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A MULTISCALE HYBRID METHOD*
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Abstract. In this work we propose, analyze, and test a new multiscale finite element method
called Multiscale Hybrid (MH) method. The method is built as a close relative to the Multiscale
Hybrid Mixed (MHM) method, but with the fundamental difference that a novel definition of the
Lagrange multiplier is introduced. The practical implication of this is that both the local problems
to compute the basis functions, as well as the global problem, are elliptic, as opposed to the MHM
method (and also other previous methods) where a mixed global problem is solved, and constrained
local problems are solved to compute the local basis functions. The error analysis of the method is
based on a hybrid formulation, and a static condensation process is done at the discrete level, so the
final global system only involves the Lagrange multipliers. We tested the performance of the method
by means of numerical experiments for problems with multiscale coefficients, and we carried out
comparisons with the MHM method in terms of performance, accuracy, and memory requirements.
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1. Introduction. The field of numerical analysis, specifically in addressing mul-
tiscale problems through finite element methods, has seen considerable growth since
the foundational work by Babuska and Osborn [6]. This area has branched into vari-
ous innovative methods like the Variational Multiscale Method (VMS) [27], Multiscale
Finite Element Method (MSFEM), its generalization (GMsFEM) [16], Heterogeneous
Multiscale Method (HMM) [14], Multiscale Mortar Method [5], Local Orthogonal De-
composition (LOD) Method [29, 30], Hybrid Localized Spectral Decomposition (LSD)
method [32], and the Higher Order hybrid Multiscale Method (MsHHO) [13]. These
developments, along with enriched methods that are closely related to multiscale ap-
proaches, demonstrate the field’s diversity and evolution, as detailed in numerous
comprehensive surveys and studies [16, 4, 29, 15, 31, 1]. One particular example
of such a method, developed in the last decade, is the Multiscale Hybrid Method
(MHM), originally proposed in [25, 3] for multiscale problems in porous media, and
further developed for different partial differential equations (see, e.g., [26, 12] for its
application for different models, and [8, 20] for its extension to polytopic meshes).
The starting point of the MHM method is the proposal of a hybrid formulation for
the partial differential equation at hand. Then, static condensation is performed at
the continuous level leading to a problem with two unknowns, namely, the Lagrange
multipliers in the inter-element facets, and one unknown per element that belongs to
a local kernel (piecewise constants in the case of scalar problems [3], rigid modes in
the case of linear elasticity [24]). As such, the resulting system is a mixed problem.
The reason for the mixed character of the problem can be explained as follows: the
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Lagrange multipliers are the normal fluxes, that is, the normal derivative of the pri-
mal unknown in the case of the Poisson equation. So, the local problems defining the
basis functions include Neumann conditions, and thus to get a well-posed problem
the solution needs to be sought in the space of functions with zero mean value in each
element. One alternative view, linking the MHM method to the solution of an elliptic
problem, was taken in the recent work [10]. It is proven in that work under certain
hypotheses (e.g., that the second level problems are solved in an exact way) that the
discrete solution of the MHM method coincides with that of the MsHHO method.
The MsHHO is driven by an elliptic global problem (with local mixed problems), so
[10] opens the door to more insights into the stability of the MHM method, along
with a unified error analysis for the primal variable.

The issue of local problems with Neumann boundary conditions has been en-
countered in several different contexts, probably the most noticeable being domain
decomposition methods. In fact, this is one of the main reasons behind the use of
Robin boundary conditions in the Optimized Schwarz Method (OSM) proposed as far
back as [28]. Since then, several different proposals to use Robin boundary conditions
have been used to remove local singularities. For example, and just restricting our-
selves to the context of recent multiscale finite element methods, in [22] the Multiscale
Robin Coupled Method (MRCM) starts from a mixed problem in porous media, and
generates basis functions that are solutions of local problems containing Robin bound-
ary conditions; both the local and the global problems are written in mixed form, and
comparisons are drawn (see also [23, 38] for the application of the same idea to differ-
ent models, mostly linked to flow through porous media). Also, in [34] the multiscale
Latin method is analyzed, and the optimal choice of the Robin parameter is studied.
This last point is a common thread in the domain decomposition community. In fact,
looking for optimal Robin parameters has been the topic of several works in domain
decomposition, see [19] as an example.

The purpose of this work is to build up on the idea of using Robin boundary
conditions on the local problems to propose a new Multiscale Hybrid (MH) finite
element method. After partitioning the domain into elements (of general shape) a
new hybrid formulation is proposed. In it, the Lagrange multiplier (denoted \) is not
equal to the normal flux (as in standard hybrid methods), but it is perturbed by adding
a term that depends on the primal variable (denoted w). This process presents the
advantage that the bilinear form in the bulk is elliptic in the whole broken space (thus
removing the kernel that would have arisen otherwise), and that its well-posedness
can be analyzed using standard arguments for variational problems with constraints.
We then discretize this hybrid problem using discontinuous approximations for A,
and globally discontinuous (but continuous in each polyhedral element) finite element
spaces for u. Due to the particular structure of the new formulation, error estimates
that are independent of the Robin parameter can be proven.

The final step in the building of the method is the static condensation process.
For this, the discontinuous character of the approximation space for u is exploited to
write its degrees of freedom in terms of those for A. This is where the fact that the
bilinear form in the bulk is not only elliptic in the discrete kernel, but in fact elliptic
in the whole broken space, and locally in each element of the partition, can be fully
exploited. In fact, this leads to two main advantages of this method: first, the local
problems are well-posed in the whole local space (without any extra constraints); in
addition, and as a consequence of this, the global problem is driven by an elliptic
bilinear form involving only the unknowns for the Lagrange multiplier (thus avoiding
the solution of a mixed problem). To keep the presentation simple, we have focused
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in this work to the diffusion equation with multiscale coefficients, but the strategy
proposed herein can be extended naturally to more complex situations.

The rest of the paper is organized as follows. We finish this introduction by
presenting the model problem and the main notations, assumptions, and preliminary
results used in the rest of the manuscript. In section 2 we present the new hybrid
formulation, and prove its well-posedness and equivalence with the original primal
weak form. We also present its discrete counterpart, and prove stability and optimal-
order error estimates, the latter under appropriate regularity assumptions on the exact
solution and coefficients. The MH method is then introduced in section 3 as a result of
a static condensation procedure. We detail the rewriting of the hybrid problem as one
whose only unknowns are the discrete Lagrange multipliers, and prove its ellipticity.
In addition, we present a short section on the implementation and main features of
the computational algorithm. The performance of the method, and comparisons with
previously existing methods, are presented in section 4 using four series of numerical
experiments. Finally, we outline some conclusions and open questions.

1.1. The model problem. Let Q2 ¢ R?% d € {2, 3}, be an open, bounded,
polygonal, domain with Lipschitz boundary 0€2. We consider the problem of finding
u : €2 — R such that:

(1.1) u on 000 ’

div(=KVu) = f, inQ
= 07
where f € L?(Q) is a given datum and the diffusive coefficient K = (ICij)?jzl €
L ()44 is a symmetric tensor supposed to be uniformly elliptic, i.e., there exist
positive constants K, and Kyax, such that
(1.2)
Komin €7 < Kij (2)€&5 < Kmax |€]* for all € = {&} € R, and almost all z € Q.

