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A B S T R A C T   

The growing adoption of Carbon Fibre Reinforced Plastics (CFRPs) in the aerospace industry has resulted in a 
significant reliance on Non-Destructive Evaluation (NDE) to ensure the quality and integrity of these materials. 
The interpretation of large amounts of data acquired from automated robotic ultrasonic scanning by expert 
operators is often time consuming, tedious, and prone to human error creating a bottleneck in the manufacturing 
process. However, with ever growing trend of computing power and digitally stored NDE data, intelligent Ma-
chine Learning (ML) algorithms have been gaining more traction than before for NDE data analysis. In this study, 
the performance of ML object detection models, statistical methods for defect detection, and traditional ampli-
tude thresholding approaches for defect detection in CFRPs were compared. A novel augmentation technique was 
used to enhance synthetically generated datasets used for ML model training. All approaches were tested on real 
data obtained from an experimental setup mimicking industrial conditions, with ML models showing improve-
ment over amplitude thresholding and statistical thresholding techniques. The advantages and limitations of all 
methods are reported and discussed.   

1. Introduction 

Composites are defined as materials comprising two or more distinct 
natural or synthetic constituents that exhibit a unique set of mechanical 
characteristics. Their utilisation has been prominent in various fields 
such as renewable energy, aerospace, construction, sports equipment, 
biomedical field, automotive, and marine industries. 

Carbon Fibre Reinforced Plastics (CFRPs) are constructed of struc-
tured carbon fibre sheets bonded together by a polymer matrix and are 
widely used type of composite material in the aerospace industry. This 
mechanism of construction offers several benefits, including improved 
corrosion and fatigue resistance, high specific strength, and lightweight 
structure [1,2]. The rising trend of CFRPs uptake in the aerospace in-
dustry is particularly driven by the improved fuel efficiencies achieved 
by lower overall aircraft weight [3]. Currently, composites constitute 

approximately 50–53% of the structural mass of flagship aircraft from 
Airbus and Boeing, such as the A350XWB and 787 Dreamliner [4,5]. 
This considerable use of composites calls for a thorough 
post-manufacturing inspection of all produced CFRP parts, as they are 
susceptible to a variety of defects such as delaminations, inclusions, and 
porosities [6–9]. CFRPs are used to construct critical components such 
as fuselage, wing covers, engine covers, and stabilizers, making these 
material imperfections a threat to the mechanical and structural integ-
rity of the aircraft. 

Non-Destructive Evaluation (NDE) is an umbrella term for various 
methods that are used to test and evaluate engineering systems and 
materials without causing damage to the inspected components. Some of 
the processes used include radiographic testing, thermographic testing, 
visual inspection, and ultrasonic testing. 

Ultrasonic Testing (UT) is the most used bulk inspection method in 
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aerospace due to its flexibility, ease of use, and safety [9,10]. During the 
testing process, an ultrasonic transducer generates acoustic waves that 
propagate through the material, interact with the test structure, and are 
reflected/diffracted by boundaries and discontinuities. The returning 
waves are modified by factors such as attenuation, scattering, absorp-
tion, and inter-layer/inter-material boundaries, as well as potential de-
fects. The returning waves are received by the same transducers, 
converted to voltage due to the piezoelectric effect, and recorded as 
time-series data, providing information about the internal structure of 
the material. Phased Array Ultrasonic Testing (PAUT) is a variant of UT 
that uses multiple ultrasonic transducers/elements to enable more 
complex material scanning by introducing calculated time delays in the 
transmission/reception of individual elements. PAUT allows for the use 
of techniques such as beamforming, beam steering, linear scanning, 
dynamic focusing, and full matrix capture [11–13]. Data collected with 
PAUT is usually displayed as a B-scan, a 2D intensity map representation 
of time-series data acquired by a group of elements, or as an amplitude 
C-scan, a cross-sectional representation of gated time-series data that 
highlights the highest amplitude responses. 

The introduction of robotic automation in the field of NDE has led to 
a significant reduction in inspection time compared to a manual 
approach. In addition, the use of robotic inspection diminishes the need 
for human labour, resulting in a precise and repeatable evaluation 
process [14]. However, the automation of NDE procedures has also 
increased the volume of data that must be analysed. The interpretation 
of collected information is done manually by an NDE operator, which 
presents a continuous challenge as it is time-consuming and exhibits the 
potential for human error [15,16]. While robotic automation accelerates 
the NDE scanning processes, the speed of data interpretation remains 
constrained by a manual procedure, making the development of a robust 
automated or human augmented data interpretation system a desirable 
addition to the NDE process. 

Machine learning (ML) is a subcategory of Artificial Intelligence (AI), 
an umbrella term that encompasses the science of developing com-
puters, robots, and other devices capable of performing various tasks 
with the equivalent of human proficiency. The idea behind ML is to 
create and develop algorithms and methods that improve over time 
based on data. Deep Learning (DL) is a subcategory of ML that is focused 
on developing more complex algorithms, taking inspiration from the 
human brain. 

In the past decade, the number of academic publications on the 
application of ML technology in NDE has increased significantly. When 
it comes to UT, ML is extensively used on data collected from bulk 
metallic materials and welds [17–29]. ML models were used in Ref. [17] 
to determine fatigue life and tensile strength of welds from ultrasonic 
A-scans. The main achievement was the correlation of mechanical 
properties to raw UT data which in turn enables predictions of me-
chanical properties that require destructive methods without damaging 
the components. In a series of papers [22–24], researchers explored ML 
models for classification of weld flaws. The progression of the work was 
characterised by the overall increase in the performance by adoption of 
deeper neural networks, various augmentation techniques, and denois-
ing autoencoders to improve quality of the inputs. Similarly, the works 
presented in Refs. [16,19] focused on augmentation of data to improve 
UT scans of austenite welds. A proprietary software for augmentation of 
defective signals was used to drive the training of ML networks that 
ultimately outperformed NDE inspectors. Authors have compared 
different feature extraction techniques in Ref. [21] to generate inputs for 
ML classifiers. They have explored various time to frequency domain 
transforms in order to successfully classify UT A-scan data. 
Density-based spatial clustering of applications with noise algorithm 
were used in Ref. [30] to cluster healthy and unhealthy signals. Authors 
demonstrated promising results with features extracted directly from the 
raw A-scans. In Ref. [31], Convolutional Neural Network (CNN) that can 
determine crack dimensions, location, and orientation in load-bearing 
structures was developed. The training was based on A-scan data 

created with Finite Element Analysis (FEA) software and authors 
demonstrated good generalisation to experimental data. 

