Orthogonal Pipelines for Lipid Nanoparticle Evaluation

Callum G. Davidson

University of Strathclyde, Glasgow, UK

FACSS SciX 2023

Background

 Ribonucleic acid (RNA) drugs encapsulated in lipid nanoparticles pose promising candidates for gene therapy in treatment resistant conditions and rare diseases.

 Clinical trials have shown gaps within our understanding of lipid nanoparticle design, associated critical quality attributes and their *in-vitro/in-vivo* biological performance.

• High resolution analytical techniques are required to correlate design, characteristic and performance to overcome nanomedicine translational barriers.

Background

Fig.2 - Nanomed characterisation bodies.

 Challenges faced by LNP candidates include, stability, supply chain, storage conditions variation in raw materials, case-by-case basis.

 To overcome this FDA-NCL and EUNCL has published guidance and recommendations on the characterisation of nanomedicines. Material reference standards remain in the development pipeline.

 More than one analytical technique required to measure associated physiochemical attributes of LNPs and nanomeds with one measurement using orthogonal highresolution technique.

Aims & Objectives

• Aim

• To develop high resolution orthogonal analytical pipelines for the evaluation of prototype lipid nanoparticle formulations.

Objectives

- Design, manufacture, and screen prototype LNP critical quality attributes.
- Develop high resolution analytical methods to evaluate LNPs beyond the scope of routine techniques.
- Cross-validate results obtained with orthogonal high resolution analytical techniques.

Methodology

Fig.4 – Flow diagram of RNA-LNP manufacture, dialysis and analysis. Made with BioRender.

Fig.5 – DLS results of A) MC3-LNPs post-formulation and stressing. B) SM102-LNPs post formulation and stressing, (mean ± SD, n=2).

Fig.5 – DLS results of A) MC3-LNPs post-formulation and stressing. B) SM102-LNPs post formulation and stressing, (mean ± SD, n=2).

Table 1 – LNP formulation zetasizer and RiboGreen [™] assay results, (mean ± SD, n=2).		Zetasizer		RiboGreen™		DLS indicates stability but
	LNP CQA	PDI	ZP (mV)	Loading (%)	Recovery (%)	insufficient detail to
	MC3-LNP	0.059 ± 0.02	-3.34 ± 0.86	96.4 ± 1.29	81.7 ± 4.5	distinguish aggregation
	MC3-LNP (S)	0.444 ± 0.07	-8.28 ± 1.82	62.9 ± 0.04	79.6 ± 1.5	formation.
	SM102-LNP	0.109 ± 0.03	-4.53 ± 0.87	98.4 ± 0.37	95.2 ± 2.1	C
	SM102-LNP(S)	0.443 ± 0.14	-2.89 ± 0.56	77.0 ± 12.2	88.3 ± 1.2	

Fig.6 – NTA results of A) MC3-LNPs post-formulation and stressing. B) SM102-LNPs post formulation and stressing, (mean ± SD, n=2).

Results – LNP Screening (NTA)

Fig.6 – Focussed NTA results of MC3-LNPs and SM102-LNPs post freeze/thaw cycling, (mean ± SD, n=2).

Table 2 – LNPformulationNTAandRiboGreen™assayresults,(mean ± SD,n=2).		ΝΤΑ		RiboGreen™		
	LNP CQA	Mean Size (nm)	Span	Loading (%)	Recovery (%)	NTA
	MC3-LNP	55.1 ± 0.8	0.22 ± 0.01	96.4 ± 1.29	81.7 ± 4.5	and
	MC3-LNP (S)	104.2 ± 2.9	0.92 ± 0.03	62.9 ± 0.04	79.6 ± 1.5	aggre
	SM102-LNP	49.6 ± 0.7	0.25 ± 0.02	98.4 ± 0.37	95.2 ± 2.1	popu
	SM102-LNP (S)	123.2 ± 5.0	0.90 ± 0.02	77.0 ± 12.2	88.3 ± 1.2	

NTA indicates stability and distinguishes aggregation induced subpopulation formation.

Results – FI-AF4-MALS Method

Fig.7 – Simulated method of Frit Inlet AF4-MALS separation and detection using 60 nm LNPS and 150 nm aggregates.

Modelling method can simulate and predict separation profiles of LNP colloidal systems. Frit Inlet AF4 method used with hyphenated inline MALS detector.

Results – FI-AF4-MALS MC3-LNPs

Fig.8 - MC3-LNP FFF analysis. **A)** Elution profiles of LNPs, and **B)** Cumulative size distributions of prototype LNP formulations, (mean ± SD, n=2).

Post-formulation sample elution profile indicates monodisperse sample population with sharp narrow peak, whereas stressed MC3-LNP profile signifies aggregation. Membrane retention time increases by ~ 20 mins on MC3-LNP aggregation.

Results – FI-AF4-MALS SM102-LNPs

Fig.9 – SM102-LNP FFF analysis. **A)** Elution profiles of LNPs, and **B)** Cumulative size distributions of prototype LNP formulations, (mean ± SD, n=2).

Post-formulation sample elution profile indicates monodisperse sample population with sharp narrow peak, whereas stressed SM102-LNP profile signifies aggregation. Membrane retention time increases by ~ 25 mins on SM102-LNP aggregation.

Results – Method Validation NTA and FI-AF4-MALS

Table.4 – Comparison of NTA and FFF results.

	ΝΤΑ	FI-AF4-MALS	
LNP CQA	Mode Size (nm)		
MC3-LNPs	52.8 ± 0.4	48.6 ± 8.5	
MC3-LNPs (S)	75.8 ± 0.8	285.6 ± 207.7	
SM102-LNPs	47.5 ± 0.6	43.7 ± 0.3	
SM102-LNPs (S)	99.8 ± 1.5	782.9 ± 175.9	

Post formulation prototype LNPs produce similar mode size values between techniques.

Stressed samples show high variation between techniques.

More optimisation required for cross-validation of orthogonal high-res techniques.

\sim	•
Conc	usions

T

Manufacture	Method Development	Validation
Manufactured biorelevant LNP formulations for stressing and analysis.	Analytical Pipelines have been developed for low- and high-resolution characterization of LNPs.	FFF and NTA data produce similar LNP sizes values. More method optimization needed for cross-validation.

Fig.10 – Made with BioRender.

Conclusions

Future looks bright for the LNP nanomedicine field!

Correlations needed for future harmonization of LNP development.. Begins with statistical modelling

New models of developed technologies

Hyphenated technologies

New technologies

C Acknowledgements

- Supervisors
 - Dr. Zahra Rattray
 - Prof. Yvonne Perrie
- Rattray Lab Group
 - Rand Abdulrahman
 - Panida Punnabhum
 - Karim Daramy