The functions f and K may involve multi-scale features. For the derivation of the
method and its stability analysis it is enough to assume that the diffusion coefficient
belongs only to L>(£2)4*?. In addition, in our numerical experiments we have approx-
imated a partial differential equation with rough coefficients. Nevertheless, the error
analysis of the method relies in an implicit regularity requirement for the coefficient
K, which will be made explicit later.

1.2. Partitions and triangulations. Following closely the definitions initially
proposed in [8], we introduce two partitions which do not necessarily coincide but are
not independent. To avoid technical diversions, we will restrict the presentation, and
all the proofs, to the two-dimensional situation. Nevertheless, the results presented
below can be extended to the three-dimensional case by proceeding as in [20]. First,
we introduce a family {92, },,.,, of partitions of Q, composed by closed, bounded,
disjoint polygons. (We make more precise hypotheses on the polygons later on.)
The diameter of a polygonal element K € &7,, is denoted by H -, and the radius of
its inscribed circle is denoted by px. We set H := maxgecop, Hj and assume the
existence of ¢ > 0 such that

(1.3) a3 <¢, forall K € &, for all H > 0.
PK

Each polygon K has a boundary 0K consisting of edges E. The set of boundaries
of the elements in &7, is denoted by 027, and the set of its edges by &; that is
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02, = {0K : K € 2,,}, and,

c_ { E=0KNOK' or | K,K'€¢ #;,,K # K', and }
o E=0KnNoN E is not a single point ’
To each E € & we associate a normal n”; its orientation is not important, but is fixed.
For each K € 22, we further denote by n® the outward normal vector on 0K, and
let n¥ = n®¥|g for each E C K. The first step toward defining a computational
mesh is to introduce £, a partition of the facets in £ into segments F' of length
Hy < H := maxpeg, Hr, and such that each F € &y is a subset of only one E € £.
We will not assume that the segments are of equal length, but we will require that
they are not too different. More precisely, we impose the following Assumption.
Assumption (A1) The mesh £ is such that in every K € &2, a shape-regular
simplicial triangulation =, (K) of K can be built such that its trace on 0K coincides
with £g.
The last ingredient in the definition of the discrete scheme is the mesh that will
be used to approximate the local basis functions: for each K € £2;,, we introduce a
shape regular family of simplicial triangulations {.7;/}, ., built in the following way:
1. first, on each K € £, the triangulation =, (K) is refined once using a red
refinement [7]. The resulting triangulation is called minimal triangulation;
2. then, for each K, the family {ZLK }rso is formed by regular refinements of
the minimal triangulation.
The diameter of T € 7K is denoted by he, and h := maxje 2, MaxXge 7x he, and

Ty, = Ugewp,, Z. Tt is important to remark that, if E = KNK’ € &, then the traces

of the two neighbouring triangulations ﬂhK and th " do not necessarily coincide.
In Figure 1 we show one example of partitions that satisfy the above assumptions.

Fic. 1. A domain Q partitioned by &,, with non-conforming polygonal elements. Observe the
sub-meshes (green and orange) discretizing two different elements of &, with different granularity,
where T € (?hK is an element of the discretization of K € &2,,. The red line represents an edge
E € € and the blue line represents an element F € Ey of the skeleton mesh.

1.3. Spaces, inner products, and norms. We follow the standard notation
for Lebesgue and Sobolev spaces, in line with, e.g., [17]. For K € &, and m > 1, we
consider the local space H™(K') equipped with the semi-norm | - \m7 x and the norm
| lln. 5> with their usual definitions. We then define the broken space

(1.4) H™(Py,) = {v e L*(Q) :v|x € H"(K) for all K € 2},
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equipped with the semi-norm and norm,

-

3 3
W, = D TPk | and oo, = > Iol2x] -
KeZz,, Kez,,

and set V := H'(2,,) equipped with the norm

2

1
(1.5) [olly == (IWII%,gaH tm UII3,9H> ;
Q

for all v € V. Here, dg > 0 is a constant that depends on the domain (2, and that
will be specified later. In addition, we define the inner product

(uﬂ))g,)H = Z (u,v), forall u,veV.
Ke®,,

Since the aim of this work is to introduce a new hybrid formulation, we shall
need an appropriate space for the Lagrange multipliers. The natural space in our case
consists of functions that are normal traces of H(div;€) functions; more precisely, we
define the space

(1.6) A= {q-n"|yx, forall K € 2, : g€ H(div; )},
equipped with the norm
(17wl = it {llgllgiv,0 - g € H(div; Q) and g - n" |y = p, VK € P},
with,
1
[Pllaiv.0 == ([Pll5.0 +d3 IV -pll50)> » for all p € H(div; Q).

Denoting by (-,-)g the duality pairing between H_%(ﬁK) and H? (0K), the Trace
Theorem (see, e.g., [17, Theorem 3.10]) ensures that the following duality pairing
between HKe@H H~2(dK) and V is well-defined:

(1.8) (,v)om, = Z (1, 0ok, for all (u,v) € H H*%(ﬁK) x V.
Ke,, Kez,,

Moreover, the following identity can be proven as in [20, pp. 5]

</1'1 v>0,@7_¢

(1.9) [lul[o = sup

, forall pe A.
veV HU”V

Here, and thereafter, we lighten the notation by writing sup, ¢y instead of SUP, v\ {0}

Finally, associated to £ and 7K, for £ > 0, we introduce the following finite
element spaces:

(1.10) Ay ={pg €AN:pylp €P(F),VF €&y},
(1.11) V,(K) := {v, € CO(K) : v|z € P,(%), VT € FK},
(1.12) V= [[ V().

Ke?,

We close this section by presenting in Table 1 a summary of the different partitions
and spaces used to construct the method.
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Partition Definition Associated Space
Py, Partition for weV:=H\(2,) (o)
& Collection of facets of &, A€ A -see (1.6) (o)
Eu Partitions on each facet in £ Ag € Ag -see (1.10) | (M)
Th Triangulations on each polytope in &2, | u, €V, -see (1.12) | ()
TABLE 1

Summary of partitions and spaces. (o) The coarse partition &, and its facets E. (#) First
level of discretization. (&) Second level of discretization.

2. A new Hybrid Formulation. As it was mentioned in the introduction, the
starting point in building the method is to derive an equivalent weak formulation of
(1.1) based on a hybridization procedure. Our presentation below borrows ideas from
[25, 3, 8], which in turn are inspired by [37]. First, the standard weak formulation of
(1.1) is given by: Find u € H}(Q) such that

(2.1) (KVu,Vv)g = (f,v)q, forallve H}HQ).

We shall propose a hybrid weak formulation, equivalent to (2.1). The first ingredient
is a linear mapping ¢ : V — H _%(8@7{) that, for now, will only be required to be
continuous, and satisfy

(2.2) v € Hy(Q) =¢(v) €A.

Using this mapping, we propose the following hybrid variational formulation: Find
(u, A) € V x A such that

a(u,v) + <)"U>89H = (f,v)ng , forallveV
(yuygp = 0, forall p e A

H

(2.3)

b

where the bilinear form a(-,-) : V' x V' — R is defined by,

(2.4) aw,0) = (K Ve, Vo) g+ (s(w) 0o

e
Notice that if ¢ is identically zero, then (2.3) is the classical hybrid formulation

proposed in [37] and the rest of the derivation would coincide with what was presented
in [3]. So, following ideas from [3, 8] we now prove that (2.1) and (2.3) are equivalent.