In contrast, a relatively smaller body of work has focused on com-
posites [32–36]. Authors in Ref. [32] compared the classification per-
formance of multiple models and feature extractors on A-scan data 
captured from CFRPs with manually embedded defects. They have 
concluded that CNNs were the best feature extractors for this applica-
tion. Work conducted in Ref. [33] focused on the development of a fully 
convolutional neural network that classified A-scans collected from a 3D 
braided composite. In this approach, researchers have used a single 
A-scan as an input to determine the presence of debonding in their 
sample. Convolutional autoencoders were used in Ref. [34] to determine 
fatigue damage with ultrasonic-guided wave imaging while highlighting 
the issue of gathering data to drive model training. Various signal 
decomposition techniques were compared in Ref. [35] to improve the 
feature extraction process for ML training as defects in composites are 
oftentimes masked by larger features such as front and back wall re-
flections. Lastly, in Ref. [36] the authors employed ML and guided 
waves to assess damage in composite structures, achieving promising 
results despite the introduction of various influencing factors, such as 
different temperatures. 

In recent years, there has been an abundance of development of new 
object detection models with the examples being R–CNN (Region-based 
Convolutional Neural Networks), Fast R–CNN, Faster R–CNN, Efficient- 
Det, and You Only Look Once (YOLO) [37–43]. These models use a 
complex architecture to extract regions of interest of an input image, 
outputting both the area of interest and class of the object in the form of 
a vector. Despite the rise in the number of publications, object detection 
models have seen limited implementation with UT data. Performances 
of EfficientDet, RetinaNet, and YOLOv5 models on volume-corrected 
B-scans of steel samples were compared in Ref. [25]. Authors have re-
ported promising results with architectural changes made to address the 
issue of extreme aspect ratios observed in UT B-scans. Similarly, object 
detection on ultrasonic B-scans was evaluated in Ref. [29], demon-
strating the use of YOLO and Single Shot Detector models and high-
lighting the differences in performance in inference speed between the 
tested models. Lastly, researchers in Ref. [27] combined EfficientDet 
and several methods that enabled processing of additional B-scans in the 
sequence, improving on the baseline results. 

In industrial applications, defect localization and sizing are usually 
performed manually through visual inspection of the C-scan, while 
applying different thresholds to the image. The most used method is a 6 
dB drop where a threshold value is imposed to the signal to separate 
healthy and potentially defective regions. Researchers have used 6 dB 
drop to separate damaged and undamaged areas in a C-scan image to 
assess the extent and size of impact damage [44]. The authors compared 
how sizing results vary with different methods and proposed a new al-
gorithm that improves sizing and shape of the damage. Limitations of 6 
dB method was recognized in Ref. [45], especially when sizing defects 
that are smaller than the width of the ultrasonic beam. As an improve-
ment the authors developed an ML approach that can automatically 
acquire different thresholding values, hence reducing the errors in 
quantification of defects. A semi-automated detection algorithm was 
proposed in Ref. [46]. This approach works on time-of-flight C-scans, 
where user defines areas of interest and threshold values which are in 
turn used for automated analysis. 

Automatic defect localization in CFRPs has been scarcely explored in 
the past; authors of [47] developed a time-dependent thresholding that 
improved detection of micro flaws in ultrasonic C-scans of stainless-steel 
samples. Statistical analysis of backscattering noise to determine defect 
locations was used in Ref. [48], but the scope of their work was limited. 
Several works have used Otsu thresholding to segment ultrasonic images 
into clusters of areas with similar acoustic properties [49–51]. The most 
recent work was presented in Ref. [52], where an ML object detection 
model successfully localized damage on time-of-flight C-scans of aircraft 
wings. The authors demonstrated accuracy of 94.5% for the best 
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performing model when training and testing on experimentally 
collected data. 

Provided the limited past research investigations, and the broad gap 
in the knowledge for automated defect detection, this work for the first 
time presents a comparison between the capability of various defect 
detection methodologies. Firstly, an amplitude thresholding method, 
frequently used within the industry, was trialled as a baseline for com-
parison. Afterwards, an improvement was shown for the thresholding 
with the implementation of statistical amplitude thresholding method, 
inspired by previous work in fusion of ultrasonic data [53]. Lastly, the 
reliability of ML algorithms based on widely used object detection 
models such as YOLO, Faster R–CNN, and RetinaNet was investigated 
with slight modifications to the architectures and the key strengths and 
shortcomings were highlighted. The training datasets for ML models 
were created with semi-analytical software and augmented with 
methods proposed by Ref. [54]. Consequently, dependence on experi-
mental data is diminished as large volumes of real defect responses in 
CFRPs are not readily available. These combined methods allowed for 
development a robust ML process that does not require inclusion of 
experimental data during the training. All the methods were tested on a 
series of CFRP samples with varying characteristics and embedded de-
fects that were scanned with state-of-the-art automated robotic PAUT 
roller probe scanning setup that mimics the setups currently used in 
industry. 

The rest of the paper is organised as follows: Section 2. covers ma-
terials and methods that were used, Section 3. provides results and a 
discussion of all evaluated methods. Lastly, Section 4. provides the 
conclusions and the prospects for future work. 

2. Materials and methods 

2.1. Acquisition of experimental data 

Five CFRP samples manufactured to a BAPS 260 standard were 
supplied by Spirit AeroSystems. These samples were produced using the 
resin infusion method, woven fabric sheets and Cycom 890 polymer. To 
capture acoustic responses similar to those produced by defects, Flat 
Bottom Holes (FBHs) were fabricated in two samples and rectangular- 
shaped Teflon and bagging film inserts were introduced to the other 
two samples. One of the samples was kept as a control without any 
defects. FBHs and Teflon inserts are often used to mimic the acoustic 
responses of the delamination that can occur during manufacturing 
processes [55]. According to the internal Spirit AeroSystems’ current 
guidelines for NDE inspection (internal document, not publicly acces-
sible), critical defect sizes are described according to their type and 
location on the aircraft. For delaminations, the largest allowable flaw 
area that would not be categorised as defect, ranges from 60 to 500 mm2, 
depending on the location on the aircraft. This range represents quite 
large defects that normally can be easily spotted on C-scan images. 
However, to challenge and understand the limits of the defect detection 
algorithms and PAUT inspection setup, FBHs with diameters ranging 
from 3.0 to 9.0 mm, and square Teflon and bagging film inserts with 
dimensions of 4.0–12.0 mm were embedded into CFRP samples. This 
was done to scrutinise the performance of defect detection algorithms 
and test flaws with areas between 7.0 and 144.0 mm2. 

For sample A with dimensions of 254.0 mm × 254.0 mm x 8.6 mm, 
the diameter of drilled FBHs were 3.0, 6.0, and 9.0 mm respectively with 
a ± 0.2 mm tolerance at depths of 1.5, 3.0, 4.5, 6.0, and 7.5 mm with ±
0.3 mm tolerance measured from the front face of the sample. FBHs were 
spaced 35 mm and 30 mm apart on X and Y axis, respectively. In 
addition to these 15 manufactured FBHs, an in-depth analysis of B and C- 
scans confirmed the presence of two additional smaller delaminations. 
Sample B with dimensions of 254.0 mm × 254.0 mm x 8.6 mm was made 
similarly, with the addition of 4.0 and 7.0 mm FBHs, resulting in 25 
defects in total. 1.0 mm diameter FBHs were also trialled in the study 
however, the current measurement setup was unable to capture them. 

