

3D Printing MicroFactory

Elke Prasad ^{a,b*}, John Robertson ^{a,b}, Gavin W. Halbert ^{a,b}

^aEPSRC Future Manufacturing Research Hub, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK ^bStrathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK *elke.prasad@strath.ac.uk

Non-printable Formulation

Filament Free Printing

excipient

3D Printing MicroFactory

Figure 2: Flexural modulus of 5 – 50% w/w Paracetamol in Affinisol™ 15LV filaments for FDM 3D printing [1]. Associated filament failure modes are indicated.

Figure 3: Schematic of Novel filament free Hot-Melt-Extrusion 3D printer.

Figure 4: Novel filament free Hot-Melt-Extrusion 3D printer: Loss in Weight Feeder, HME (Process 11, Thermo Fisher) and 3D printer unit.

be de la construction de la cons		Die Fill number
B 1.E+03	Iayer height 0.3mm Iayer height 0.2mm Figure 6: Ellin tablets (20mm	ptically shaped m x 12mm x
1.E+02 110 120 130 140 150 160 170 180 190	Shifty with roup printed 30% Paracetamol 15LV at diffe	W/WTable 1: Average, standard deviation (stdev)PrintweightwidththicknessImage: The standard deviation (stdev)standard deviation (stdev)(mg)(mm)(mm)
Temperature (°C)	heights (0.6n	mm = 0.2mm). deviation (%RSD) of average 388.04 12.60 3.87
Figure 5: Oscillatory Temperature Sweep: Complex viscosity versus	Brown scale	bar: 5mm. weight, width and thickness of tablets from stdev 6.16 0.11 0.07
temperature of Affinisol™ 15LV (AFF) and 30% w/w Paracetamol – Affinisol™ 15LV (30PCM-AFF) physical mixture (PM) and extrudate (EX).Ideal viscosity range shaded yellow.		<i>Fig.6.</i> <u>%RSD 1.59 0.91 1.94</u>

Figure 8: Tablet core weight versus infill % of elliptically shaped tablets (20mm x 12mm x 5mm) with rounded edges printed with 30% w/w Paracetamol – Affinisol™ 15LV at 0.4mm layer height (n=3).	Figure 9: Elliptically shaped tablets (20mm x 12mm x 5mm) with rounded edges printed 30% w/w Paracetamol – Affinisol™ 15LV at layer height 0.4mm with Infill % ranging from 20% – 70%. Brown scale bar: 5mm.		0 20 40 60 80 100 120 140 160 180 200 220 240 time (mins) Figure 10: % PCM released versus time for 30PCM-AFF 3D printed tablets with 20 (blue), 30 (orange), 40 (grey), 50 (yellow), 60 (royal blue) and 70% (green) Infill.
References		Conclusion	
 Prasad, E., M. T. Islam, D. J. Goodwin, A. J. Megarry, G. W. Halbert, A. J. Florence and J. Robertson (2019). "Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing." Additive Manufacturing 29: 100776. Prasad, E., J. Robertson, A. J. Florence and G. W. Halbert (2023). "Expanding the pharmaceutical formulation space in material extrusion 2D printing applications." Additive Manufacturing: 102802 		Limitations of pharmaceutical formulations for FFF have been identified and characterised. By implementing a novel integrated HME-3D printer, an intermediate feedstock filament in an FDM process is no longer required. This opens up the formulation space highly plasticised polymers in 3D printing of pharmaceutical dosage forms.	
Acknowledgements The authors would like to acknowledge that this wor	rk was carried out in the CMAC National Facil	ity supported by the EPSRC (Grant ref EP/P00696	5/1) and by UKRPIF (UK Research Partnership Fund) award from the Higher Education

supporting the rheological analysis and Dow chemicals for the donation of Affinisol[™] 15LV polymer.

