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The progressive increase of traffic in space demands new approaches for support-
ing automatic and robust operational decisions. CASSANDRA, Computational Agent
for Space Situational Awareness aNd Debris Remediation Automation, is an intelligent
system for Space Environment Management (SEM) intended to assist operators with
the management of space traffic by providing robust decision-making support. This pa-
per will present the automatic conjunction screening and collision avoidance manoeu-
vre pipeline within CASSANDRA, connecting the some of CASSANDRA’s modules:
Automated Conjunction Screening (ACS), Robust State Estimation (RSE), Intelligent
Decision Support System (IDSS) and Collision Avoidance Manoeuvres (CAM). The
pipelines allows to screen the catalogue to detect potential conjunctions, perform a
detailed analysis of the encounter accounting for uncertainty (aleatory and epistemic)
and new observations, provide robust decisions based on the available information
and, if necessary, proposed robust optimal CAMs and analyse the impact of the new
orbit on the background population. This paper will present the pipeline described
above along with an example that illustrates how CASSANDRA can be used to gener-
ate robust decisions on the execution of CAMs in an automated way.

1. Introduction

With the progressive increase of space traffic and the growth of the number of resi-
dent objects in the space environment around the Earth comes the need for new tools
to deal with the management of operations in orbit. The automation of operations,
both on-board and on ground, is progressively becoming a necessity. In Space Traffic
Management (STM), the increasing number of catalogued objects and conjunctions
events, combined with the uncertainty associated with the estimation of the probability
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of collisions, have created the need for robust and automated decision systems. Arti-
ficial Intelligence (AI) can play an important role in this context. It can provide a quick
response to complex scenarios, bypassing complex and lengthy calculations, and can
support robust decision making by integrating several pieces of information. The ap-
plication of AI to STM has emerged as a promising area of research [1], with possible
uses stretching from efficient catalogue screening [2], to the classification of high-risk
conjunction events [3], the planning and implementation of collision avoidance ma-
noeuvres [4, 5], and offering support in reducing the workload of space operators [6].

In this paper, we present an automated conjunction assessment pipeline as a part
of CASSANDRA (Computational Agent for Space Situational Awareness aNd Debris
Remediation Automation), an intelligent system for providing robust decision-making
support to operators in the context of STM. This system aims to close the loop of
conjunction screening, risk assessment, manoeuvre screening, decision-making and
manoeuvre execution, with the aim of allocating mitigation actions to avoid collisions
in orbit in a robust and automated way.

An important element of such a system is its ability to cope efficiently with the
scales associated with current, and future, space object populations. This is espe-
cially relevant in the so-called All-vs-All problem, which considers all possible pairs of
catalogued objects, both active and debris, and is therefore crucial to space environ-
ment management (SEM), but a computational challenge owing to the vast and grow-
ing number of possible conjunction pairs. Another key element when dealing with the
automation of high-risk scenarios is the treatment of uncertainty. In the case of STM,
uncertainties in the state estimation and orbit propagation translate into an uncertainty
on the probability of collision between two objects, which is critical for effective deci-
sion making. In this work, we propose a framework that combines a robust approach
to uncertainty quantification, accounting for aleatory and epistemic uncertainty at each
step of the conjunction assessment procedure, with the use of AI techniques to aid in
efficient conjunction screening, manoeuvre screening, and decision making.

The paper is structured as follows: in Section 2, a overview of CASSANDRA and its
modular architecture is presented. Section 3 includes an explanation of the Automated
Conjunction Screening (ACS) module in two different modes: All-vs-All and One-vs-
All (manoeuvre screening). In Section 4, the modules responsible for the uncertainty
propagation, decision making and execution of the suggested action are explained: the
Robust State Estimator (RSE), the Intelligent Decision Support System (IDSS) and the
Collision Avoidance Manoeuvre (CAM) modules, respectively. Section 5 presents the
proposed pipeline for the integration of these modules, and we illustrate the workflow
of the system for analysing a set of potential encounters within a catalogue with an
example. The paper concludes in Section 6 with the final remarks and future work.

2. CASSANDRA

CASSANDRA, Computational Agent for Space Situational Awareness aNd Debris
Remediation Automation, is an intelligent system for SEM intended to assist operators
with the management of space traffic by providing robust decision-making support.
CASSANDRA has a modular architecture, as shown in Fig. 1. Each of the modules
addresses a specific problem related to SEM: radar observation, catalogue screening,
space weather forecasting, anomaly detection, robust decision-making, robust state
estimation, collision avoidance manoeuvres, re-entry analysis and fragmentation anal-
ysis.