Sample C of dimensions 780 mm × 200 mm with 5 different thicknesses 
ranging from 7.5 mm to 16.0 mm in steps of 2.1 mm was also used in the 
study. Each thickness step had 3 embedded Teflon and bagging film 
inserts of sizes 9.0 and 6.0 mm, with two of them being positioned 
immediately subsurface, two in the middle of the sample, and two close 
to the back wall of the sample. Sample D was smaller, with dimensions of 
300 mm × 90 mm with a total of 14 embedded rectangular Teflon tapes 
of sizes 12.0, 6.0, and 4.0 mm. The final 254.0 mm × 254.0 mm x 8.6 
mm sample E did not have any defects and was used to produce pristine 
scans and for synthetic dataset augmentation explained in section 2.4. 
The second sample with drilled FBHs and CAD drawing is presented in 
Fig. 1 and the summary of all used samples is presented in Table 1. 

The experimental system setup was established based on the previ-
ous work presented in Ref. [56] to enable automated deployment of the 
ultrasonic probe and registration of robotically encoded inspection data. 
This was achieved using a Kuka KR90 R3100 extra HA industrial 
manipulator [57] with 6 degrees of freedom. The manipulator’s 
maximum reach of 3095 mm and a maximum payload of 90 kg, com-
bined with a pose repeatability of ± 0.04 mm, ensured that measure-
ments were precise and consistent. 

Path planning was performed within a central LabVIEW Virtual In-
strument (VI) control program on a desktop PC connected through 
Ethernet to the robot and the phased array controller. An Inspection 
Solutions RollerFORM-5L64 [58], encasing a 5 MHz array of 64 ele-
ments with 0.8 mm pitch and 6.4 mm elevation, by Olympus NDT was 
used for the robotic experiments as the probe geometry with its rolling 
capability is tailored for easy integration with robotic manipulators. To 
improve coupling and wave propagation, the tyre is made from 
low-attenuation material with a similar acoustic impedance to water. 
The interior of the tyre was filled and pressurized with glycol to prevent 
the formation of air bubbles. The roller probe was mounted on the KUKA 
KR90 3100 extra HA, which enabled programmatic movement at a 
constant speed of 10 mm/s. During the acquisition, water was used as a 
couplant between the exterior of the tyre and the inspected CFRP 
sample. 

Even though the probe is used on the surface with sprayed water 
coupling between its tyre and the component’s surface, achieving stable 
and constant contact force is crucial to sustained image quality during 
the mechanical scan. Therefore, real-time corrections and control were 
accomplished for the PAUT probe movement normal to the component’s 
surface to maintain a constant coupling force throughout the surface 
raster scan. The real-time vertical position control was enabled through 
the KUKA RobotSensorInterface software package and an adaptive 
force-torque motion control program created within the central Lab-
VIEW VI and based on the real-time measurements of a Schunk GmbH & 
Co. FTN-GAMMA-IP65 SI-130-10 Force Torque (FT) sensor mounted 
between the probe and the robot’s end effector [59]. FT sensor enabled 
3-dimensional measurements of forces and torques, within a range of 
400 N in vertical (z) and 130 N in horizontal (x,y) directions. FT also 
served as a fail-safe measure programmed to stop the movement of the 
industrial manipulator if the contact force exceeds a preset value; which 
was set to 150 N to protect the PAUT roller-form. The industrial 
manipulator, FT sensor, and ultrasound roller probe assembly are 
illustrated in Fig. 2. 

A MicroPulse 6 [60] controller, by Peak NDT Ltd., with 128 trans-
mission and reception (T/R) channels with a maximum pulse voltage of 
200 V was used to drive the Olympus phased array. The array was 
excited in linear electronic scanning mode with a sub-aperture of 4 el-
ements, an excitation voltage of 80 V, a reception gain of 22.5 dBs, and a 
pulse width of 100 ns. A Digital 6 MHz lowpass filter was used to filter 
out unwanted higher frequency signals that might induce resonance of 
near-surface carbon fibre layers [61]. For data acquisition, scanning 
speed of 10 mm/s was used with the pulse repetition rate of 760 Hz. The 
digitiser of MicroPulse 6 was set up to capture data at a sample rate of 
100 MHz in 32-bit precision. The T/R instructions for the phased array 
controller were written in a MicroPulse command file format containing 
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the instructions on the operating sequence and properties of individual 
array elements. To account for the depth-wise loss of amplitude of 
transmitted acoustic wave, time compensated gain was set up in the 
form of a linear ramp function, starting at 0 dB of additional gain at 1.5 
mm depth and ending at 23.75 dB at a depth of 15 mm. The ramp was 
determined experimentally in a way so that the front and back-wall 
acoustic responses match in amplitude. The system architecture is 
shown in Fig. 3, where green and blue blocks represent software and 
hardware components respectively. 

The robotic path was adjusted with graphic user interface designed 
in LabView software. With 4 element sub-aperture, the active aperture 

equalled 48.8 mm, so multiple robotic passes with an offset of 48.8 mm 
were performed to create a rasterized scan of the sample. The base po-
sition of the scan start was kept constant for all the scanned samples. 
Illustrations of rasterized path planning and example of a C-scan image 
are presented in Fig. 4. 

2.2. Generation of simulated data 

For the generation of simulated data, a semi-analytical NDE UT 
software CIVA by EXTENDE S.A. was used [62]. This approach is more 
efficient and less computationally demanding than using the Finite 
Element Analysis (FEA) software, as it uses ray tracing theory. However, 
this assumption does not yield results that represent the properties of 
real-world composite materials accurately as it undermines the noise 
levels caused by the inter-laminar scattering and diffraction. FEA soft-
ware, on the other hand, can simulate and calculate complex in-
teractions between the wave and individual layers of the composite with 
greater accuracy, resulting in a more representative simulation. How-
ever, this often requires painstaking definition of individual layer’s 
properties and dimensions. To gain an understanding of simulation time 
differences between CIVA and FEA, a similar scenario of a probe on a 
defective sample was modelled in CIVA and an FEA wave propagation 
software POGO [63]. Both simulations were executed on a 
high-performance PC with Intel® Xeon(R) Gold 6248R Central Pro-
cessing Unit (CPU), Nvidia RTX 3090Ti Graphics Processing Unit (GPU), 
and 192 GB Random Access Memory (RAM). The CPU-intensive CIVA 
simulation was completed in less than 2 min, whereas POGO FEA sim-
ulations even with GPU parallelisation took more than 2 h of processing. 
In this study, it was decided to create 300 simulations of defect responses 
to include a variety of defect sizes at different depths in the CFRP 
sample. Given the large number of simulations and the simulation time 
discrepancy observed between the CIVA and FEA, it was decided to use a 
semi-analytical modelling approach and attempt to reintroduce the 
compromised signal features in post-processing stage. 

