃3 and C̃6 coefficients ob-
tained by fitting the dominant interaction curves in the region
4 < R < 15 µm for the Rb-Cs, Rb-Rb, and Cs-Cs interac-
tion curves to enable extrapolation of the interaction strength
within these distances typically used for tweezer experiments.

From Table I it can be seen that, while many suitable Rb-Cs
Förster resonances can be found, those offering the highest
suppression of blockade leakage typically correspond to states
with higher principal quantum number (n � 65), where the
residual intraspecies interactions at 8.5 µm are sufficiently
strong that there is a significant blockade effect visible for
the Rb-Rb and Cs-Cs curves, making these poorly suited to
extension to multi-qubit gates. While in practice these errors
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can be suppressed to some extent by using increased single-
photon Rabi frequencies, this comes at the cost of increased
leakage errors for the Rb-Cs interactions. This also highlights
the limitations of using nRbd3/2 states above, as from the table
it can be seen that for nRb � 58 these have a much stronger
blockade error for Rb-Rb than the comparable nRbd5/2 states.
For completeness we note only a single s-state resonance
achieves P1r (tπ ) > 0.999 for which the resulting Rb-Rb and
Cs-Cs interactions are too strongly blockaded for use for
multi-qubit gates in agreement with the pair potential shown
above in Fig. 5(b).

Imposing the requirement to not only obtain low leak-
age errors for Rb-Cs but also reduced errors for Rb-Rb and
Cs-Cs operations, we identify a number of possible states
denoted by an asterisk in the table that balance the dif-
ferent error channels. From these candidates 55d5/263d5/2,
52d5/260d3/2, and 53d3/260d5/2 offer comparable perfor-
mance of P > 0.99 for all metrics and 59d5/268d3/2 achieves
the lowest intraspecies error with Prr (tπ ) = 0.995 for Rb-Rb
while achieving P1r (tπ ) > 0.999 for Rb-Cs. In the next sec-
tion we use this state to estimate realistic multi-qubit gate
performance.

V. DUAL-SPECIES MULTI-QUBIT GATE OPERATIONS

In the analysis above the only error considered in per-
forming gate operations has been that of blockade errors due
to errors associated with leakage of population into doubly
occupied states for the Rb-Cs interactions and the suppres-
sion of doubly occupied states for the Rb-Rb and Cs-Cs case
due to residual intraspecies couplings. To accurately estimate
gate fidelity, it is necessary to also include errors associated
with spontaneous emission from the Rydberg state as well
as scattering from the intermediate excited state during the
two-photon excitation of atoms to the Rydberg state.

To efficiently simulate these errors, we adopt the effective
model introduced in Ref. [16] to model each atom using three
computational levels with an effective single-atom Hamilto-
nian describing atom-light interactions of the form

Ĥeff = h̄

2

[ − iP1
e e|1〉〈1| + 
R(|r〉〈1| + |1〉〈r|)

− (
δ + ir + Pr

e e
)|r〉〈r|], (5)

where 
R is the effective two-photon Rabi frequency, δ is
the two-photon detuning, e,r are the excited and Rydberg
state linewidths, and P1

e and Pr
e are excited state probabili-

ties determined from performing adiabatic elimination of the
intermediate excited states. For gates performed using the
Rb 59d5/2 − Cs 68d3/2 Förster resonance, we first determine
suitable parameters for the two-photon Rabi frequency to
ensure atoms obtain a π -phase shift when excited through
2π by tuning the ratio between the two-photon Rabi fre-
quencies [10]. For both species, we assume a single-photon
detuning of 10 GHz from the excited state transition and deter-
mine parameters giving 
R/2π = 5MHz. For Rb, excitations
are modeled via the 6p3/2 intermediate state with e/2π =
1.4MHz and for Cs via 7p1/2 with e/2π = 1.0MHz. Full
details of the excitation parameters are given in Appendix B.

Using the effective Hamiltonian, we model the canonical
phase-gate protocol based on a π pulse on the control qubit,
followed by a 2π pulse on the target and a third π pulse on
the control qubit for an initial symmetric superposition of all
possible input states. We note that, while this is not an optimal
pulse sequence, it provides a simple approach to extending to
CkZ gates yielding the correct output states up to single qubit
rotations [13]. For these diagonal controlled phase gates, this
also enables efficient estimation of the resulting gate fidelity
by calculating F = |〈�I |�〉|2, where |�〉 is the final wave
function and |�I〉 is the output of an ideal gate.

We first consider a two-qubit CZ gate for Rb-Cs atoms
separated by R = 6 µm, which experience an interaction shift
of VRb−Cs/2π = 65.6MHz. Using Rb as the control qubit
gives FCZ = 0.9953, while for Cs as the control qubit FCZ =
0.9955, which is competitive against recent experimental
demonstrations [29,30]. Scaling to multi-qubit gates, we recall
that this pair state was chosen due to the suppressed Rb-Rb
interactions and proceed to use a single Cs target atom and
increase the number of neighboring Rb control atoms.