THEOREM 2.1. The function u € H}(2) solves (2.1) if and only if (u,\) € V x A
solves (2.3). Moreover, the following relation between u and A holds

(2.5) A= (=KVu-nf —c(u)|yx, foral K € 2,

Proof. Let (u, A) € V x A be a solution of (2.3). Using [36, Lemma 1] the following
characterization holds

(2.6) H&(Q)z{véV:(uw}ag@H:O, for all p € A}.

So, using the second equation in (2.3) we conclude that u € Hg(Q) and ¢(u) € A.
Hence (s(u) ’v>39”H =0, for all v € H(Q), and the first equation in (2.3) implies
that

(KVu,Vv)g = (f,v)q, forallve HY(Q),
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and thus u solves (2.1).

Conversely, let u € H} () be the solution of (2.1) and let us consider the following
continuous linear functional on V'
(2.7) L(v) = (f,v)o2, — (KVu,Vv)sp, —((u),v)ss, -
This functional vanishes on H{(£2); so, thanks to the inf-sup condition (1.9) there
exists a unique A € A such that

(A, U>E)3¢H = L(v), forallv e V.

Hence, the pair (u,\) € V x A solves (2.3).
Finally, since f = div(—K Vu), replacing and integrating by parts in (2.7), we
arrive at
Lv)= Y —(KVu-nX+¢(u),v)ox = (X, v)om,
Kez,,

which proves (2.5). d

2.1. Explicit definition of ¢(:). The result given by Theorem 2.1 provides
existence and uniqueness of solution for (2.3), as long as ¢(-) satisfies (2.2). So, this
condition needs to be kept in mind when defining a concrete mapping ¢(-). Let us
consider o € WH>(Q)? and v € V. It is easy to notice that ve|x € H(div; K) for
all K € 2,,. Moreover, if v € H}(Q2) then vo € H(div; Q). Thus, the following is a
valid definition for ¢:

g:V%H_%(a,@H),

(2.8)
v s(v)|ox == (va)|ax - n', in each K € 2, .

Now, we give a concrete definition of o € W1 (Q)? that will ensure that the
bilinear form af(-,-) is elliptic. Let us define an open and bounded rectangular paral-
lelepiped

Q=02 (a;,b;) C R,

197

such that Q@ ¢ Q. In what follows we denote o(x) = (o, (), ...,0,(x)) where =
(q1,...,2,) € Q. Then, for j € {1,...,d} we define:

(2.9) oj(x) := g (x; —a;), forall z € Q,

where v > 0 will be chosen later. The function o just defined satisfies the following
important properties

d d
(2.10) dive () = ]z:;&”aj (x) = ;Z =v,
and
d 3
211 llollon =esssup | 3 los@)* | <v max |b—a;l <dgv,

j=1
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where dg > 0 is the diameter of Q. Then, using the above definitions the bilinear
form a(-,-) can be expressed in the following equivalent ways:

(212)  a(u,v) = (KVu,Vv) g+ ((uo)- nK,v>89H

(2.13) = (ICVu,Vv)gH + (o - Vu,v)g;H + (u,0 - VU)BZH —|—1/(u,v)92H .
The aforementioned ellipticity of a(-,) as well as its continuity are established in

the following result.

THEOREM 2.2. Let us suppose that, in the definition of (2.9), v is chosen such
that

K.
. < < mln'
(2.14) 0_y_4d%

Then, the bilinear form a(-,-) defined in (2.12) is continuous and elliptic. More pre-
cisely, for all v,w € V the following holds

1
a(w,v) <2 (1K} Yl 5, +vlwlf 2, )

1
a(v,v) 2 5 (1K} Vol o, +v ol , ) -

Proof. Let w,v € V. Using the writing (2.13) for a(:,-), Cauchy-Schwarz’s in-
equality, (2.10), and (2.11) we arrive at

SIS

1
2 1
<2 (I3 Vol o, +vI0lE 5, )
1
> =
-2

a(w,v) = (IC% Vw,K? Vo)z, +(0-Vw,v)e, +(w,0-Vu)z, +v(w,v)z,

1 1
< (1K= Vwllo,2,, 1K= Vollo,2,, +vlwllo,2,, [v]

0.2,

1 . 1 1
+5v2 (K2 Vullo,z,, [vllo,2, + [wlo,2, [IKZ Volo,2, )

1 1
0.2,) (1K Vollo,o, + 2 0], )

< (11Kt Vullo, 0, +v# flw

1
2

1
1 2 1
2 (It Vol o, +v 1wl 2,) " (IKE V03 o, +vIvIEs,)"

IN

and,

a(v,v) = (KVv,Vv)gp +2(0-Vv,v)p +v(v,v)s

T H

1

> [KEVIR 5, —2do v ol o, [0, +7 VI3 5,

1 ) 1 ?

5 2 2

> 5 (KTl s, 4010l )+ (VEda ol = 5 o, )

1 3 2 2
> 5 (K2 Vol o, + VIl )

which proves the Theorem. 0

To link the ellipticity and continuity of a(-,-) just proved with the norm || - ||,
we note that using (2.14) we obtain
Lo 2
(2.15)  a(w,v) < 2Kpnax ||y ||v]ly , and, a(v,v) > §l/d§~2 lv]ly, for all w,v € V.
Interestingly, the bilinear form a(-, ) is elliptic in H}(Q) even if v = 0. It is therefore
sufficient to use the standard theory for variational problems with constraints, which
is precisely what the next theorem shows.
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THEOREM 2.3. Suppose that, in the definition of (2.9), v is chosen such that
(2.14) holds. Then, problem (2.3) has a unique solution (u,\) € V- x A. Moreover,
the following stability holds

’Cmaz
(2.16) IMls + Kmaz lully < €= |fllo.q

where, C' > 0 does not depend on any mesh size, data of the problem, or v.

Proof. The existence and uniqueness of the solution to (2.3) is a consequence of
its equivalence with (2.1) and the fact that the latter has a unique solution. The
remaining part of the proof is related to giving the bound (2.16). We first notice that
for all v € Hg () we have ||[v]l, o < ¢p [[Vvl|g g, Where the Poincaré constant c¢p > 0
depends only on €. Thus, from the ellipticity given in Theorem 2.2 and the fact that
cp < dfz we arrive at

1
a(v,v) > 3 Komin [V, for all v € H} ().

Then,

1

9 Krnin Hu”%, <a(u,u) = (f, U)oﬁb,{ <cplf

0,9 llully -

So, using (2.15) and the inf-sup condition (1.9) we get

<)\,U>39 (fav)o,?} - a(ua ’U)
[AllA = sup ———"* = sup 2 < cp [ flloe + 2 Kiax [[ully -
vev  vlly veV l[v]ly
The proof is finished by combining the above bounds. 0

Remark 2.4. Although the equivalence result presented in Theorem 2.1 holds for
any choice of mapping ¢(+), the uniform stability (with respect to v) on the solution
of the hybrid problem (2.3) is due to the precise choice of o done in this work. More
general definitions of ¢(-) could be considered leading to related stability results, based
this time in inf-sup conditions for a(-,-), but in such a case the uniform stability with
respect to ¢(+) would no longer be guaranteed.