Upon deciding the simulation software, a square composite sample 
with dimensions of 100 mm × 150 mm x 8 mm was created and a range 
of FBHs were introduced in the model. A parametric sweep study was 
used for ease of data collection, where FBHs’ diameters ranged from 3.0 
to 15.0 mm, each placed at depths of 1.5–7.5 mm in steps of 0.5 mm 
measured from the inspection surface. Each simulation in the sweep 
contained only 1 defect in the centre of the sample. The flow chart of the 
simulation process and an example output data for a defect of 6.0 mm at 
the depth of 4.5 mm is displayed in Fig. 5 in form of a C-scan. 

The composite model was defined with a total of 8 carbon fibre layers 
in orientations of 0◦, 45◦, 90◦, − 45◦, 0◦, 45◦, 90◦, and − 45◦ with the 

Fig. 1. Sample B (left) and 3D CAD model of the same sample (right).  

Table 1 
Summary of used samples.  

Sample Dimensions 
[mm] 

Thickness 
[mm] 

Defects 

A 254.0 × 254.0 8.6 15 FBHs and 2 delaminations 
B 254.0 × 254.0 8.6 25 FBHs 
C 780.0 × 200.0 7.5–16.0 12 Teflon and 12 bagging film 

inserts 
D 300.0 × 90.0 8.0–21.0 14 Teflon inserts 
E 254.0 × 254.0 8.6 N/A - Pristine sample  

Fig. 2. Assembly of the industrial manipulator, force-torque sensor, and phased 
array roller probe used in the study. 
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thickness of each layer being 1 mm. This was different from the exper-
imental samples which was made with non-crimp fabric. Fibre layers 
were considered transversely isotropic with a density of 1670 kg/m3 

while polymer matrix was defined as isotropic material with a density of 
1230 kg/m3. Longitudinal and transversal wave velocities were set at 
2488 m/s and 1134 m/s respectively. These values were determined 

experimentally by conducting an ultrasonic scan on sample E with 
known thickness. Next, on ultrasonic data the distance between front 
and back wall reflections was calculated and correlated with the sam-
pling rate of the ultrasonic controller. Lastly, the speed of sound was 
calculated with: 

Fig. 3. System design of sensor-enabled robotic scanning with ultrasonic phased array roller probe.  

Fig. 4. Robotic path planning for raster scan (left) and resulting C-scan image of sample B (right).  

Fig. 5. Simulation process flow chart for the parametric sweep of defect dimension and location (left) and an example of simulated C-scan image of a 6.0 mm FBH at 
4.5 mm depth (right). 
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v=
2 ∗ d

nsamples
/

fs
Eq (1)  

Where v is the speed of sound in m/s, d is the thickness of the material in 
m, and nsamples is the number of samples in the ultrasonic data between 
the front and back wall responses, and fs is the sampling frequency of the 
equipment which was set at 100 MHz. Wave attenuation was set to 
follow the power attenuation law given by Equation (2): 

α(f )=
∑n

p=1
αp ∗ f p Eq (2)  

Where αp is wave attenuation given in dB/mm, f is the frequency in Hz, 
and p is the power of the frequency. For this study αp was set at 0.815 
dB/mm and p was 4. 

To create a scanning path simulation, an immersion linear phased 
array with 64 elements, 0.8 mm pitch and an element gap of 0.1 mm was 
modelled with a stand-off of 20 mm from the sample filled with water 
with no assumed attenuation and a velocity of 1483 m/s. The operating 
frequency of the array was set to 5 MHz with Hanning windowing and a 
100 MHz sampling rate. Scanning was performed in linear mode with a 
sub-aperture of 4 elements to match the experimental setup. The step of 
array movement was set to match the array element pitch of 0.8 mm and 
was moved across the defect in a total of 64 steps. Subsequently, 3D 
volumetric data was stored as a 61 × 64 x 1000 array (Number of sub- 
apertures, steps of array scan, and spatial samples for each A-scan) and 
processed with the signal processing method described in section 2.3. 
Overall, this resulted in total of 300 simulations of FBHs that were used 
during the training of the ML models. 

2.3. Signal processing and imaging 

Simulated data and captured experimental data were stored as three- 
dimensional arrays (in format of [number of sub aperture, number of 
scan position, time data]) comprised of all A-scans collected along the 
electronic and mechanical scanning direction of the array and the ro-
botic arm, respectively (refer to Fig. 4). Data were normalised with 
respect to the maximum amplitude occurring across all captured A- 
scans. Next, a Hilbert transform was applied to each A-scan to extract the 
envelope of the signal. This processing method is often used with UT in 
NDE to improve amplitude response by adding phase shifted signal to 
the original one [64]. Moreover, the resulting A-scans were time gated to 
remove the front and back wall responses. Time gating was done 
manually for each individual sample due to the varying material 
thicknesses. Lastly, maximum amplitudes of gated signals were used to 
construct a C-scan image. Examples of normalised A-scan, Hilbert 
A-scan, and amplitude C-scan are shown in Fig. 6. 

2.4. Augmentation of synthetic data 

When comparing the C-scans presented in Figs. 5 and 6, there is a 
clear difference in structural noise that CIVA model failed to capture. 
This also adversely affects the defect response as the defect indication 
from the CIVA model looks undisturbed and very uniform. ML models 
benefit from training on data that represents reality as accurately as 
possible; therefore, a novel post-processing approach should be devised 
to overcome the lack of modelling noise which is present in the exper-
imental data. To this end, the method of A-scan noise addition proposed 
by Ref. [54] was implemented. This foundation of noise augmentation 
approach is because each A-scan is composed of structural noise, 
resulting from interactions between individual material layers, and 
random noise from sources such as electrical interference. The authors 
have demonstrated that this approach improves the performance of 
machine learning models compared to the use of raw simulated data. For 
noise profile analysis, pristine CFRP sample E was scanned with the 
experimental setup described in section 2.1. 

To eliminate random noise introduced by external sources and 
extract structural noise, all A-scans in the complete scan were averaged. 
Next, all A-scans of a single B-scan were averaged and compared to the 
mean A-scan calculated in the first step. The difference between these 
two A-scans represents the structural noise component. This process was 
repeated for each B-scan in the scan. The resulting data was plotted in a 
histogram and described with normal distribution with a standard de-
viation of 0.003. For the random noise component, the averaged A-scans 
from each B-scan were subtracted from individual A-scan. This process 
was repeated for all B-scans. The resulting data was approximated with 
normal distribution with a standard deviation of 0.013. The process for 
the calculation of structural and random noise is presented in Fig. 7. 