For the CCZ gate, placing atoms on a line with the Rb
control atoms on either side of a central Cs target, the Rb-Rb
interaction at 16 µm corresponds to VRb−Rb/2π = 0.11MHz,
resulting in FCCZ = 0.994, while moving the second Rb con-
trol atom to the site below the Cs (at a reduced Rb-Rb
distance of 8.5 µm) increases the control-control coupling
to VRb−Rb/2π = 0.14MHz and results in FCCZ = 0.983. Ex-
tending to a C3Z gate with three Rb atoms in an equilateral
triangle configuration with the Cs atom at the center gives
FC3Z = 0.988 and for the square geometry shown in Fig. 1(c)
we find a C4Z gate gives FC4Z = 0.913.

While even with the engineered interspecies interactions
we still observe a reduction in fidelity due to residual in-
traspecies coupling, decomposition of the CCZ gate requires
6 CZ operations [62], which would require FCZ > 0.999 and
0.997, respectively, for the line and square configurations,
demonstrating the benefit of using dual-species couplings for
native multi-qubit gate implementations. Additionally, further
optimization of gate pulses taking account of additional tech-
nical noise sources could yield higher gate performance, but
lies beyond the scope of this current work.

VI. CONCLUSION

In this paper we have presented a detailed analysis of
the d-state Förster resonances for engineering strong Rb-Cs
interactions to enable high-fidelity gate operations between
heterogeneous atom pairs. We have identified dominant in-
teraction channels yielding strong C3,k coefficients and small
pair defects and demonstrated the importance of performing
diagonalization of the pair-state potentials to identify suitable
resonances for achieving strong short-range interactions.

From studying the angular dependence of the pair po-
tentials we have shown that for the d-states the Förster
resonances are only robust at θ = 0◦ or 90◦ dependent
upon the choice of magnetic sublevel, with (+mRb

j ,−mCs
j )

providing the best performance at θ = 90◦, but with addi-
tional benefits compared to the s-state resonances through
much greater suppression of the intraspecies interactions and
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providing stronger resonant interactions at lower principal
quantum number.

By calculating blockade leakage and excitation errors us-
ing the full pair-state eigenvalues, we have identified states
offering the best performance for realizing robust blockade for
controlled gate operations and demonstrated the ability to use
these strong interspecies couplings to realize high-fidelity CkZ
gates due to suppression of the residual intraspecies couplings
between control qubits compared to single-species gate imple-
mentations, providing a route to native multi-qubit gates with
performance exceeding that expected for the equivalent two-
qubit gate decompositions using current best-known protocols
[16,29].

These results highlight the potential advantages of devel-
oping scalable neutral atom processors based on dual atomic
species and will guide future demonstrations of gate opera-
tions on these emerging Rb-Cs platforms [37,46] by providing
improved choice over the best Förster-resonant pair states to
target.

The data presented in the paper are available here [63].
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APPENDIX A: TABLES OF RB-CS d-STATE
FÖRSTER RESONANCES

In Tables II to V we present nRbd j-nCsd j Förster resonant
pair states with |�|/2π � 20MHz and |C3,k| > 1 GHz µm3

for the different combinations of j = 3/2, 5/2. For each state
we additionally show P1r (tπ ) for Rb-Cs at R = 6 µm to quan-
tify blockade leakage errors and Prr (tπ ) for Rb-Rb and Cs-Cs
interactions at R = 8.5 µm representative of expected errors
for dual-species multi-qubit gates on a square grid. Finally,
we include the dispersion coefficients C̃3 and C̃6 for inter- and
intraspecies couplings respectively obtained by fitting the pair
eigenstate with the largest target state probability in the region
5 � R � 15 µm. For comparison Table VI includes the pa-

rameters obtained for s-state Förster-resonant pairs previously
identified in Ref. [47], which typically have higher leakage
errors than the d-states and much stronger blockade error for
intraspecies couplings with similar magnitude and range as
the Rb-Cs coupling.

APPENDIX B: TWO-PHOTON EXCITATION
PARAMETERS

In this paper we consider interactions between d-orbital
Rydberg states of Cs and Rb which are created using a
two-photon excitation process via an intermediate excited
state. To include the effects of excitation and spontaneous
decay from the intermediate states, we use the simplified
effective Hamiltonian introduced in Eq. (5), which is ob-
tained by performing adiabatic elimination of excited state
hyperfine levels fe requiring calculation of the following
terms [16]:


R =
∑

fe



fe
1 
r

fe

2� fe

, (B1)

δAC =
∑

fe

∣∣
 fe
1
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r
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∣∣2

4�2
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where 
R is the effective two-photon Rabi frequency, � fe is
the single-photon detuning with respect to the intermediate
hyperfine level, and P1,r

e is the residual excited state popula-
tion due to coupling between the ground and Rydberg state
transitions, respectively.

Using this effective model to represent the transition from
|1〉 and |r〉 to appear as a spin-1/2 system enforces the desired
result that after a 2π rotation the wave function acquires
a π -phase shift. However, for a real two-photon excitation
with multiple intermediate excited states, the exact phase φ2π

accumulated after a 2π pulse can take any value between
0–2π dependent upon the relative power of the lasers and

TABLE VI. Rb-Cs Förster resonances from Rb s1/2 − Cs s1/2 states previously identified [47]. P1r (tπ ) and Prr (tπ ) along with fitted C̃3 and
C̃6 coefficients are calculated for θ = 90◦ and (mRb

j , mCs
j ) = (1/2, −1/2) assuming 
/2π = 2MHz.

