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Spontaneous symmetry breaking of a pair of vector temporal cavity solitons has been established as a
paradigm tomodulate optical frequency combs, and findsmany applications in metrology, frequency
standards, communications, and photonic devices. While this phenomenon has successfully been
observed in Kerr ring resonators, the counterpart exploiting linear Fabry-Pérot cavities is still
unexplored. Here, we consider field polarization properties and describe a vector comb generation
through the spontaneous symmetry breaking of temporal cavity solitons within coherently driven,
passive, Fabry-Pérot cavities with Kerr nonlinearity. Global coupling effects due to the interactions of
counter-propagating light restrict the maximum number of soliton pairs within the cavity - even down
to a single soliton pair - and force long range polarization conformity in trains of vector solitons.

Commonly described as "Rulers for Light", optical frequency combs1–4 and
their generation are topics with wide-reaching research interest. This
interest is especially owed to their diverse application in metrology, optical
communications5, and novel photonic devices3. They are used, for example,
in high precision spectroscopy, optical atomic clocks, and navigation sys-
tems. One particular method for producing an optical frequency comb
utilizes dissipative temporal cavity solitons (TCS) in optical micro-
resonators.

We concern ourselves here not only with the generation of TCS but
also with combining them with the phenomenon known as spontaneous
symmetry breaking (SSB). Broadly defined, SSB describes the situation
when two or more properties of a system suddenly change from displaying
an equal property or state (symmetric) to having these states becoming
unequal (asymmetric) following an infinitely small change to some control
parameter.

The SSB of light in Kerr resonators has seen a flurry of study and
interest in the past half-decade, being predicted and observed for systems
with counter-propagating light components6–15, for orthogonally polarized
light components16–23, and also very recently for a single system combining
both counter-propagating light and two orthogonal polarization compo-
nents together24, and systems containing multiple resonators25,26.

Although recent interest about TCS in Kerr resonators mainly focused
on ring geometries, frequency combs based onTCS have also been found in
Fabry-Pérot resonators (linear cavities)27–29. Figure 1 shows a basic sche-
matic of this type of resonator, and this is the configuration of interest in this
paper. One can see that it is comprised primarily of two highly reflective

mirrors, which bounce light from the linearly polarized input light back and
forth between them. Here we consider that the space between themirrors is
filled with a Kerr, or χ3, nonlinear medium.

Vector solitons, opposed to scalar solitons, refer to solitons involving
two or more field components30. There has been great success in observing
the SSB of a pair of vector TCS in Kerr ring resonators18,19, where the TCS
have orthogonal polarizations, but similar phenomena in linear Fabry-Pérot
cavities, Fig. 1, has remained unreported. This is despite recent separate
experimental observations in Fabry-Pérot cavities of both the SSB of flat
solutions16 and of scalar TCS28. Here we outline the SSB of a pair of vector
TCS in Fabry-Pérot cavities.

Results and discussions
To model the intra-cavity, and slower, temporal dynamics of a field pro-
pagating in a Fabry-Pérot resonator with consideration for its polarization,
Fig. 1, we derive, see the Methods section, a system of two coupled, gen-
eralized, Lugiato-Lefever Equations (LLEs)31 with fast-time averaged terms.
Here we rewrite the final integro-partial differential equations from the
Methods section for the complex amplitudes E± of the circularly polarized
components

∂E ±

∂t
¼ Ein � E ± � iθE ± � iη

∂2E ±

∂τ2
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where Ein is the input pump in the circular basis32, θ the cavity detuning, η
controls the type of dispersion (with its value ± 1 referring to normal or
anomalous dispersion, respectively), t and τ are both temporal variables but
on relative slow and fast time-scales, respectively33, and A and B control the
strengths of self- and cross-phase modulation effects11,24. The terms with
angled brackets, i.e., 〈f〉, represent the temporal averages of the encapsulated
functions over a single resonator round-trip, and are defined by the following:

hf i ¼ 1
tR

Z tR=2

�tR=2
f τð Þ dτ: ð2Þ

Comparing it with the equations of Cole et al.27,29, we see that the effects
of the polarization components cause not only additional cross-phase
modulation terms (and their averages) but also a further additional term, the
final termof Eq. (1), which is causedby an energy exchange between the two
circular components of each beam24,34. We note that, if so desired, one may
transition Eq. (1) to the linear polarization basis through its manipulation
around the substitution of E ± ¼ 1ffiffi

