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Context and Aim of Work
The aim of the HUB MicroFactory is to develop a 
continuous end to end process with as little material 
as possible.
The aims of this work are
- to identify and overcome limitations of 

pharmaceutical formulations for 3D printing,
- to implement an Additive Manufacturing 

MicroFactory,
- to define the operating space of a novel, 

filament free 3D Printer. 
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Die Fill number

Max torque (%) Max pressure (bar)

Print weight 
(mg)

width 
(mm)

thickness 
(mm)

average 388.04 12.60 3.87

stdev 6.16 0.11 0.07

%RSD 1.59 0.91 1.94
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Limitations of pharmaceutical formulations for FFF have been identified and characterised. By 
implementing a novel integrated HME-3D printer, an intermediate feedstock filament in an FDM 
process is no longer required. This opens up the formulation space highly plasticised polymers in 
3D printing of pharmaceutical dosage forms.
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Process dataOperating space: Layer height

Figure 4: Novel filament free Hot-Melt-Extrusion 3D printer: Loss in Weight 
Feeder, HME (Process 11, Thermo Fisher) and 3D printer unit.
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Figure 2: Flexural modulus of 5 – 50% w/w Paracetamol in Affinisol™ 
15LV filaments for FDM 3D printing [1]. Associated filament failure 
modes are indicated.
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Figure 1: Linking HME (a) to FFF 3D printing (b). Failure modes of filaments in 
drive gear or hot end of 3D printer (c).

Figure 3: Schematic of Novel filament free Hot-Melt-Extrusion 3D printer.

Figure 5: Oscillatory Temperature Sweep: Complex viscosity versus 
temperature of Affinisol™ 15LV (AFF) and 30% w/w Paracetamol – 
Affinisol™ 15LV (30PCM-AFF) physical mixture (PM) and extrudate 
(EX).Ideal viscosity range shaded yellow.

Table 1: Average, 
standard deviation (stdev) 
and relative standard 
deviation (%RSD) of 
weight, width and 
thickness of tablets from 
Fig.6.

Figure 7: Process data from 
MicroFactory operated at 
165C. Orange circles: 
maximum die pressure (bar) 
during die fill; blue squares – 
Max torque (%) during die 
fill.

layer height 0.6mm

layer height 0.3mm

layer height 0.4mmlayer height 0.5mm

layer height 0.2mm Figure 6: Elliptically shaped 
tablets (20mm x 12mm x 
5mm) with rounded edges 
printed 30% w/w 
Paracetamol – Affinisol™ 
15LV at different layer 
heights (0.6mm – 0.2mm). 
Brown scale bar: 5mm.

y = 601.15x + 209.19
R² = 0.9983
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Tablet mass versus Infill %

Figure 8: Tablet core weight versus infill % of elliptically shaped 
tablets (20mm x 12mm x 5mm) with rounded edges printed with 30% 
w/w Paracetamol – Affinisol™ 15LV at 0.4mm layer height (n=3).

c) FFF failure modes
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Figure 9: Elliptically shaped tablets (20mm x 12mm x 5mm) with rounded edges 
printed 30% w/w Paracetamol – Affinisol™ 15LV at layer height 0.4mm with Infill % 
ranging from 20% – 70%. Brown scale bar: 5mm.

Tablet Infill: 20 – 70 %
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Figure 10: % PCM released versus time for 30PCM-AFF 3D printed tablets with 
20 (blue), 30 (orange), 40 (grey), 50 (yellow), 60 (royal blue) and 70% (green) 
Infill.
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