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1. Background

• Mixing impacts heavily on the outcome of antisolvent crystallisation

processes [1]. Its poor understanding leads to unwanted phenomena

such as oiling out and unexpected polymorphs – see Figure 1(a).

• Even mixing between miscible liquids presents anomalies, such as

the interface in Figure 1(b).

• Standard mixing experimental studies fail to provide information-

rich outputs, normally only reporting Fick’s diffusion coefficient.

• A better-suited mass transfer model needs to be developed, and a

new standard for reporting mixing data is needed to inform it.

• Composition gradient

as the driving force

• Ideal behavior

• Not suitable for phase-

changing systems

Fick’s diffusion law

𝜕xA
𝜕t

+ ∇(𝐯xA) = ∇ DAB · ∇xA +

+∇ DABxA · ∇ A 1 − xA
2 − ε2∇2xA

• Chemical potential gradient as the

driving force (Maxwell-Stefan)

• Margules activity model

• Interface free energy (𝛆𝟐𝛁𝟐𝐱𝐀)

CaHiMaS phase-field model

2. Results and discussion

• Figure 4 compares the performance of Fick’s law and the CaHiMaS

model for different values of A and ε, and with D = 1600μm2/s.

Figure 4. Performance comparison between both models. (a) Fick’s law – top: example of

steady state mixing map, obtained with Fick’s law; bottom and (b): composition profiles

at the points indicated in the mixing map for Fick and CaHiMaS, respectively.

• From Figure 1(c), when A<2 the final system will be homogeneous,

and when A>2 the system will phase split.

• For higher ε, the interface will be more diffuse.
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3. Conclusions

𝜕xA
𝜕t

+ ∇(𝐯xA)

= −DAB · ∇
2xA

• A preliminary optimization was carried out as shown in Figure 5,

fitting Fick’s law to an experimental glycine-H2O map. Its objective

was to find the value of D that better reproduced this map.

• Theoretical D: 920 µm2/s [3]; optimised D: 877 µm2/s (error <5%).

• CaHiMaS is able to reproduce nonideal mass transfer better than

Fick’s diffusion law.

• The proposed optimization routine can be used to inform mass

transfer models from experimental results.

Figure 5. Preliminary optimization results. Left: Glycine-H2O experimental composition

map. Centre, right: Interpolated and original simulation composition maps, respectively.
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Figure 1. (a) Ternary phase diagram illustrating that the mixing path dictates the outputs.

(b) Example of microfluidic mixing behaviour in a H2O-50%wt EtOH system, at 5 µL/min.

(c) Behaviour of the Margules model for different values of the parameter A [2].
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