2
p Ex ± iEy

� �
. Note also that the main

symmetry of Eq. (1) is the invariance under the exchange of the plus and
minus indexes. We recognize the potential for further generalization and
study of this system when taking into account higher order dispersion
effects35–39, which could result in additional localized structures to those
discussed here.

Homogeneous stationary states
The homogeneous (meaning here unchanging over the τ domain) and
stationary (meaning here unchanging with t) solutions (HSS) to Eq. (1) are
obtained by setting ∂E±/∂t and ∂

2E±/∂τ
2 both to zero.Wemay further make

use of the fact that when a function f(τ) is homogeneous over τ its average
over the τ domain is equal to its value at a single point—that is to say Eq. (2)
becomes trivially f. Hence, under homogeneous and stationary conditions,
and following suitable algebraic manipulation, Eq. (1) becomes

jE ± j2 ¼
jEinj2

1þ 3AjE ± j2 þ 3BjE∓j2 � θ
� �2 : ð3Þ

Equation (3) is identical in its mathematical form, although not physical
meaning, to the homogeneous stationary states of two linearly polarized

fields counter-propagating a Kerr ring resonator6,7,10,40, or of two
orthogonally polarized fields co-propagating a Kerr ring resonator11,17,32.
Due to its mathematical analogies to other such systems, Eq. (3) has been
studied extensively, and we shall not repeat that analysis here.

We stress that SSB emerges as a property of Eq. (3). In this context,
SSB describes the phenomena where the two circulating fields E± go
from having symmetric intensities, ∣E+∣2 = ∣E−∣2, to having asymmetric
intensities, ∣E+∣2 ≠ ∣E−∣2, upon an infinitely small change to input conditions
(input conditions such as the input intensity ∣Ein∣2 or the cavity detuning,
θ, for example). With Eq. (3) and its SSB largely explored elsewhere,
we display, for the later benefit of the reader, in Fig. 2(a) & (b), examples of
SSB in input intensity and cavity detuning scans for Eq. (3), respectively,
for self- and cross-phase modulation values A = 2/3 and B = 4/3 – the
values for silica glass fibers. These values give a very general B/A ratio11.

In the next section, we proceed to describe the stability of the homo-
geneous and stationary states and hence their susceptibility to oscillations
following fast- and/or slow-time perturbations.

Linear stability analysis of homogeneous stationary states
Toassess the system’s susceptibility to temporal perturbations, bothon t and
τ, we performed a linear stability analysis27 on the modal expansion of
Eq. (1), see methods section. General mathematical methods to find
instability thresholds in single polarization Fabry-Pérot resonators have
recently been established41. Here, we linearized themodal equations around
a homogeneous stationary solution E±HS with Un = E±HSδn,0+ δUn, which,
without loss of generality, had its phases adjusted such that it is real.
The index n is themodal number of the fast-time solution.We find that the
four linear stability eigenvalues have the form

λ ¼ �1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�αþβþ � α�β� � 1

6 1� δn;0
� �

C ± S
q

ffiffiffi
2

p ð4Þ

with

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαþβþ � α�β�Þ2 þ αþα�C þ 1� δn;0

� �C
3

αþβþ þ 1
3
βþβ� þ α�β�

� �s
;

ð5Þ
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Fig. 1 | Schematic of aKerr Fabry-Pérot cavity.The cavity is bounded by twohighly
reflective mirrors, with a Kerr nonlinear medium filling the space between them.
Linearly polarized laser input is introduced via mirror 1, allowing the light to enter

the cavity. Once inside, the light undergoes many reflections between the mirrors
before eventually exiting. The intracavity field is analyzed by decomposing it into its
left- and right-circularly polarized components, E±.
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where