Rb-Cs Förster resonances �/2π C3,k Rb-Cs at R = 6 µm Rb-Rb at R = 8.5 µm Cs-Cs at R = 8.5 µm

Target pair Resonant pair (MHz) (GHz µm3) P1r (tπ ) C̃3 (GHz µm3) Prr (tπ ) C̃6 (GHz µm6) Prr (tπ ) C̃6 (GHz µm6)

48s1/2 - 51s1/2 48p3/2 - 50p1/2 −5.53 1.69 0.6281 3.00 0.9998 −9.5 0.9996 −14.5
59s1/2 - 57s1/2 58p1/2 - 57p1/2 −16.45 3.54 0.3752 1.35 0.9767 −114.2 0.9943 −56.6
69s1/2 - 68s1/2 68p1/2 - 68p3/2 −9.89 6.92 0.9959 12.69 0.3230 −701.2 0.6503 −430.2
68s1/2 - 67s1/2 67p1/2 - 67p3/2 2.63 6.50 0.9727 −9.12 0.4660 −594.3 0.7432 −367.5
61s1/2 - 65s1/2 61p1/2 - 64p1/2 2.77 4.80 0.9735 −2.62 0.9487 −168.9 0.8689 −263.5
72s1/2 - 75s1/2 72p1/2 - 74p3/2 2.70 9.65 0.9835 −12.40 0.0040 −1106.6 0.0359 −1187.3
77s1/2 - 81s1/2 77p3/2 - 80p1/2 −2.10 12.28 0.9969 16.42 0.0100 −2103.4 0.0344 −2151.8
72s1/2 - 70s1/2 71p3/2 - 70p1/2 −7.90 8.51 0.9992 9.82 0.0040 −1106.6 0.4005 −605.3
71s1/2 - 69s1/2 70p3/2 - 69p1/2 9.45 8.01 0.9987 −10.66 0.0643 −955.7 0.5348 −518.5
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intermediate state detuning [10]. To ensure accurate param-
eters are chosen for estimating the gate fidelity with the
effective model, for each of the transitions in Cs and Rb we
first generate an exact single atom model including all excited
states without adiabatic ellimination and adjust the power
ratios in the two lasers to tune the system to give an error in
the phase shift of |φ2π − π | < 10−5.

For both transitions we calculate single-photon Rabi fre-
quencies 


fe
1 and 
r

fe
assuming a center of mass detuning

from the intermediate state of 10 GHz, targetting a two-photon
Rabi frequency of 
R/2π = 5MHz typical of recent experi-
mental demonstrations and quote powers for a beam waist of
10 µm to allow easy scaling to other beam parameters.

Excitation in Rb from |1〉 = |2, 0〉 to |r〉 =
|59d5/2, mj = 5/2〉 with r/2π = 0.76kHz is modeled
using transitions via the 6p3/2 intermediate state with
e/2π = 1.4MHz using a pair of σ+-polarized photons.
Choosing powers of 20 mW and 150 mW for the lower
and upper transitions results in a π -phase shift with
P1,r

e = (5.0, 1.7) × 10−4, respectively. Excitation in Cs
from |1〉 = |4, 0〉 to |r〉 = |68d3/2, mj = −3/2〉 with
r/2π = 0.86kHz is modeled using transitions via the
7p1/2 intermediate state with e/2π = 1.0MHz using a pair
of σ−-polarized photons. Choosing powers of 5.2 mW and
240 mW for the lower and upper transitions results in a
π -phase shift with P1,r

e = (5.0, 1.2) × 10−4, respectively.
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M. D. Lukin, Parallel implementation of high-fidelity multi-
qubit gates with neutral atoms, Phys. Rev. Lett. 123, 170503
(2019).

[14] Z. Fu, P. Xu, Y. Sun, Y. Y. Liu, X. D. He, X. Li, M. Liu, R. B. Li,
J. Wang, L. Liu, and M. S. Zhan, High fidelity entanglement of
neutral atoms via a Rydberg-mediated single-modulated-pulse
controlled-PHASE gate, Phys. Rev. A 105, 042430 (2022).

[15] K. McDonnell, L. F. Keary, and J. D. Pritchard, Demonstration
of a quantum gate using electromagnetically induced trans-
parency, Phys. Rev. Lett. 129, 200501 (2022).

[16] G. Pelegrí, A. J. Daley, and J. D. Pritchard, High-fidelity mul-
tiqubit Rydberg gates via two-photon adiabatic rapid passage,
Quantum Sci. Technol. 7, 045020 (2022).

[17] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K.
Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M.
Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J.
Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl
et al., Demonstration of multi-qubit entanglement and algo-
rithms on a programmable neutral atom quantum computer,
Nature (London) 604, 457 (2022).

[18] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M.
Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner,
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