2

An intelligent system for robust decision-making in the all-vs-all conjunction screening problem



With this approach, each module can be developed independently and work as
stand-alone tools, but at the same time can be integrated to work together in more
complex problems. The modular architecture also enables the incorporation of new
modules and functionalities to the system by just defining the interface (i.e., inputs
and outputs) between the module and CASSANDRA, avoiding the complicated task of
relating new modules with all pre-existing ones. In the following, a brief explanation is
presented for each of the modules which are currently available in the CASSANDRA
framework.

Figure 1: CASSANDRA and its modules. The modules developed and integrated in this
work are circled in red.

• Radar : Responsible for acquiring radar measurements of space objects and their
associated position uncertainty.

• Automated Conjunction Screening (ACS): AI-based module for predicting close
encounters and generating conjunction alerts, both in the all-vs-all [2] and one-
vs-all scenarios. More details will be given in Section 3.

• InteLiIgent Atmospheric Density modelling for space operations (ILIAD): AI-based
system for space weather forecasting [7] and atmospheric density modelling [8].

• Anomaly Detection: AI-based module for predicting unmodelled terms on the
dynamics [9]. Potential uses can be the detection of manoeuvres or alterations
on perturbing forces.

• Intelligent Decision Support System (IDSS): AI-based decision making system
for supporting operators in the event of a close approach [3]. Its output may
suggest the execution of an avoidance manoeuvre or the acquisition of more
observations. More details will be given in Section 4.2.
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• Robust State Estimator (RSE): Module for robust estimation and propagation of
an object’s state and uncertainty (aleatory and epistemic), as well as functional-
ities for updating the state when receiving new observations [10]. More details
will be given in Section 4.1.

• Collision Avoidance Manoeuvre (CAM): Module for computing the optimal CAM
accounting for aleatory and epistemic uncertainty [4, 11]. More details will be
given in Section 4.3.

• TITAN: Module responsible for the analysis of re-entry events, including the esti-
mation of re-entry time and on-ground risk [12].

• Fragmentation: Module taking care of the fragmentation events of space objects.

In this work, we have focused on four of these modules: the ACS, RSE, IDSS
and CAM modules. We have developed new capabilities for some of these, and com-
bine them here to form an integrated system able to automatically screen a space
object catalogue to detect possible encounters, which will be further analysed, and
propose and execute remediation actions when required. In the two following sections
(Sections 3 and 4), we provide a detailed description of these modules, and their new
features. In Section 5, we then detail the pipeline of the integrated system, and present
an example to illustrate the workflow.

3. Catalogue screening

In this section, we give details on the Automated Conjunction Screening (ACS)
module, which is designed to predict close encounters between catalogued objects.
This is typically the first stage of the conjunction assessment procedure, and is re-
sponsible for determining which (and when) object pairs fall within a given screening
volume over a given screening period. These pairs are then subjected to a more de-
tailed risk assessment to establish if mitigation actions are required to avoid a possible
collision. These subsequent steps have dedicated modules within CASSANDRA, and
are discussed in more detail in Section 4.

The ACS module has two actionable modes: All-vs-All and One-vs-All, which are
described in more detail in Section 3.1 and Section 3.2, respectively.

3.1. All-vs-All
The All-vs-All mode was designed for fast inference in large-scale conjunction

screening, specifically in the context of the All-vs-All problem, where conjunctions be-
tween all possible sets of catalogued objects, both active and debris, are considered.
This scenario is computationally challenging, scaling quadratically with the growing
number of catalogued space objects, and already today must cope with hundreds of
millions of object pairs. To handle these scales efficiently, the ACS was developed us-
ing machine learning (ML) and deep learning (DL) AI techniques, which are promising
in this context owing to their ability to process and exploit large datasets, infer hidden
correlations and also reduce computational time during model prediction.

In line with the particular demands for efficiency of the All-vs-All mode, the task of
automated conjunction screening was framed as a tabular machine learning classifi-
cation task. This implies that, given a set of object pairs and their corresponding initial
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states, the resulting model will predict whether or not these pairs will be involved in a
conjunction over the given screening period (binary label).

In this work, we employ a feed-forward neural network for this task, which was
trained using a realistic catalogue-wide conjunction database generated by the CNES
BAS3E space surveillance simulation framework [13] and input two-line element set
(TLE) catalogue. Based on the initial state vectors of the object pairs, the model is
trained to predict which of the pairs will undergo a close encounter (as defined by a
20 km spherical safety volume) over the next 7 days. These predictions are designed
to serve as an initial first filter for the catalogue, and thus particular attention is given
to the number of misdiagnosed conjunction cases which are wrongly, and potentially
critically, discarded by the screening process. Various methods were employed for
forcing the importance of these cases including class rebalancing, weighted loss func-
tions, and the tuning of the class probability threshold to ensure that only cases for
which the model has high confidence are rejected. This threshold can be translated
into a constraint on the number of acceptable missed conjunctions by the model, and
therefore to an operator decision. More details on the model, underlying database and
training procedure can be found in [2].