α± ¼ � θ þ ηn þ 3AE2
±HS þ B 2þ δn;0

� �
E2
∓HS;

β± ¼ � θ þ ηn þ A 5þ 4δn;0
� �

E2
±HS þ B 2þ δn;0

� �
E2
∓HS;

C ¼ 36B2 1þ 3δn;0
� �

E2
þHSE

2
�HS;

ð6Þ

where

ηn ¼ η n
2π
tR

� �2

¼ ηk2: ð7Þ

In Fig. 3, we display the HSS, Eq. (3), and their corresponding linear
stability eigenvalues, Eq. (4) from the Methods section, over a cavity
detuning scan of Eq. (3) for anomalous dispersion, k = 1.9, ∣Ein∣2 = 4, and
A = 2/3 and B = 4/3.

Regarding solution stability, if the eigenvalues of Eq. (4) all have real
parts less than zero, i.e., Re(λ) < 0, then the solution in question is stable,
whereas if at least one eigenvalue has a real part greater than zero, then the
solution is unstable. If the stability eigenvalues with real parts greater than
zero and imaginary part different from zero occur when n = 0, then the
solution will begin to oscillate over slow-time, if they occur when n ≠ 0 the
solution will oscillate over fast-time (Turing patterns).

We discussfirst the eigenvalues associatedwith the symmetric solution
line of this plot. They confirm the instability of the middle branch of the
tilted symmetric Lorentzian curve, and also that the upper branch of the
same curve is unstable between the SSBbifurcations points as expected from
previous work. Note, however, that the instability of the symmetric line
extends evenbeyond the higherdetuning value corresponding to the reverse
SSB bifurcation owed to the unstable n ≠ 0 eigenvalues, resulting in sym-
metric Turing patterns. Similarly, the instability of the asymmetric solution
line also extends beyond slow-time instabilities, again owed to the unstable
n ≠ 0 eigenvalues resulting in asymmetric Turing patterns, since they
remain unstable for detuning values larger than those where the n = 0
eigenvalues have stabilized.

Inhomogeneous solutions: patterns, temporal cavity solitons
Due to Eq. (1)’s susceptibility to instabilities on the fast-time, we
further explored the inhomogeneous solutions of the system. In this
section, we always use A = 2/3 and B = 4/3, and here analyze situations
only for anomalous dispersion, η =−1, –situations related to
normal dispersion, η =+1, will be discussed elsewhere. Figure 4 shows in

panels (a)–(d) the variation in the field intensity profiles across the cavity as
the cavity detuning is scanned, for a set input pump of ∣Ein∣2 = 4. We
observe eight distinct regions of characteristic behaviors labeled in the
figure as regions (1) – (8). The detuning scans begin with the field intensity
profiles following the symmetric HSS line (region 1), before forming
symmetric Turing patterns across τ (region 2), in agreement with the
linear stability analysis. A characteristic example of these symmetric
patterns is presented in Fig. 4e, its peaks grow in intensity as the cavity
detuning is further increased. While these pattern states may be initially
symmetric, this property later breaks spontaneously, resulting in a region of
asymmetric patterns (region 3), with characteristics similar to that of Fig. 4f.
Progressing further still across the cavity detuning scan, the pattern’s
intensity profiles soon become unstable to chaotic oscillations (region 4),
see the example in Fig. 4g, beforefinally reaching a detuning valuewhere the
pattern states naturally form vector soliton-pair structures (region 5), see
Fig. 4h. One will note that initially the solitons in each of the field intensity
profiles ∣E±∣2 are both asymmetric and breathing (region 5). In Fig. 4i,
however, these asymmetric soliton pairs stop breathing and stabilize (region
6). The asymmetric soliton pairs eventually converge to symmetric profiles
at the point starting region 7, as the example shows in Fig. 4j. Finally, in
region 8, the soliton pairs die, and the field intensity profiles return to the
HSS line.
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Fig. 4 | Vector soliton pair generation. Cavity detuning is scanned for an input
intensity of ∣Ein∣2 = 4. a shows the maximum value achieved across the cavity by the
intensity profiles of the two fields, ∣E±∣2 in red and blue, respectively. b and c
respectively show the full field intensity profiles, ∣E±∣2, over the cavity, while