The generation of a new noise profile was performed by applying 
mean structural noise and adding a variance that corresponds to the 
approximately normal distribution. Following this, the random noise 
component is added with the mean and variances calculated in the 
previous steps. 

Fig. 8 illustrates the simulated response, generated noise, and the 
final combined synthetic image. Note that the scale bar is modified to 
emphasize noise in the final image. Without scale bar changes it would 
be difficult to observe the additional noise in the final image due to 
relatively low amplitudes of added noise. 

2.5. Amplitude image thresholding 

The first method of defect detection that was explored in this work 
was amplitude image thresholding. In industry, a 6 dB drop on A-scans is 
often used for defect sizing, but in this work the approach is adapted for 

Fig. 6. Normalised A-scan and Hilbert processed A-scan with gating window (left) and an example of C-scan (right).  
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defect detection and localization. Physically, the 6 dB drop on an A-scan 
signal represents the positions/time samples at which the maximum 
signal response losses half of its amplitude. In the ideal case, assuming A- 
scans were gated properly to exclude the front and back wall echoes, the 
maximum signal response would be created from the strong scatterers 
such as delaminations. Similarly, this loss of amplitude can be examined 
at an amplitude level other than half of the original value (e.g., 9, 12 or 
18 dB). While used frequently, the 6 dB drop often performs poorly when 
it comes to larger defects of irregular shape and defects that are smaller 
than the beam width of the acoustic wave [45]. A smaller body of 
research tackled this issue and analysed alternatives to the 6 dB method 
[44,45,65]. The amplitude thresholding approach is hereby used as a 
basis for comparing the traditional methods to the ML networks tested in 
section 2.7. 

To apply the amplitude thresholding method to the ultrasound 
experimental data, amplitude C-scans were created following the pro-
cedure described in section 2.3. Subsequently, the maximum pixel value 
of the resulting image was found, and the image was thresholded for 6-, 
9-, and 12-dB drops (corresponding to 50%, 65% and 75% losses of 
amplitude). All pixels that had values lower than the calculated 
threshold were set to 0, while those with values larger than the threshold 
were set to 1, creating a binary map of the original image. Next, the 
spaghetti algorithm [66] was used to find connected components. The 
algorithm selects an unmarked pixel and assigns it to a new connected 
component, and afterwards it moves to neighbour pixels and assigns 
them to the same connected component. This process is repeated until 
all pixels are assigned. Furthermore, the algorithm produces coordinates 
and areas of connected components. Lastly, resulting coordinates are 
used to create rectangles that encapsulate the corresponding defective 
area. For display purposes, these rectangles were overlaid over the 
original image. 

2.6. Statistical image thresholding 

In addition to the previous method, a statistics-based approach was 
also evaluated. This process is based on work presented in Ref. [53] 
where no prior knowledge about defects is needed, only that they have 

sufficiently different acoustical responses than defect-free areas. Firstly, 
a representative defect-free section of the amplitude C-scan from sample 
E was extracted and used for statistical analysis. The goal of this method 
is to convert pixel values to probability values, where a higher number 
indicates a higher probability that an individual pixel belongs to a defect 
class. The pixel amplitudes in the extracted section were represented by 
a histogram, with a number of bins calculated with the 
Freedman-Diaconis rule [67]. Next, the SciPy Python package was used 
to test theoretical distributions and determine the best Probability 
Density Function (PDF). PDF is the mathematical representation that 
describes likelihood or probability of observing different values for some 
continuous variable. By extension, a Cumulative Density Function (CDF) 
is also computed. CDF is a related concept to PDF, as it indicates the 
probability of encountering the value that is less or equal to a point 
described by the PDF. Lastly, each pixel value from the original image 
was remapped to a corresponding probability according to the CDF. For 
current set of data, an f-distribution was determined to provide the best 
fit to the histogram. A range of probabilities was used (99, 99.5, 99.9%) 
to determine defective areas in the remapped image. An example of 
generated PDF and CDF for sample E is presented in Fig. 9. 

2.7. Object detection neural networks 

In this work, the defect detection performances of machine learning 
models from You Only Look Once, Faster R–CNN, and RetinaNet family 
of models were compared. Details for tested network are included in 
appendix A. The choice of networks stems from their track record as 
state-of-the-art models on various object detection datasets, and from 
variations in their architecture that influence their inference speed and 
performance. Furthermore, PyTorch library made pretrained weights for 
these models readily available, streamlining the process of transfer 
learning. To this end, all networks were pretrained on COCO datasets. 
Full fine-tuning was performed, and no layers were frozen, except for the 
final classification layer which was adjusted to conform to classes used 
in this work. Furthermore, all tested ML and thresholding methods were 
evaluated on the same images to ensure consistency. Due to the nature of 
Hilbert transformed ultrasonic C-scans, the data was bound between 

Fig. 7. Process for determination of structural (blue) and random (green) noise components (bottom). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 8. Representation of augmentation results. Simulated response (left), generated noise (middle), and combined image (right).  
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0 and 1. 
Training dataset consisted of 300 synthetically generated C-scan 

images of size 64 × 64 pixels. The range of generated defects ranged 
from 3.0 mm to 15.0 mm, at 12 different depths starting at 1.5 mm 
measured from the front surface and extending to 7.0 mm. A subset of 
this training dataset (10%) was used as a validation dataset. The data 
splitting was performed randomly using fixed random seeds to ensure 
repeatability of the training process for all networks. All defects were 
circular in shape, with no deviations in shape or position within the 
generated image. A separate experimentally acquired testing dataset 
consisted of 8 amplitude C-scans, containing a range of defect types and 
sizes. FBHs were present in samples A and B, while other samples con-
tained Teflon inserts and bagging films which were rectangular in shape. 
For more detail about testing dataset please refer to section 2.1. and 
Appendix B. 

All proposed networks were trained using a desktop PC equipped 
with Nvidia RTX 3090 GPU, 128 GB RAM and Intel® Xeon® Gold 6428 
2.50 GHz CPU. Windows 11 with PyTorch library and Python version 
3.10.8 were used for both training and evaluation of the models. An 
overview of the training hyperparameters for all the models used for 
training are presented in Table 2. Hyperparameters were chosen ac-
cording to values proposed by the original authors of the used models. It 
is worth noting that a more extensive hyperparameter optimisation and 
model modification could lead to positive improvements, however, this 
was not in the scope of the current research, and it will be pursued in the 
future work. During training, data augmentation in form of random 
image translation, scaling, vertical, and horizontal flipping was intro-
duced, except for YOLO family of models, which additionally employed 
mosaic augmentation. During model deployment onto the test dataset, 
no augmentations were used. All models were trained for 50 epochs, and 
model weights at the lowest validation score were saved. 

2.7.1. Performance metrics 
Each machine learning experiment consisted of training 10 networks 

using a set of random seeds to ensure the repeatability of experiments. In 
this study precision, recall, and F1 score were used as evaluation met-
rics. Precision is defined in Equation (3), and it illustrates the percentage 
of positive predictions that are correct according to the ground truth. 