The primary output of the All-vs-All mode is thus a list of risky object pairs requiring
further consideration. Following from this, the Time of Closest Approach (TCA) can
be found, and the list of objects further refined through the inclusion of uncertainty
data and evaluation of the collision risk in subsequent modules (Section 4). At this
stage, information on the properties of the objects involved in the conjunctions, for
example whether they are operational, can also be retrieved from catalogues such as
ESA’s DISCOS [14], which can be used alongside the TCA to prioritise the analysis
of certain object pairs. This information can also be used to ultimately determine an
appropriate course of mitigation action, such as a CAM (as considered in this work),
or even techniques such as “just-in-time” collision avoidance for non-manoeuvrable
debris-debris conjunctions [15].

3.2. One-vs-All
A second One-vs-All mode for the ACS was additionally developed for this work.

This mode was designed to provide more detailed information on possible conjunc-
tions, including the TCA and miss distance of individual events. As such, this mode
could be employed as a second higher-fidelity filter following the All-vs-All mode, or, as
explored in this work, for manoeuvre screening. In this latter scenario, the new orbit
of an object undertaking a CAM to avoid a specific conjunction (the “one”), should be
screened against the space object catalogue (the “all”) to ensure that no additional
conjunctions will be incurred. This screening should be used to decide whether the
proposed CAM, which may be optimal under given constraints to avoid the original
conjunction, should go ahead, or whether a different solution should be found. This
scenario is explored in Section 5.

For this task, we build on previous works by the authors [16] to predict the future
behaviour of the B-parameter. The B-parameter is the norm of the relative distance
vector between two objects in the so-called B-plane or Body plane [17]. Under the
assumptions of a short-term encounter, the B-plane can be defined as the plane per-
pendicular to the relative velocity of the primary object at the encounter time, such that
it contains both objects. This definition of the B-parameter is therefore equivalent to
the miss distance used in the calculation of the probability of collision [18], and thus
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this quantity gives direct information on the proximity of two objects, with low values
indicating a close encounter (assuming positional uncertainties are not considered).

As the B-parameter for a given object pair is dependent on the relative position and
velocity vectors of both bodies, and therefore varies in time, we phrase the prediction
of this quantity as a time series machine learning regression task. Regression tasks in
machine learning consist of predicting a continuous outcome y based on the value of
one or more predictor variables x. In our case, both x and y are time series structured
data, with x consisting of the 6-channel ephemeris data of each object (12 variables
in total), and y the future evolution of the B-parameter. In machine learning terms,
this could be viewed as a univariate forecasting task with auxiliary variables, but this
case is unusual in that the history of the forecast variable does not feature as an input
to the predictive model. Nevertheless, to describe this problem, we make use of the
forecasting terms horizon, the number of time steps to predict in y, and lookback, the
number of time steps used to create the prediction from x.

In this work, we trained our predictive model using a synthetic database which com-
prised the ephemeris data of 200 objects over 7 days, with a timestep of 180 seconds,
and the corresponding B-parameters for each pair (19,900 in total), calculated at each
timestep. The initial parameters of these objects were restricted to the orbit regime
given in Table 1. This range of orbits was restricted due to computational considera-
tions, but enables us to present a proof of concept of this new mode, and demonstrate
the pipeline of the integrated system described in this work (Section 5.2).

Table 1: Bounds on the initial orbital parameters of the orbits used to train the One-vs-
All mode of the ACS. Units in km and rads.

Lower bound Upper bound

SMA 6900 7200
Eccentricity 10−5 5 · 10−3

Inclination 1.22173 1.91986
RAAN 0 2π
Arg. Perigee 0 2π
True Anomaly 0 2π

The choice of the length and configuration of the lookback and horizon windows
is application dependent. For the case of manoeuvre screening, it is the new (future)
orbit of an object following a CAM that needs to be considered, and not the past history
of the object which is typically associated with the forecast lookback. As such, our
lookback needs to be based on the post-manoeuvre propagated state. We choose
the model input to be the 12 ephemeris variables of each object pair over a 1-day
period post-CAM. We then seek to predict the evolution of the B-parameter for each
pair over a 3-day period post-CAM. This allows us to increase the quantity of training
data by using a sliding window over the 7 available days in the database, generating
20 training examples for each object pair. An example is illustrated in Fig. 2, with
truncated sections of the lookback and horizon windows for readability.