(d) shows the difference between them. We note eight distinct regions in (a–d),
which we label (1)–(8). These regions are discussed in the main text. e–j We show
characteristic intensity profiles reflecting those existing in regions (2)–(7), respec-
tively, with regions (1) and (8) being simply homogeneous stationary profiles.
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Long-range talking of soliton pairs and their polarization
conformity
In this section, we show that the angle-bracketed terms of Eq. (1) have
fascinating repercussions on the system’s evolution. Although one of their
effects has already been felt, the requirement to analyze separately the n = 0
stability eigenvalues, and their wider effects have remained somewhat
hidden until this section.We have stated that, mathematically, these angled
terms amount to an average of the field intensity profiles across the cavity,
but owed to this they cause a global coupling across the cavity40. Related to
the TCS pairs, these global coupling terms effectively mean that all the
solitonpairs feel the impact of, and in turn influence, anyothers in the cavity.

One effect of this global communication, which was noted by Cole
et al.27 for the single polarization case, is that the maximum number of
solitons existing within the cavity at any given time can be controllably
limited byone’s choiceof systemparameters. This ability could be extremely
useful, for example, for applications that require robust temporal delays
between subsequent soliton generations, such as for frequency combs. We
show that this control on the maximum number of solitons present in the
cavity is maintained for our vector soliton pairs.

Normally solitons in LLE systems, of the nature similar to those
discussed in this manuscript, “sit” upon the bottom branch of the
symmetric HSS, and hence naturally lose viability when the HSS
bottom branch ends. However, as displayed in Fig. 5, and owed to the 〈f〉
terms, these soliton bases are in fact elevated above the HSS in our system.
One can also see that these 〈f〉 terms further have the effect of raising the
cavity detuning value at which the solitons gain viability. This is because the
〈f〉 terms cause an effective detuning in the system27,40, i.e., they actively alter
the system’s resonancemismatchandhence the valueof the light intensity in
the soliton background. Further still, one notes that the more solitons
present in the cavity, the more by which this detuning limit is raised. This
increase in the cavity detuning value required to support additional solitons
effectively limits the maximum soliton pair number supported at any one
time, based upon the current cavity detuning value. In relation to Fig. 5, for
example, at a cavity detuning of θ = 5.45, the system can only support a
maximumof a single pair of vector solitons, with the systembeing unable to
support even a single additional pair until well after θ = 5.5. This effect
amounts to a systemwhich can guarantee the generation of amaximumof a
single vector soliton pair if so desired. Looking at the intensity profile of a
single asymmetric soliton pair in the frequency domain, Fig. 6, we see the

types of symmetry-broken frequency combs that can be produced utilizing
this phenomenon.

We nowmove to the final effect of the angle-bracketed terms that will
be discussed in this manuscript. The end result of this effect was already
apparent in panels (h) and (i) of Fig. 4. Onewill note that the soliton pairs in
these panels, both those breathing, and those that are stable, all share the
same dominant polarization although generated autonomously. This result
is particularly intriguing when compared with that for soliton pairs pro-
duced in a Kerr ring18,19, as opposed to a FP cavity, where there each
asymmetric soliton pair’s dominant polarization was independent of that
held by any other pair. This meant that provided those soliton pairs were
sufficiently spaced apart from each other, they could behave and be
addressed independently. The fact that we always observe all simultaneous
asymmetric soliton pairs in our cavities sharing the same dominant polar-
ization is due to the global coupling terms that facilitate long-range inter-
actions between all soliton pairs existingwithin the cavity, terms not present
in the Kerr ring system, in particular the final term of Eq. (1) caused by the
energy exchange between the two circular components of each beam.