P=
TP

TP + FP
Eq (3) 

In the equation above TP annotates true positives and FP annotates 
false positives. The recall is defined as the likelihood of detecting objects 
determined by ground truth. Mathematically this is represented in 
Equation (4): 

R=
TP

TP + FN
Eq (4) 

In the second equation, FN denotes false negatives. F1 score is 
defined as a harmonic mean of precision and recall and is shown in 
Equation 5: 

F1= 2 ∗
P ∗ R
P + R

Eq (5) 

For NDE applications, recall is more important as it is crucial to not 
miss any defects while having some false positives is tolerable at the 
expanse of adding to the analysis time. To evaluate which predictions 
are considered positive, Intersection Over Union (IoU) is used. IoU is 
represented in Equation 6: 

IoU =
Pred ∩ GT
Pred ∪ GT

Eq (5)  

Where Pred denotes a bounding box prediction, and GT denotes Ground 
Truth. Furthermore, for a complete view of the model performance, 
precision-recall curves were constructed and Area Under Curve (AUC) 
were reported. For this work it was decided to use a IoU value of 0.25, as 
for this application it is not as important to capture the full extent of the 
damage, and even the smaller predictions should be considered as 
positive results. 

3. Results and discussion 

In sample A, the application of amplitude thresholding with a 6 dB 
drop failed to identify four 3.0 mm FBHs and two smaller delaminations. 
This failure was attributed to the presence of stronger reflectors in the 
scan, specifically shallower 9.0 mm FBHs, which contained the 
maximum amplitude of the image. Similar observations were made in 
sample B containing FBHs, where a single 4.0 mm FBH and several 3.0 

Fig. 9. Probability density function (left) and resulting cumulative density function (right) of sample E.  

Table 2 
Overview of used training hyperparameters.  

Hyperparameter/ 
Model 

Yolov5 - 
Medium 

Yolov5 - 
Large 

Faster 
R–CNN 

RetinaNet 

Epochs 50 50 50 50 
Learning rate 0.01 0.01 0.005 0.0005 
Momentum 0.937 0.937 0.9 0.9 
Optimizer SGD SGD SGD SGD 
Batch size 32 32 32 32 
Weight decay 0.0005 0.0005 0.0005 0.0005 
Model size in 

megabytes 
42 MB 92 MB 159.7 MB 130.27 MB 

Parameters 21.2 M 47 M 41.8 M 34.0 M 
Backbone CSP- 

Darknet53 
CSP- 
Darknet53 

ResNet50- 
FPN 

ResNet50- 
FPN  
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mm FBHs went undetected. Furthermore, in both samples C and D, the 6 
dB method proved inadequate in identifying shallower and smaller in-
dications, resulting in a poor overall defect detection performance with 
only 38.8% of the defects being correctly identified. Such low perfor-
mance is also attributed to the defined IoU level of 0.25, as some pre-
dictions were made in the correct area but were much smaller than the 
provided ground truth. 

The use of a more aggressive 9 dB drop method led to the identifi-
cation of more defects. However, in the samples with FBHs, the shal-
lowest 3.0 mm defect and two small delaminations were once again 
missed. The 9 dB drop method performed well in detecting all Teflon and 
bagging film inserts, however several false negative indications started 
to appear. This issue was particularly prominent in sample C, which 
exhibited brighter areas in the scan due to imperfections during the 
scanning process and the application of gating parameters for image 
creation. In this case, the gating process for C-scan generation incor-
porated some reverberations from the front wall, which were mis-
interpreted as defective areas. Compared to the 6 dB drop method, the 9 
dB drop method achieved a much higher defect detection rate of 72.5%. 

Lastly, the 12 dB drop method successfully identified most defects, 
albeit with an even higher number of false positive indications. This 
problem was again most pronounced in sample C with Teflon inserts, 
lowering the overall precision to 53.0%. In conclusion, amplitude 
thresholding of amplitude c-scans can yield satisfactory results for 
reflective defects when proper gating techniques are employed. How-
ever, this approach may face challenges when defects are located close 
to the samples’ front surface, as the gating process may include front 
wall reverberations with high amplitudes. Additionally, this method 
proves unreliable in instances where no defects are present in the scan, 
as numerous areas are erroneously marked as defective due to the 
maximum amplitude being taken from structural noise. Lastly, even 
with IoU set at a relatively low threshold of 0.25, certain predictions are 
marked as false positives despite them correctly identifying a small area 
of the defect. With the increase of IoU, results of amplitude thresholding 
would deteriorate even further. When it comes to maximum achieved F1 
score, 9 dB drop produced the best results at 70.3% F1. 

With the statistical method, high probability values must be used to 
filter out false positive detections. In sample A, even though majority of 
defects were detected, the number of false positive indications out-
weighed the correct indications significantly when a 99% probability 
threshold was employed. The same trend was observed in samples C and 
D, where numerous false indications compromised the overall perfor-
mance of the method with precision and F1 scores being only 50.8%. 
Despite this, a total of 95.0% of the defects were located successfully. 

By increasing the probability to 99.5%, the number of false positives 
decreased. This adjustment had a positive impact on both the overall 
precision and F1 score, resulting in increases of 8.8% and 8.1%. With a 
recall rate of 91.2%, the statistical image thresholding method out-
performed the amplitude threshold technique, but with lower precision. 
Furthermore, similar to the amplitude thresholding method, the statis-
tical approach generated false positive indications when features other 
than defects with higher amplitudes were present in the image. The 
statistical method exhibited high sensitivity to gating parameters, which 
greatly influenced the number of false positive indications. Notably, 
when testing this method on pristine samples, no false detections 
occurred as the pixel values were close to the mean of the statistical 
distribution, without obvious outliers. Similar trend continued for the 
99.9% threshold, where precision increased to 64.9%, but the recall 
dropped to 76.2%. Precision of statistical thresholding method could be 
improved by imposing an additional area threshold in the predictions, 
but this risks filtering of smaller defects. Overall, the presented method 
provides an improvement over the amplitude thresholding method, 
especially in the recall values, with room for improvement when it 
comes to its precision. 

The Faster R–CNN implementation trained on raw data detected all 
larger defects, but it consistently struggled to detect the smallest and 

deepest FBH defects. On average, the Faster R–CNN model performed 
well in generalising to rectangular-shaped defects and FBHs that are 4 
mm or larger. 

The major benefit of this implementation is a greatly improved 
precision score of 98.6% when compared to the statistical method and 
amplitude thresholding methods. This improvement is attributed to the 
ability of machine learning models to learn complex features that 
describe defective areas, whereas previous methods relied solely on 
amplitude values. As a result, the robustness of the machine learning 
model matches that of previous methods while providing increased 
resilience to imperfections in the scanning process and signal gating. 
When data augmentation was performed, it resulted in minor increases 
in precision, recall, F1, and AUC score (1.1%, 1.2%, 1.1%, and 1.1% 
increase, respectively). Nevertheless, both the Faster R–CNN trained on 
raw data and the augmented data show improvements over previous 
techniques by providing a more robust detection mechanism, with sig-
nificant enhancements in precision and F1 metrics. 