2.2. The discrete hybrid problem. We start by recalling the definition of
the spaces V}, and Ay given in (1.12) and (1.10). The Galerkin discretization of (2.3)
using these spaces reads as follows: Find (uy ,Ag) € V), X Ay such that

(2.17) {a(uhwh) + Ao, = (fivn) s, , forallv, €V,

<MHauh>6@H =0, forall py € Ay
The first step in analyzing the discrete problem is to define the discrete kernel
(2.18) Ny, o=A{vp, € Vi s (b vn)op, =0.Viuy € Ay}
Then, the Poincaré-Friedrichs inequality for piecewise H'! functions given in [9, Eq. (1.3)]
implies the existence of ¢z > 0 that depends only on the shape of the polygons of

4, (and not on h, H, or H) such that

(2.19) lvpllo.o < cp vahHo,@H , for all v, €91,
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So, v, — ||IC%VvhHO,32,H is a norm on 91,. This observation also allows us to make
the ellipticity in Theorem 2.2 more precise. In fact, the ellipticity in Theorem 2.2
implies:

1 1 1, 1
2200 avv) = 5 (IKIV0lE 5, +vIvlE o, ) = 5 IKEVUIE 5, .

for all v;, € My, which is indeed an ellipticity in the discrete kernel ;. Moreover,
thanks to the Poincaré inequality (2.19) we have

(2.21) o) = 2 (2 ) Koo 2
. a(vy,v) 2> = | —= min ||V |1 -
2 d%—f—cQB

In addition, the hypotheses made in subsection 1.3 on the partitions &2,, and .7,
allow us to use the results from [8] and [20] to prove the following discrete inf-sup
condition:

1 (B> 0) 02
(2.22) —lugla < sup —o=——==
F

v, €V}, vplly ’

where cg > 0 is independent of h, H, and H. As a consequence, the finite element
method (2.17) is well-posed, and has stability and error constants independent of v.
This is stated in the following result.

THEOREM 2.5. There exists a unique (uy ,Ay) € V), X Ay that is the solution to
(2.17). In addition, the discrete solution satisfies the following stability

Icmaz
Kmin

1
(2.23) o IAe A + Konaz [lunlly < C [£llo.22»

where, C' > 0 does not depend on any mesh size, data, or v. Moreover we have the
following error estimate

2.24 U — < inf |lu— + inf ||\ —
( ) | uplly < ¢ vith | vpllv +co leeAH [ prlla
2.25 A=A < inf — + inf ||\ —
(2.25) | mlla <cs Uifel‘,h lu—vplly + ¢4 lefelAH [ Prlla

where ¢, ¢y, c3, and ¢, are positive constants independent of mesh sizes, and v.

Proof. The proof of the existence and uniqueness of solution to (2.17) follows
from the ellipticity (2.20) of a(-,-) on 91y, the discrete inf-sup condition (2.22), and
standard results on saddle-point problems (see, e.g., [39, 18]). The stability (2.23)
can be obtained following closely the proof of Theorem 2.3. Finally, the error bounds
(2.24) and (2.25) are obtained by applying [18, Lemma 50.2]. ad

The Cea-like estimates (2.24) and (2.25) lead to optimal-order error estimates.
For this, we first state the following result, whose proof is a slight variation of that
from [8, Lemma 3].

LEMMA 2.6. Suppose w € HT2(22,)) N H}(Q), KVw € HHY(2,,), with £ > 0,
and KVw € H(div; Q). Let u € A defined by

ulE :f(lCVw~nK+w(o~nK))|E
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for each EE € £. Then, there exists a positive constant C' > 0, independent of h, H,
H, and IC, such that

(2.26) inf |u—pgla <CHT KV +weol o,
pHEAH H

where A and o € [C>®(Q)]¢ are given in (1.10) and (2.9), respectively.

The last approximation result, along with standard interpolation estimates (see,
e.g., [17]) lead, in a natural way, to the following error estimate for the discrete hybrid
problem (2.17).

COROLLARY 2.7. Suppose that the solution (u, ) of (2.3) satisfies the hypotheses
of Lemma 2.6. Then, there exist positive constants C,,Cy, independent of any mesh
size and v, such that

(2.27) lu — uplly < Cq (HZ+1 IKVu + U0'|g+1732H + RF |u|k+17g«>ﬂ) ,
(2.28) IAN=Aglla < Co (HKVU+ uo|ig,2, + b uli1,2,) -

Remark 2.8. We stress the robustness of the error constants with respect to v. As
a matter of fact, the only dependence on v that appears on the error is via the term
luo|,, 1 o on the right-hand side of (2.27),(2.28). This dependence is nevertheless very
weak, for two related reasons. First, the definition (2.9) of o implies that |o|, o =0
for any s > 2. So, that term is (up to a constant that depends only on §2) bounded by
v ||ull g1, #,,- In addition, the restriction the value of v given in Theorem 2.2 implies
the following uniform bound:

ICmin
(2.29) |U0'\e+1,9H < 074 22 ||UH£+1,32H ;
)

where C' > 0 depends only on the diameter of {2, and in /.

Remark 2.9. Regarding the regularity requirements for the error analysis, it is
important to notice two things. First, the best approximation result from Theorem 2.5
is totally independent of the regularity of the diffusion tensor X, so it does imply
convergence for the lowest regularity case. In addition, the bounds (2.27),(2.28) do
require a regularity on I, but only locally. In fact, the freedom to choose the shape
of the elements in &7,, allows for obtaining optimal error estimates as long as K is
smooth in each element K € &7,,.

The fact that the stability and error results just proven are robust with respect
to v prompts the question of what happens in the limit ¥ — 0. It is important to
notice that for v = 0 the discrete problem (2.17) is, in fact, equivalent to the MHM
method proposed in [8], and so the limit problem when v = 0 has a unique solution
as well. To explain the transition between the two cases (v # 0 and v = 0), in the
next result we study the convergence of v, as v — 0, and provide an uper bound for
the error.

THEOREM 2.10. Let (uy, ,Ay) € V), x Ay be the solution of (2.17), and let us
denote the solution of (2.17) when v =0 by (ul) ,\};). Then, there exists a constant
C, independent of v, and every physical and mesh parameters, such that

1
(2.30) 1= ¥ (u, = up)llo,,, < C 5Vl flloe-

min
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Proof. Let e, := u; — uY). Since both u, and u9 belong to 9, , using (2.17) we
get

a(up, ey,) = (f, ‘fh)g@H = (lCVu%,Veh)g,H = a(up, e,) — ((upo) 'nK7€h>8§"H :

Rearranging terms, using (2.13), (2.10), (2.11), (2.23), and (2.19), we arrive at

1,1
5 ||’CQV‘3hH3,.@H < a(en,en)

== <(u20)~nK,eh>3g@H
=—[(o-Vup,en) oz, + (up,0-Ver)m, +(V-0)up,en), |
< Va(d + d; cu;)léunu%nv 1K+ Venllo, o,

yielding

(2.31) 1K Verllo.o, < 2V2(d2 + dg cp) Kiuumv.