We find that the conformity of the soliton pairs to a globally dominant
polarization is a strong and robust effect.We demonstrate this in Fig. 7. The
main panel of the figure shows the slow-time evolution of a tracked point in
the fast-time field intensity profiles, a point chosen to line up with the
intensity maxima of one of the cavity soliton pairs. In panel (a) one sees the
initial stable cavity condition made up of a train of four asymmetric soliton
pairs, all sharing the same dominant polarization. This configuration is
stable in the slow time.At time t = 25weattempt to forcenon-conformityon
the system. We do this by splicing the field intensity profiles and swapping
the field roles of one of the soliton pairs such that in the swapped pair
(third) the opposing polarization is now dominant. Allowing the system to
continue to evolve after this attempt to force non-conformity showshow the
system evolves back to a state where soliton pair polarization conformity
appears once again. This behavior can have advantages in, for example,
protecting communicated binarydata encoded in the polarization of a chain
of soliton pairs in noisy systems. The ability of the system to return to its
original polarization dominance at conformity is limited in the way one
would likely expect - if a minority of soliton pairs have the polarizations
reversed, then the system conforms to the original dominant polarization.
If, however, the majority of soliton pairs have their polarization reversed,
then the system evolves to the new dominant-on-average polarization until
that polarization is conformed to across the system. If exactly half of the
soliton pairs have their polarization inverted, then the eventual conformed
polarization is determined by random perturbations.

Conclusions
In conclusion, we have demonstrated the spontaneous symmetry breaking
of a pair of vector temporal cavity solitons in Fabry-Pérot cavities with
possible experimental realizations in fiber loop set-ups similar to those of
ref. 18 but in a Fabry-Pérot configuration. Our investigation not only
revealed the stability and dynamical behavior of these vector solitons in
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between the solitons existing in ∣E±∣2 respectively there are two lines for each color
tracking the soliton-base. b we show a cavity containing three symmetry broken
vector solitons in the field profiles of ∣E±∣2 respectively (blue and red curves) and the
position where we track the soliton-base for our scans in (a). The results of (a) come
from numerical simulations with initial conditions containing the n-soliton pairs
and tracks the detuning fromhigh to low in order tofind the different detuning limits
of the n-soliton pair viabilities.

https://doi.org/10.1038/s42005-024-01566-0 Article

Communications Physics |            (2024) 7:82 5



various parameter regimes but also uncovered useful phenomena arising
from the global coupling terms in our derived model. We showed that the
maximum number of soliton pairs in the cavity can be self-limited with
important implications for frequency comb applications. Furthermore, we
discovered that asymmetric soliton pairs in our system exhibit a conformity
in their dominant polarization states, highlighting the effects on soliton pair
behavior caused by the global coupling terms. These findings significantly
expand our understanding of temporal cavity solitons and spontaneous
symmetry breaking in Kerr cavities and may have extensions into studies
around frequency combs from high order dispersion, thus opening up new
avenues for further exploration and potential applications in optical
metrology, pulse coding, optical communications and beyond.

Methods
The nonlinear interaction terms in our model are based on those of Pitois
et al.34where counter-propagationof polarization components is considered
in an isotropic fiber. In this work, we add dispersion and consider the
reflective boundary conditions, the inputpump, and the cavitydetuning and
other losses, all of which are inherent to a Fabry-Pérot resonator27,32. Then
we generalize the equations for various self- (A) and cross-phase (B)
modulation strengths,11,24, resulting in the following Eqs. (8)–(11)).