Similar to the Faster R–CNN, RetinaNet provided an increase in 
precision when compared to statistical thresholding, but still oftentimes 
missed smaller 3.0 and 4.0 mm FBHs. RetinaNet generalised well on the 
rectangular-shaped defects in samples C and D but had several false 
indications that were very close to the positive indications. Such false 
indications were refined with a better choice of non-maximum sup-
pression (NMS) thresholds. Furthermore, there were some instances 
where indications captured multiple defects under the same bounding 
boxes. These were considered false positives as clear separation between 
the defects is important, even when they are close in distance. Upon 
augmentation, precision dropped by 3.6%, but the recall rate increased 
by 4.0%. The main difference was that 3.0 and 4.0 mm defects were 
identified with greater recall rates than with the Faster R–CNN. 

The medium YOLO model identified most of the defects, however it 
struggled with sample D where some rectangular defects were missed. 
This observation implies that these networks could generalise better to 
the rectangular defects if some examples are included in the training 
dataset. Interestingly, similarly sized defects were identified in other 
samples, indicating a potential discrepancy in aspect ratios between the 
data used during training and inference as a possible cause. Sample D 
was created using a single ultrasonic pass compared to 3–5 passes in 
other samples, which resulted in a more extreme aspect ratio of 
visualised data. Consequently, this produced a significantly smaller 
image, with the width of the scan considerably narrower than its height. 
The YOLO model is more susceptible to changes in aspect ratios due to 
its use of defined anchor boxes. Aligning the aspect ratios of training 
data with that of test data could mitigate this effect, potentially 
improving the model’s performance in scenarios with varying aspect 
ratios. Furthermore, it was possible to detect the missed defects by 
lowering the confidence threshold during inference, but it resulted in a 
higher overall number of false positives. An overall AUC of 87.0% and a 
maximum F1 score of 91.5% was achieved. Augmentation of the data 
resulted in a minor increase in AUC and F1 scores, of 0.6% and 0.5% 
respectively. Recall remained the same, therefore an increase in preci-
sion positively impacted the F1 score. 

The large YOLO models achieved similar results, all defects from 
samples A, B and C were identified. This was an interesting observation 
as a large YOLO network generalised to FBHs of all sizes even without 
augmentation. All missed detection came from sample D where net-
works struggled to detect smaller rectangular Teflon inserts. This type of 
defect was not present in the training data, which indicates that this 
network could benefit from the inclusion of some examples of rectan-
gular defects. The addition of augmentation yielded improvements of 
1.4% in AUC, 2.4% in precision, and same recall at 86.9%. It is worth 
noting that YOLO family of models produce more bounding boxes of 
lower confidences, and the results are heavily influenced by NMS and 
confidence thresholds. 

Overall, all ML models provided an improvement over the statistical 
thresholding and amplitude thresholding methods, even when trained 
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Fig. 10. Extracted sections of several testing images. Names of samples and used detection method are listed above each example, with ground truth bounding box 
marked in red and test results in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 10. (continued). 
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on raw simulation data. The augmentation of training data positively 
impacted recall and F1 scores of all models, with the minor exception of 
large YOLO model. The augmentation led to most prominent increases in 
FasterRCNN, which overall produced best results for this dataset. 
Furthermore, with the optimisation of confidence, IoU, and NMS 
thresholds, this score could be refined further. Another improvement 
would be the implementation of an ensemble of different machine 
learning models, where several models would process the same input 
and provide a combined output. The good results achieved in terms of 
recall with amplitude and statistical thresholding were always followed 
by a low score in precision and vice versa, making it hard to strike a 
balance between all performance metrics. On the other hand, machine 
learning provided more balanced and robust results throughout 
different tests. Visual representation of test results is illustrated in 
Fig. 10, with ground truth being presented with red bounding boxes and 
test results with green bounding boxes. Precision recall curves and 
evaluation metrics of all tested methods are presented in Fig. 11 and 
Table 3. Precision and recall scores in Table 3 are reported based on the 
maximum achieved F1 score. 

Training times were modest due to the small dataset size, and the full 
computational times are presented in Table 4. Medium YOLO model was 
the fastest to train and the fastest ML model in the inference. Amplitude 
thresholding was the overall fastest method, mainly due to its simplicity. 
Statistical thresholding took 1250.8 ms per image, but this time is 
heavily influenced by the number of tested statistical distributions. The 
fitting process is repeated for each new image, but for scans with similar 
backscattering noise it is possible to perform this process only once and 
significantly speed up the inference times. In reported results, five 
candidate distributions were tested. 

4. Conclusion 

In this paper, three different methods of defect detection and local-
ization in the amplitude C-scans of CFRP samples were demonstrated: 
amplitude image thresholding, statistical image thresholding, and the 
use of object detection models. By mimicking the industrial NDE setup, a 
realistic data acquisition process with automated ultrasonic scanning on 
five different CFRP samples enabled the generation of representative 
datasets. The training of the ML models was driven by synthetic dataset 
generated by CIVA software, and further augmented by A-scan noise 
addition method, removing the need for use of experimental data in the 
training loop. 

Through the investigations, it was concluded that:  

• The amplitude thresholding method is suitable for the detection and 
localization of large reflective defects. However, this method was 
unable to detect smaller defects and was heavily reliant on the 
absence of any other reflective features that trigger false indications. 
Furthermore, this method performed poorly on scans where no de-
fects were present.  

• The improvement to this method is the statistical image thresholding 
method that outperforms amplitude thresholding in the sense that it 

Fig. 11. Precision and recall curves for IoU = 0.25.  

Table 3 
Evaluation metrics for experimental dataset IoU = 0.25  

Method Training data/ 
Type 

AUC Precision Recall F1 

Faster RCNN Raw 0.961 0.986 0.949 0.967  
Augmented 0.972 0.998 0.960 0.978 

RetinaNet Raw 0.974 0.984 0.909 0.945  
Augmented 0.965 0.948 0.949 0.949 

YOLO medium Raw 0.870 0.979 0.859 0.915  
Augmented 0.876 0.992 0.859 0.920 

YOLO large Raw 0.878 0.985 0.869 0.923  
Augmented 0.892 0.982 0.869 0.922 

Amplitude 
thresholding – 6 dB 

N/A N/A 0.456 0.388 0.419 

Amplitude 
thresholding – 9 dB 

N/A N/A 0.682 0.725 0.703 

Amplitude 
thresholding – 12 dB 

N/A N/A 0.530 0.887 0.664 

Statistical 
thresholding – 99% 

N/A N/A 0.347 0.950 0.508 

Statistical 
thresholding – 
99.5% 

N/A N/A 0.435 0.912 0.589 

Statistical 
thresholding – 
99.9% 

N/A N/A 0.649 0.762 0.701  

Table 4 
Computational times.  