Finally, from the definition of u{) and (2.21) we arrive at:

(232 v <2 (1 ¥ dB) 4 7l
5 min
Therefore, inserting (2.32) in (2.31) we get
1K= Venllo,, < C——vllfloq-
which finishes the proof. - ]

3. The Multiscale Hybrid Method. A common feature in all the works re-
lated to the MHM method is a process of static condensation. The purpose of this
feature is twofold; first, it allows for a natural upscaling to be carried out in parallel,
and second, it leads in a natural way to a formulation whose only unknowns are the
approximation of the fluxes in the interelement facets, that is, a global linear system
with Ay as the sole unknown. So, we now describe that process in the context of
the present approach. We start by observing that the first equation of (2.17) can be
rewritten as follows:

(3.1) aluy, ,vp) = =M vp)az, + (frvn) 2, -

Due to the linearity of the above problem and the fact that a(-,-) is an elliptic bilinear
form, the solution u, € V}, of (2.17) can be written in the following way

(3.2) up =Ty + T f

where Th feV,and T,p eV, (for any p € A) are the unique solutions to the following
discrete problems:

(3.3) a(Ty p,vp) = = (P vn)ag,, » forall v, €V,
(3.4) a(Ty, f,vy) = (f, Uh)gzn , for all v, € V.
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The ellipticity of a(-,-) in V}, yields the fact that the mappings 7}, and Th are well-
defined. The writing (3.2) constitutes a static condensation procedure. In fact, as
it will be detailed in Remark 3.3, the mappings T}, and Th can be computed locally.
These local computations allow the elimination of the degrees of freedom internal to
each element, so that we can write the global problem only in terms of Ay. The final
step in the derivation of the Multiscale Hybrid (MH) method is to replace (3.2) in
the second equation of (2.17) to arrive at the following equation involving only Ag:
Find Ay € Ay such that

(35) %()‘Ha,u'H) = <,LLH aTh f>8§>”H , for all HH € AHv

where the bilinear form %8 is given by

(3.6) B(pysbu) = —(ku vTth>833'H , for all (pr ,pm) € Ag x Ay

The problems (3.5) and (2.17) are equivalent. Thus, Problem (3.5) has a unique
solution A\y; € Ay. Once Ay is computed, then u, is built using (3.2). As it will
be detailed in the next section, this does not involve any extra computation (local or
global). In addition, the error estimates proven in subsection 2.2 for the solution of
(2.17) are, of course, still valid for u, built using (3.2).

The MH’s global problem (3.5) can be proven well-posed directly. This is stated
in the next result.

THEOREM 3.1. Suppose Assumption (A1) and (2.14) to hold. Then, for all py , py €
Ay the following holds

2
(3.7) Blou,im) < o lkalialorlla s for all (pr, p) € A < Am,
o

(3.8) By bpr) lpwllzs for all py € Ay .

Z o2
2¢5 Kna

Proof. Let py € Ap. Using the inf-sup condition (2.22) (which follows from
(A1)) followed by (3.3), the continuity of a(-,-), and (2.14) we get to:

1 (b vn) oz a(T), pg,v
(3.9 = lugly < sup LE0Tn gy, @bt th)
CF v, €V, th”\/ v, €V, ||Uh||v
1 1 %
(3.10) < Kiax (IEVT 11 0, + v Ty st 3.,)

Then, using the definition of 9B, followed by (3.3), and the ellipticity of a(:,-) in The-
orem 2.2 we arrive at

B, ) = — (p vTh/J'H>89H = a(Typpg » Thpipr)

1 1 1
(3.11) 23 (HICQVTh iy o, +vIT, HH||(2),9’H) > 32 Ko ler ]I

which proves (3.8). Next, to obtain (3.7) we use again the ellipticity of a(-, -) followed
by its continuity to obtain

1
§d%V||Th il < a(Typg Ty i) = = (g Ty bido,, < ialla 1Ty bl
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which proves the following continuity of 7T},
1Ty sty < o=l
h M V=2, HHIA -
Q
Hence,

2
Blpw, un) = (1w Trpmloz,, < lealalTurally < = luullallpslla
B

thus finishing the proof. ]

Remark 3.2. The fact that the matrix associated to B is symmetric positive-
definite has multiple advantages from a computational point of view, the possibility
of using faster Krylov solvers for its solution being one of them. In addition, it is
important to remark that the ellipticity of the bilinear form 8 is independent of
v. Of course, B is not defined for v = 0, but as long as v > 0, its ellipticity is
uniform with respect to it. On the other hand, the lack of uniform stability of T,
with respect to v is represented by a continuity constant that blows up as v — 0.
This does not affect the error estimates proven before, as (3.5) is a rewriting of the
hybrid formulation (2.17). Nevertheless, for small values of v the matrix associated
to (3.5) may become ill-conditioned as v — 0. We will study the extent to which this
holds in the numerical experiments in section 4.

Remark 3.3. We finish this section by showing how to implement the MH method
solving local problems, thus avoiding a global solution to compute the mappings 7,
and 7). From (3.3) and (3.4), and thanks to the local definition of the space V;, we

can see that, in each K € 2, T;p|x € V},(K) and T, flx € V,(K) are the unique
solutions of the following local problems:

(3.12) ag (T p,vy) =—(p,v)ex, forall v, € V,(K),
(3.13) (J,K(Th f7'l)h) = (f, Uh)K’ fOl“ a].l Uh E Vh(K)7

where the local bilinear form ay(-,-) is given by
(3.14) ag(u,v) = (KVu, Vo) g + (uo) - n v)op .

Problems (3.12) and (3.13) are well-posed. In fact, following exactly the same steps
as in the proof of Theorem 2.2, we can see that the following holds

1
(3.15) ag(v,v) > 3 (”IC%V’UHS’K +v ||v||8K) , for all v e HY(K).

3.1. The MH-Algorithm. The decomposition of (3.3) into the local problems
(3.12), coupled with an appropriate selection of basis for A, provides an embar-
rassingly parallel process to compute the basis functions in the MH method (3.5).
More precisely, if {¢,...,9¥ 5} is a basis for Ay, then we start by rewriting it in the
following way

(316) {wla“-?wN}: U {¢fa"'¢5—‘r1}7
Fefy
where each @1, ..., ¢f 1 has support in each F' € £. To give a concrete definition of

qﬁf for each j = 1...,£ + 1, we shall fix a basis {¢y,...,9,,,} for P,(F), then we
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define ¢¥ = (0 - nf)p; forall j = 1,...,0+1, ie. if K{', K3 € 2, are such
that F = K N K and KI' # K¥'| then ¢f|aKf = —(bﬂaKf. Definition (3.16)
induces the existence of a global-local bijection v, +» ¢£ , i.e., it is possible to build a
transformation from local to global indexes, denoted by