Right circular polarization
Forward propagating, u(t, τ):

∂u
∂t

þ vg
∂u
∂τ

¼ Ein � u� iθu� iη
∂2u
∂τ2

þ i Ajuj2uþ Bjvj2uþ 2Aj�uj2uþ Bj�vj2uþ B�u�v�v
� �

;

ð8Þ

Backward propagating, �uðt; τÞ:

∂�u
∂t

� vg
∂�u
∂τ

¼ Ein � �u� iθ�u� iη
∂2�u
∂τ2

þ i Aj�uj2�uþ Bj�vj2�uþ 2Ajuj2�uþ Bjvj2�uþ Buv��v
� �

;

ð9Þ

Left circular polarization
Forward propagating, v(t, τ):

∂v
∂t

þ vg
∂v
∂τ

¼ Ein � v � iθv � iη
∂2v
∂τ2

þ i Ajvj2v þ Bjuj2v þ 2Aj�vj2v þ Bj�uj2v þ B�v�u�u
� �

;

ð10Þ
Backward propagating, �vðt; τÞ:

∂�v
∂t

� vg
∂�v
∂τ

¼ Ein � �v � iθ�v � iη
∂2�v
∂τ2

þ i Aj�vj2�v þ Bj�uj2�v þ 2Ajvj2�v þ Bjuj2�v þ Bvu��u
� �

;

ð11Þ
whereu and v are the forward propagatingfield componentswith right- and
left-circular polarizations, respectively, with �u and �v being the backwards
propagating variants (representing the reflections of fields u and v
respectively), Ein accounts for the input pump, θ is the cavity detuning
(the difference between the frequency of the input pump laser and the
closest cavity resonance frequency), η controls the type of dispersion (with
its value ± 1 referring to normal or anomalous dispersion, respectively), and
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Fig. 7 | Long-range “talking” and conforming solitons. For ∣Ein∣2 = 4, θ = 9,
(a) of the figure tracks the paired soliton peaks in, ∣E±∣2, in red and blue, respectively,
at a set position within the cavity as they evolve over time. The stable initial
cavity condition is formed by a train of four pairs of asymmetric solitons and is
displayed in the smaller panel (b). At a slow-time value of t = 25, the third soliton pair

is forced to switch its polarization profiles, small panel (c). The system then
evolves until it becomes stable once again, small panel (d). One should note that
all four soliton pairs in (d) have conformed again to share the same dominant
polarization.
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t and τ are both temporal variables but on relative slow and fast time-scales,
respectively33. We also set the following boundary conditions

uðt; 0Þ ¼ �uðt; 0Þ; uðt; tR=2Þ ¼ �uðt; tR=2Þ;
vðt; 0Þ ¼ �vðt; 0Þ; vðt; tR=2Þ ¼ �vðt; tR=2Þ:

ð12Þ

where tR is the round trip time of the resonator.
Drawing inspiration from Cole et al.27, we seek to combine Eq. (8) and

(9) and Eq. (10) and (11), respectively, together, such that Eqs. ((8)–(11))
reduce to a system with only two equations. To achieve this, we introduce
the following modal expansions in terms of the modal amplitudes
~un;~vn; ~Ein:

u ¼
X1

n¼�1
~unðtÞein

2π
tR
τ
; �u ¼

X1
n¼�1

~unðtÞe�in2πtRτ ;

v ¼
X1

n¼�1
~vnðtÞein

2π
tR
τ ;�v ¼

X1
n¼�1

~vnðtÞe�in2πtRτ ;

Ein ¼
X1

n¼�1
~Einδn;0e

in2πtR
τ
;

ð13Þ

where δn,0 is the Kronecker delta function, and the modal amplitudes are
given by

~unðtÞ ¼
1
tR

Z tR=2

�tR=2
dτ u t; τð Þe�in2πtRτ ¼ 1

tR

Z tR=2

�tR=2
dτ �u t; τð Þein2πtRτ ;

~vnðtÞ ¼
1
tR

Z tR=2

�tR=2
dτ v t; τð Þe�in2πtRτ ¼ 1

tR

Z tR=2

�tR=2
dτ �v t; τð Þein2πtRτ :