Method Training time 
[mins] 

Testing/image [ms] 

Faster RCNN 6.7 47.2 
RetinaNet 11.4 79.8 
YOLO Medium 2.4 44.9 
YOLO Large 3.2 50.9 
Amplitude 

Thresholding 
N/A 0.3 

Statistical 
Thresholding 

N/A 1250.8 (1250.0 fitting + 0.81 
thresholding)  
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can process pristine samples without providing false indications. 
Unfortunately, the performance of this method was also reliant on 
the absence of bright artefacts in the images.  

• Lastly, the four different ML algorithms tested for defect detection 
provided improvement over the statistical method, by accurately 
identifying defective areas. The performance of trained models was 
further improved by the application of a novel augmentation 
method. Validation of the models during the training process on a 
subset of the synthetic dataset was valuable as it diminished the need 
for the acquisition of a separate validation dataset. 

For future work, the aim is to expand training and testing datasets to 
include different types of defects such as porosities and inclusions. While 
trained models demonstrate good results for detection and localization, 
the distinction between different types of defects was not achieved due 
to the limitations associated with available datasets. Furthermore, the 
model performance could be improved with more detailed hyper-
parameter optimisation and/or inclusion of ML ensembles in the pro-
cess. One limitation of this work lies in the fact that performed scans 
were controlled and captured all defects in their entirety, and therefore 
no edge cases where only a portion of the defect was acquired. Explo-
ration into the effect of varying the relative positioning of the array and 
defects is left to further work. 
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Appendix A 

Faster R–CNN 

Faster R–CNN is a ML architecture released in 2015 as an improvement over the earlier R-CNNs models for object detection in images [37], 
introduced in Ref. [38]. The authors recognized that the region proposal step in R–CNN was the main bottleneck in terms of computational time and to 
address this they have introduced Region Proposal Networks (RPNs) to generate region proposals more efficiently. Faster R–CNN comprises of two 
components, RPNs and Fast R–CNN detector that performs object classification on the areas proposed by RPN. These two structures share con-
volutional layers which enable end-to-end training. 

The RPN operates on the feature maps produced by earlier convolutional layers. It uses a sliding window approach, where a 3 × 3 kernel is moved 
over the feature map. At each position, the RPN predicts a set of region proposals, which are potential bounding boxes that might contain objects. 
These proposals are generated based on anchor boxes that have different scales and aspect ratios. Anchor boxes are predefined bounding box shapes 
that serve as a reference for generating region proposals. Following the RPN, the Fast R–CNN detector takes proposed regions and performs feature 
extraction using pooling layers that convert variable-sized regions proposals into fixed-size outputs. These outputs are then propagated through fully 
connected layers that perform classification. For training, the authors used a multi-task loss function which combines classification and bounding box 
regression losses. ResNet50-FPN, a variation on ResNet architecture introduced in Ref. [68], was used for feature extraction and creation of feature 
maps. Recommended hyperparameters used by the original authors were deployed, with changes to the batch size and training epochs. For robustness 
and faster training convergence, initial pre-trained weights from a Faster R–CNN model that was trained on the Microsoft (MS) COCO dataset [69] 
were adopted. 

You only look once 

You Only Look Once (YOLO) object detection models were initially developed by Redmon et al. [70], with multiple iterations being released in 
recent years from various research teams [41–43,71]. Compared to the region proposal and sliding windows methods used in R–CNN and Fast R–CNN, 
YOLO introduced techniques that improved both accuracy and inference speed. These include single-stage detection where both bounding box co-
ordinates and class is determined with a single pass through the network and mosaic augmentation which enhances the training datasets. In this study, 
the implementation by the company Ultralytics [71] was utilised. This implementation includes architectures of varying sizes and complexities that 
were pre-trained on the MS COCO dataset [69]. All architecture variants share the common underlying structure consisting of a Cross Stage Partial 
(CSP) network in the backbone, a Path Aggregated Network (PAN) in the neck, and a YOLO v3 detection head. 

The CSP network [72] was implemented in the backbone due to its efficiency and the ability to deploy trained models to setups with weaker CPUs 
and GPUs. CSP is based on DenseNet and introduces the splitting of the gradient flow, which greatly increases speed and performance (an unedited 
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feature map is combined with a feature map that propagated through the dense layer). The focal point of CSP gradient splitting is convolutional layer 
with 1 × 1 kernel size, which is computationally efficient and used to increase the complexity of the architecture. The Spatial Pyramid Pooling (SPP) 
[73] layer block is located at the end of the backbone. SPP allows YOLO networks to accept input images of any resolution by max pooling of the same 
input multiple times with different kernel sizes and strides before concatenating them. With this method, the output is always of the same dimension, 
making it compatible for use in the subsequent layers. The neck is the central part of the YOLO structure, which comprises a series of network layers 
that collect and integrate various characteristics obtained from the backbone prior to passing them to the final detection layers. Neck of the YOLO 
model is the PAN, developed in 2018 [74] and first introduced in YOLOv4 [43]. In short, it is an improvement over the previous Feature Pyramid 
Network (FPN), which is based on feature maps of varying sizes. The improvement came from additional lateral connections between low- and 
high-level feature maps in the feature pyramid. Lastly, the head portion of the network produces predictions in the form of a vector with the class of the 
object and coordinates for the proposed bounding box. 

RetinaNet 

In 2017, Lin et al. [75] developed a single-stage object detection model called RetinaNet that achieved better scores than its two-stage counter-
parts. The novelty in this work is a new loss function that addresses the issues of class imbalances that can happen if cross entropy is used as a loss 
function during training. The new loss function is called “Focal loss” and it diminishes the losses by an order of one magnitude for high-probability 
examples like pristine CFRPs, while still retaining high losses for low-probability examples such as defects. 

Like YOLO, RetinaNet is a one-stage object detector that uses an FPN network for multi-scale feature representation. The classification and 
bounding box regression are handled by two smaller task-specific neural networks. The new loss function was combined with ResNet-101 and Feature 
Pyramid Network (FPN) to create RetinaNet, a model that achieved state-of-the-art on the COCO dataset. However, with an inference time of 200 ms, 
the final performance was not suitable for real-time tasks. In this implementation, ResNet50-FPN was used as the backbone. Hyperparameters used by 
the original authors were followed, with changes to training epochs, confidence, and NMS thresholds. Similar to Faster R–CNN, pre-trained weights 
and biases were used. 

Appendix B

Fig. 12. Defective samples used in this study: Sample A (top left), Sample B (top right), Sample C (middle), and sample D (bottom)    
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Fig. 13. CAD file for Sample C   
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Fig. 14. CAD file for sample A  
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