(3.17) (k, F) s ik, F),

where we have abused the notation using F' instead of the index of F' in some data
structure associated to the mesh . Using (3.16) we rewrite the global problem (3.5)

as the linear system: Find (cy,...,cy) € RY such that

W1, Thddow,, - Wi Thdnlos,, ¢ (W1, T EEM
(3.18) - ( ) =

Wn Thti)ow, - Wn Thdnlow, eN (b T, oo,

So, (3.2) can be rewritten as

N
(3.19) Up, :ZCiTh¢i+Thf-
i=1
Now, we will briefly analyse how to compute the entries (¢;, 7}, ¥;) 02, As 1,
is an element of the basis (3.16), its support is a subset of exactly one F' € £g. This
element F is shared by at most two polygons {K{', KI'} := 2L C Z,,. Following a
close construction we associate to 4; two polygons {KF, K¥'} := PE C 2, with
F’" € £y. Using this writing we obtain

(3.20) W5, Thidom, = Z Wi, Ty i) ok = Z /ij Ty, -

KeozEnzE KezinzE

So, the sum above may be zero (when 225 N 2L = ()), have only one term (when the
edge F is on the boundary of Q) or be composed by two terms. Just as in a classical
finite element method implementation, we propose to approach (3.20) through contri-
butions element-by-element with respect to the partition &,,, i.e., for each K € &,
F,F' COK,kme{l,....,0+1}:

contributes to
(3.21) /F¢k Ty by ——— Wi,y T, ¢i(m,p/)>ayﬂ

where the mapping 7 : N x N — N was introduced in (3.17). Similarly, we notice that

~ ntribut -
(3.22) [T pee s b ) T P,
The only part left to be explained in the MH algorithm is how the terms T),¢,,
and T}, f are computed on each K € ;. Let {{;,...,{y, } be a basis for Vj,(K).
From the discrete variational problems (3.3) we see that 7)1, can be written as

T, = Z]kvfl tff) &, where (tgi), e ,tg\i,)K) € RVx solves the following linear system:
ag(n&) o ag(Ene &) ) Jrtbi&
(3.23) ' : : == ' :

aK(é-l.a §NK) a’K(gN;.(vgNK) t%)K fF % §NK
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where F' € £y is the only element containing the support of ¢;. Similarly, from (3.4)
we obtain T}, f|k, = Zivfl fr &, by solving

ag(&,61) 0 ag(Eng, &) fi (f &)k
(3.24) : : : : :

(f7§]\.fKn)K

Finally, we notice that after solving the linear systems (3.23) and (3.24), the right
hand side of (3.23) provides an easy way to compute the contributions (3.21) and
(3.22) to assemble (3.18) through the following matrix-vector products

Ng } R Ng
(3.25) /F wimj:;tij) /F i, and, /F wThf:];fk /F iy

Algorithm 3.1 summarizes the main steps explained above to compute an MH
solution.

GK(51.7 ENg) oo aK(fN;;aENK) f]\’]K

Algorithm 3.1 Compute an MH solution.
parfor K ¢ &, do
Assemble the left-hand side A of (3.23);
Assemble the right-hand side by of (3.24);
parfor F' € 0K do
parfor j=1,...,/+1do
Assemble the j-th column of the right-hand side B (:, j) of (3.23);
end parfor
end parfor
Solve A x [Ex f ] = Bk bysl; (see (3.23) and (3.24))
— BT « B 28 19 h (left-hand side of (3.18), see also (3.21) and (3.25))
i+ Bg jcontributes to, . (right-hand side of (3.18), see also (3.22) and (3.25))
end parfor
Solve M x V' = L;
parfor K € &, do
Extract V g from V; (coefficients related to K)
ug = Vi xEx + fi; (see (3.19))
end parfor

4. Computational Experiments. In this section we set the unit square, () =
(0,1)2, as the domain of problem (1.1). We will present four series of numerical
experiments showcasing the performance of the method from different points of view.
To avoid any pollution from the solution of the local problems, we have always taken
k = ¢+ 2. So, the convergence will always be measured with respect to the order of
approximation in Ay, namely .

4.1. Convergence Assessment. We first test the convergence of the method
for a problem with smooth data and solutions. We consider K = Z and

f(z,y) =4 (> +m?) % sin(2nmz) sin(2mnmy), in Q,
with n,m € N. So, the exact solution of (1.1) is given by

(4.1) u(z,y) =sin(2nwx) sin(2mny).
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Fi1G. 2. Ezample of approzimated solution obtained with the MH method on a mesh composed

by L-shaped polygons. The shortest edge in each polygon has size i and the longest has size %

The computational edges in E have size H = é. In addition, h = ﬁ, =1, and k = 3.

77_[2 1 77_{3
o [Ju — unlv o |Ju — v

Fi1c. 3. Mesh based convergence for v = i and H = H . Here it was used £ = 1 and k = 3
(left) and £ = 2 and k = 4 (right). The second level was computed with h = ﬁ‘

In the convergence results presented below we set n = 3 and m = 7 in the exact
solution (4.1).

The first convergence test is carried out on a family of partitions composed by
L-shaped polygons. In Figure 2 we depict the discrete solution for one particular
mesh in the family, using H = ¢; and h = 155;. Thanks to our choice k = £ + 2 and
the small value h = ﬁ, both chosen to avoid any pollution arising from the second
level calculations on the convergence, Corollary 2.7 predicts an O(H/*!) convergence
rate. The results shown in Figure 3 reflect this optimal convergence rate both for
¢ =1,k =3 (left panel) and ¢ = 2,k = 4 (right panel). For this first experiment, the
value v has been chosen equal to i, and the skeleton mesh &y coincides with &, i.e.
H="7.
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| g —H%5 i/ {35
—oflu —ullv o flu —ullv
H H
Fi1G. 4. Space based convergence for H = % 13 and v = i The second level was computed
with h = Téﬁ' The error curves on the left side were made for £ = 1 and k = 3, whereas on the

right side we present curves for for £ =2 and k = 4.

P
/
A e
e 7
//:/ e :
= d
/”i:/ / -
/// o
. e
///
,/
/%
o —v —y
“ 1 1
- —|IK2V (un — up)llopy |12V (un — up)llopy
v v

Fic. 5. Difference between the MH and MHM solutions as v — 0. On the left panel we use a

mesh using squares of size H = %, with £ =1, k=3, h = é?—[,, H = i’H. On the right panel we

used a criss-cross mesh composed by triangles with H = %, =2, k=4, h= 1—16 H, H="H.

We next study the convergence behavior on H by fixing the partition &2,, as the
mesh presented in Figure 2 and making successive refinements on £y (referred to as
space-based convergence in [8]). The value h = ﬁ is sufficiently small as to ensure
that the second level calculations do not polute the errors. The results presented
in Figure 4 show a super-convergence with respect to the theoretical estimate given
by Corollary 2.7. More precisely, both rates are one half higher than expected. Such
behavior was observed in the MHM method in [8] and has been recently analyzed in
[11].

Finally, we test the convergences presented in Theorem 2.10. For this, we use two
types of meshes. More precisely, we consider two fixed partitions &2,,, one composed
of triangles and the other one of squares (see Figure 5 for details). In Figure 5 we
report the evolution of the error ||K2V (u, —uQ) HO“@H, where we see that, as predicted
by Theorem 2.10, the decrease in the error is linear, thus confirming that the solution

of the MH method does approach that of the MHM method as v — 0.
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4.2. Conditioning with respect to v and its numerical consequences.
In section 3 we analyzed the stability of local and global problems, (3.3)-(3.4) and
(3.5), respectively. This analysis reveals that the ellipticity of the local problems de-
pends strongly on v, and that the norm of the bilinear form associated to the global
problem grows up as v~ when v — 0. In this section we validate those claims numer-
ically by computing the largest and smallest singular values of the respective matrices
obtained by approximating the solution to the problem described in subsection 4.1
with n = 3 and m = 7 and using the space settings detailed in Figure 6. We depict the
obtained results in Figure 6, along with the same quantities obtained for the MHM
method (the latter is added for reference, as the MHM method does not involve v).