ð14Þ

These allow us to extend our field equations over a full round trip since

uðt; τÞ ¼ �uðt;�τÞ; �uðt; τÞ ¼ uðt;�τÞ
vðt; τÞ ¼ �vðt;�τÞ;�vðt; τÞ ¼ vðt;�τÞ: ð15Þ

Focusing momentarily alone on Eq. (8), we insert the modal expan-
sions of Eqs. (13) and (14) to obtain

X1
n¼�1

∂~un
∂t

ein
2π
tR
τ þ vg

X1
n¼�1

in
2π
tR

~une
in2πtR

τ

¼
X1

n¼�1
~Einδn;0e

in2πtR
τ �

X1
n¼�1

~une
in2πtR

τ

� iθ
X1

n¼�1
~une

in2πtR
τ � iη

X1
n¼�1

in
2π
tR

� �2

~une
in2πtR

τ

þ i
X1

n¼�1

X1
n0¼�1

X1
n00¼�1

A~unþn0�n00~u
�
n0~un00 þ B~vnþn0�n00~v

�
n0~un00

�
þ 2A~u�nþn0þn00~u

�
n0~un00 þ B~v�nþn0þn00~v

�
n0~un00 þ B~u�nþn0þn00~v

�
n0~vn00

�
ein

2π
tR
τ ;

ð16Þ

with a similar equation focusing on~vn.We can thendecompose ~u and~v into
the product of two functions on distinct time scales by setting

~unðtÞ ¼ UnðtÞe�ivgn
2π
tR
t
; ~vnðtÞ ¼ VnðtÞe�ivgn

2π
tR
t ð17Þ

If we take an average of the decomposed Eq. (16) over an extended
slow-time, t, interval then the exponential terms on the average vanish for

n″ ≠ n. This turns Eq. (16) to

X1
n¼�1

∂Un

∂t
ein

2π
tR
τ ¼

X1
n¼�1

~Einδn;0e
in2πtR

τ �
X1

n¼�1
Une

in2πtR
τ

� iθ
X1

n¼�1
Une

in2πtR
τ � iη

X1
n¼�1

in
2π
tR

� �2

Une
in2πtR

τ

þ i
X1

n¼�1

X1
n0¼�1

X1
n00¼�1

ðAUnþn0�n00U
�
n0Un00 þ BVnþn0�n00V

�
n0Un00 Þein

2π
tR
τ

þ i
X1

n¼�1
Une

in2πtR
τ

X1
n0¼�1

ð2AUn0U
�
n0 þ BVn0V

�
n0 Þ

þ i
X1

n¼�1
Vne

in2πtR
τ

X1
n0¼�1

ðBUn0V
�
n0 Þ;

ð18Þ

with again a similar equation focusing on ~vn.
Finally, if we collapse the modal expansions by defining:

Eþ ¼
X1

n¼�1
Une

in2πtRτ ; E� ¼
X1

n¼�1
Vne

in2πtRτ ; ð19Þ

one obtains the used model, Eq. (1).

∂E ±

∂t
¼ Ein � E ± � iθE ± � iη

∂2E ±

∂τ2

þ i AjE ± j2E ± þ BjE∓j2E ± þ 2AhjE ± j2iE ± þ BhjE∓j2iE ± þ BhE ± E
�
∓iE∓

� �
;

ð20Þ

where the terms with angled brackets correspond to
hf i ¼ ð1=tRÞ

R tR=2
�tR=2

f τð Þ dτ, i.e., the temporal averages over the round-
trip time tR. The presence of this kind of averaged terms in Fabry-
Pérot configurations was first suggested by Firth in ref. 42 when
describing the phase shift due to the counter-propagating fields in the
Kerr medium.

Linear stability analysis
To derive Eq. (4), we focus on the nth term of Eq. (18) and linearized it
around a homogeneous stationary state Un,HS where we defined
Un(τ) = δn,0UHS+ δUn(τ). Details of this method are discussed by Cole
et al.27.

Data availability
The data that support the plots within this paper and other findings
of this study are available from the corresponding author upon
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