The results depicted in Figure 6 show that the MH method indeed produces ma-
trices whose condition number is worse than those of the MHM method (the ellipticity
constants are slightly better than those of the MHM method, but the continuity ones
clearly blow up with v~ !, reproducing the fact that the MH method is not defined for
v = 0). These results raise the question about the influence of the value of v in the
quality of the results provided by the MH method. From a theoretical point of view,
the answer is clear. As a matter of fact, the convergence rates presented in Corol-
lary 2.7 are not affected by the value of v. This implies, in particular, that the solution
obtained by the MH algorithm (i.e., the function u, computed using (3.2)) converges
to the exact solution with rates (and values) that are independent of v. However,
from a practical point of view, the degeneration of the condition number can affect
the quality of the approximate solution to a discrete problem. To make a finer as-
sessment on this situation, in Figure 8 we present the convergence curves for different
choices of v. The results depicted in that figure show that the rates (and values) of
the error are virtually unaffected with values of v larger than, or equal to, 6 x 1078,
When v reaches that value, the condition number of the local and global problems
start getting affected by the value of v, and this can affect the overall quality of the
solution, as can be concluded from the error curve depicted using v = 3.7 x 1079,

To complement the above discussion, in Figure 9 we depict the error of the MH
method for a range of values of v, and also report the error obtained when solving
the exact same problem with the MHM method. From those results we observe that
for a moderate range of v, that is, for v ranging from 1078 to 1, the error of the MH
method is similar or slightly smaller than that of the MHM method, while for smaller
values of v the quality of the solution of the MH method deteriorates.

To summarize the above discussion, in our experience it is safe to use the MH
method for values of v that are not smaller than 107,

4.3. Capture of Multiscale Features. In this section we showcase the capa-
bilities of the presented method for two problems with highly oscillating coefficients
that are not resolved by the mesh &7,,.

4.3.1. A highly-oscillatory problem. We first approximate the solution to
(1.1) with a non-homogenous dirichlet boundary condition u|sn = g and assuming a
highly-oscillatory data of periodicity ¢ > 0 for (1.1). More precisely, we consider the

following data
17 7 ) T
K(z,y) = (16 + cos (E a:) sin (2—6 x)) I,

f(x,y) = sin(z) sin(y) + cos (% x) sin (% a:) ,

g(x,y) = 1072 cos(3mx) cos(5b7y),
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F1G. 6. Behaviour of ellipticity constants and norms for local (left) and global (right) systems

for the presented method compared with same quantities obtained for the MHM method. The used
configuration was £ =1, H = %, h= %, and, k = 3, with H = %, on a criss-cross mesh.

Fic. 7. Condition Numbers of the local (left) and global (right) linear varying with respect to v
for the presented method compared with same quantities obtained for the MHM method. The used

configuration was £ =1, H = %, h = %, and, k = 3, with H = %, on a criss-cross mesh.
x
=
=
3
| L ]
3
\I;/ ——v =25x 1071
e ——v=23x107*
i % —~—v=10x10"%
Y —v=6.0x10"%
——v =3.7x107°

H

Fic. 8. Influence of v on the convergence rates with respect to H. Here it was used £ = 1,
k=3, h= 6%1 H, and, H = %, on a criss-cross mesh.
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+HK%V(U—U}1)H0,W
=12V (u — u)llo.py

IV (= un)lop,
== 112V (u = ) llop,

v v

F1G. 9. Two regimes for the behaviour of the error obtained for the presented method compared
with the error of the MHM method: Small (left) and large (right) values of v. The used configuration
was =1, k=3, h= %, and, H = %, with H = i, on a criss-cross mesh.
defined for all (z,y) € 2. We consider € = §177 and compute a reference solution using
the Galerkin method with Q4 elements in a highly refined mesh containing 4,194,304
uniform quadrilateral elements. Figure 10 depicts the reference solution, where we
can observe its highly oscillating character due to the definition of K. We observe that
the method (3.5) needs to be sightly modified as follows to treat non-homogeneous
boundary conditions: Find Ay € Ay such that

(42) By ug) = (pg Ty f>89H — (1, 9) , forall py € A,

H™ 2 (09),H? (09)
where we assumed that ¢ € H %(89). Then, we compute the MH approximation
through (4.2) in a mesh containing 64 square elements, i.e., H = %\/5, with spaces
Ay and V, using £ = 1, k = 3, h = 5t M, and, H = 81ﬁ H. The MH solution
is depicted in Figure 11 where we can observe a good agreement between the MH
solution and the reference. In Figure 12 we depict the error between the MH solution
and the reference one as H — 0. For this we have used a space-based approach (so,
keeping H fixed). We can observe in the left panel that the error decreases with the
expected rate O(H?). In addition, on the right panel of Figure 12 we depict the error
for the largest value of H and a range of values of v where we can observe that the
error is very robust with respect to the value of v.

4.3.2. A porous media fluid flow problem. Now, we conduct an experiment
inspired by [35], which lies outside the theory presented in the current work. How-
ever, we find it valuable to demonstrate the potential applications of our approach.
Specifically, we modify the problem by introducing a subset of the boundary denoted
as I'y € 09Q. We alter the original elliptic equation (1.1) to include boundary condi-
tions: ulpo\ry = g and —KVu - n|p, = 0, where n represents the outward normal
vector to €. This induces a slight modification of the method as the facets on I'y, are
no longer needed in its construction. This resulting variant can also be analyzed with
arguments related to the ones presented herein. We will omit the details to avoid
technical diversions, and for brevity.

Let consider the domain = (0,1.2x103) x (0,2.2x103) with 'y = {(x,y) € 0Q :
(x =0), or, (x = 1.2 x 10*)} and define the permeability X based on the 36" layer
of Model 2 from the 10th Comparative Solution Project conducted by the Society
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of Petroleum Engineers (SPE10) [33]. For this problem K(z,y) = x(z,y)1,, for all
(z,y) € Q, where k(z,y) is depicted in Figure 13. This definition serves as the basis for
validating the MH method with £ = 1 on the faces of a quadrilateral mesh comprising
66 squares. The model problem includes an imposed entry pressure of 1 at the bottom
side and 0 at the top, i.e., g(z,y) = 1— 552757 ¥, for all (z,y) € OQ\I'y. As mentioned
above, homogeneous Neumann conditions are applied to the other two boundaries,
while the source term is f = 0. It is worth mentioning that we employ a reference
solution (refer to Figure 13) generated using continuous Q elements in a quadrilateral
mesh consisting of 1,081,344 elements, corresponding to 9,738,625 degrees of freedom.
In Figure 14 we depict the MH solution (obtained using v = 10~%) and the reference
one. We can observe a very good agreement between the two solutions, despite the
difference both in number of elements, and degree of approximation. To accentuate
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Fic. 12. Convergence on H with respect to the reference (left) and influence of v on the
approzimation error for the MH method (right). Here it was used £ = 1, k = 3, h = é’h{, with

H = % 2 on a mesh composed by squares.

this similarity further, we present cross-sectional profiles of both solutions at = 199
in Figure 15. These profiles reveal a strong agreement between the reference solution
and the MH approximation, achieved by subdividing each edge into eight segments to
define the polynomial interpolation. For a more comprehensive examination of each
approximation’s behavior, we offer an enlarged view of Figure 15 in Figure 16.

4.4. Performance Analysis. In this section we compare the computational
performance of the MH method with that of the MHM method presented in [8]. Both
methods were used for solving problem (1.1) with the same Q, K and f used in sub-
section 4.1 (see Figure 17 for details about the meshes and polynomial degrees used).
The simulations were conducted using a C++ framework developed in-house for im-
plementing finite-element solvers.! The framework implements the MH and MHM
methods, and also the classical Galerkin method used for solving the local problems
of both multiscale methods. The framework allows for multithreaded, shared mem-
ory parallelism using OpenMP, and multiprocessing, distributed memory parallelism
using MPI. The framework is linked to two main libraries: (i) Eigen [21], for general
matricial operations and also for solving the linear systems generated by the local
problems; and (ii) MUMPS [2], for solving the linear system generated by the global
problem.

For the experiments conducted in this paper, we used a high-performance cluster.
Each node in this cluster has 2 CPUs of 24 cores each and 768 Gb of RAM memory.
We considered three simulation configurations: running on a single node, on two
nodes, and on four nodes. The computing system is configured so that each MPI
process occupies a single CPU; therefore, our simulations run with 2, 4 and 8 MPI
processes.

For each simulation, the local problems are uniformly partitioned between the
MPI processes. Within each of these processes, the “parfor” loops shown in Algo-
rithm 3.1 are implemented with OpenMP so that the local problems pertaining to an
MPI process are solved in an embarrassingly parallel way using all the available 24
cores in its CPU. Only the assembly of M and L, and the solution of M %« V = L

IThe code used for this performance analysis and some other experiments presented in this paper
is freely available under request at https://gitlab.com/ipes/msl kernelfreediffusion.


https://gitlab.com/ipes/msl_kernelfreediffusion
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F1G. 13. Logarithm of the permeability proposed in [33] (left) and the isolvalues of the reference
solution (right).

in Algorithm 3.1 employ tightly-coupled parallelism through MPI messages within
the MUMPS library.

In the simulations with MHM, the LU factorization implementations of Eigen (for
local problems) and MUMPS (for the global problem) are used. For the implementa-
tion of the current MH method, the symmetric positive-definite character of the local
and global problems allows us to use the Choleski factorization implementations of
Eigen (for local problems) and MUMPS (for the global problem).

The performance metrics used for the comparison between MH and MHM are:
(i) the time to assemble and solve all local problems; (ii) the time to assemble and
solve the global problem; and (iii) the maximum memory (resident set size — RSS)
consumed by the most demanding MPI process in each simulation.

We start describing the case £ = 0. The results depicted in Figure 17 show that,
as H decreases, the performance difference in terms of time needed to solve the global
problem increases in favour of the MH method. Regarding memory consumption, the
MHM method presents better performance for smaller values of H, but this situation
changes very early in the refinement process. In fact, when H =~ 2.44 x 10~* the
MHM method is already more memory consuming than the MH method.

To perform the same comparison for higher order elements, in Figure 18 we depict
the memory consumption for both the present MH and the MHM methods. From
that figure it is clear that the MH method requires considerable less memory than
the MHM method, both for £ =1 and £ = 2. In fact, for H ~ 2.44 x 10~* the MHM
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method could not be solved in 4 cluster nodes due to the lack of memory resources.

The last results were related to the solution of the whole problem, including both
the online solution of the global problem, as well as the offline solution of the local
ones. We now will take a closer look at the second ingredient. More precisely, we place
ourselves in the setting described in Figure 19, and measure the impact of the degree k
used to solving the local problems both in the MH and the MHM methods. To achieve
that, we have measured the time needed to solve all local problems in both methods.
Interestingly, for lower values of k the local problems in the MHM method take slightly
less time than those associated to the MH method. This can be explained as follows:
the local problems for the MH method are symmetric and elliptic (as opposed to
those of the MHM method that are indefinite), but they require to assemble the term
((o-m™) uy,v,) 55 as well, which takes some more time. Now, once the polynomial
degree k gets high, the symmetry and ellipticity of the local problems for the MH
method starts paying off and as a consequence the total time computing the local
problems for the MH method becomes lower than the corresponding time for the
MHM method. These results can be seen in detail in Figure 19.

These performance results are indicative that the MH method is particularly
adequate for challenging problems that demand more space-based refinement and/or
higher-order polynomials. To support this argument, we conducted an additional
set of experiments using n = 128 and m = 256 in the model problem presented
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in subsection 4.1, thus we consider the case of a highly oscillatory solution. Figure 20
shows that the MH method considerably reduces the amount of memory needed for
reaching the same approximation error as the MHM method in this problem. Again,
the MHM simulation could not complete in the most demanding configuration because
of the lack of memory resources.

5. Conclusion and outlook. In this work we presented an alternative way to
build multiscale methods based on a hybrid formulation. The main advantage of
this approach lies on the fact that both the global problem for the discrete Lagrange
multipliers, as well as the local problems defining the basis functions, are elliptic. In
addition, the approach followed to analyze the error, that is, interpreting the MH
method as a reformulation of a hybrid formulation, is, up to our best knowledge, new
(and could also be applied to analyze the MHM method itself). Interestingly, the
error constants for the MH method are independent of the parameter v, and also the
solution of the MH method was proven to converge to that of the MHM method when
v — 0. When exploring the performance of the method in this regime, one particular
phenomenon emerged, namely, the deterioration of the condition number of the local
and global problems for very small values of v. Thus, our advice to use this scheme
with values of v that are not excessively small.

Several problems remain open at this point. From a theoretical point of view, the
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possibility of adapting some of the arguments used in [11] to the present work, thus
extending (or making more precise) the error analysis to rough physical coefficients is
of interest. In addition, the fact that both the local and global kernels are removed
form the formulations can help to adapt the present framework to more involved
models, such as the one considered in [12], where geometrical conditions had to be
imposed on the mesh and coefficients to be able to deal with the presence of a local
kernel. In addition, it is interesting to remark that, even if in practice we use a Robin
boundary condition (depending on v) for the local problems, the control provided by
it is not the one we would expect from the use of a Robin condition (cf. the ellipticity
in Theorem 2.2). So, a more detailed comparison between the present approach and
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others including a more traditional Robin condition is also of interest. Finally, from a
numerical perspective, the relation between the parameter v and the condition number
of both the local and global problems needs to be studied more in detail, although
the restriction that somehow v needs to be smaller than the smallest eigenvalue of
K needs to be kept in mind. Alternatives to overcome this possible issue, including
possibilty the design of appropriate preconditioners for the global problem, also need
to be proposed and analyzed. These and other topics are currently underway and will
be the subject of future research.
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