This dataset was then divided following an 80% to 20% splitting strategy into train-
ing and validation sets, ensuring that overlapping windows were not present in both
to prevent data leakage. While the training set is used to train the model directly, the
validation set is used to evaluate the performance of the model during training to en-
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Figure 2: Example of the input (left, lookback) and output (right, horizon) of the ACS
One-vs-All mode for truncated sections of the 1-day lookback and 3-day horizon.

sure that the model is generalising well to unseen data, and not merely memorising
the training data, as well as to tune higher level hyperparameters that are pre-set by
the user and not learnt by the model.

In this work, we employ the InceptionTime architecture [19] for training our predic-
tive model. This is, to the best of our knowledge, the best deep neural architecture for
time series tasks among the family of 1-dimensional Convolutional Neural Networks
(CNNs). We chose this family of networks as they are most suitable for capturing
short-term patterns in the data, such as orbit oscillations, since they compute features
using sliding convolutional filters. Deep learning architectures such as this have a
higher complexity and representation capacity compared to simpler tabular architec-
tures, but come at the cost of increased computational expense as a result, motivating
the two-mode nature of the ACS.

The training configuration used was as follows, for which we employed the tsai

[20] library, which implements deep learning techniques and architectures for time se-
ries data. First, we build our neural network using six sequential inception modules
to accept 12-channel inputs and a 1-channel output. The input data is standardised,
transforming each variable to have zero mean and unit variance to account for differ-
ences in units and scales. For the loss function (the objective to be minimised while
training), we use the nominal regression metric, the Root Mean Square Error (RMSE).
For the optimiser (the component that updates the parameters of the neural network),
we employed Ranger, an extension of the popular Adam optimiser that combines both
RAdam and Lookahead optimisation algorithms. A dynamic learning rate (which de-
termines the factor by which the weights of the neural network are updated in each
training iteration) was chosen following a one-cycle schedule with cosine annealing.
The model was then trained subject to an early stopping criteria, whereby training is
terminated once over-fitting becomes evident on the validation set, and the best per-
forming model (based on the validation loss) taken.

This model can then be applied to new data to obtain the predicted evolution of the
B-parameter for different possible conjunction pairs. Once this has been obtained for a
given pair, the TCA associated with possible conjunction events can then be identified
by considering crossing points of the B-parameter with an operator defined threshold
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(e.g. 20 km), as illustrated in Fig. 2. The output of the One-vs-All mode is thus a list of
conjunction events, the objects involved, their TCA and miss distance.

4. Uncertainty propagation and decision making

In this section, the Robust State Estimation (RSE), Intelligent Decision-Support
System (IDSS) and Collision Avoidance Manoeuvre (CAM) modules are explained.
These modules constitute the core of the precise conjunction analysis and decision
making section of CASSANDRA. In [11], a successfully integrated and simplified ver-
sion of CASSANDRA, comprising only these three modules, was presented, including
an illustrative example of the pipeline for a Collision and a No-collision scenario.

4.1. Robust State Estimation
The RSE is the module in charge of the precise state propagation, but more im-

portantly, of the uncertainty propagation and the state updating when observations are
received. This module is able to account both for aleatory and epistemic uncertainty.
The RSE provides, in addition to the propagated state, an estimation of the confidence
interval of the probability of collision and other parameters related with the encounter.
These intervals of confidence will be used later by the IDSS to make the decision. A
complete explanation of the RSE can be found in [10].

4.1.1. Robust formulation
For providing robust decision-making, the system should account for epistemic un-

certainty. In the next lines, a brief explanation on how the filtering problem is reformu-
lated to account for this uncertainty is included.

The problem can be formulated as:

ẋ = f (t, x,d), (1)

yk = h(tk, xk, εk), (2)

where Eq. (1) is the equation of motion, with t the time, x the state vector and d ∈ R
model parameters, with initial conditions x0 = x(t0), and where Eq. (2) represents noisy
observations of the state vector at certain times tk, k = 1, ..,M, where tk < tk+1 and εk the
measurement noise. The initial condition, the model parameters and the observations
are modelled as random variables: X0, D, Ek, being x0, d and εk specific realisation
within their respective sample spaces: Ωx0, Ωd and Ωε. The probability density function
(pdf) of the initial state and the dynamic model parameters would be represented by
p(x0) and p(d), and the likelihood of the observations is expressed as p(yk, |xk). The
pdf of the state at time tk given the observations acquired up to this time is p(xk|y1:k).

If epistemic uncertainty is introduced, the pdfs are no longer precisely known, but
defined within imprecise sets, which can be expressed as:

Px0 =
{
p(x0; λ0) | λ0 ∈ Ωλ0

}
,

Pxk |xk−1 =
{
p(xk|xk−1; λxk) | λxk ∈ Ωλxk

}
,

Pyk |xk =
{
p(yk|xk; λyk) | λyk ∈ Ωλyk

}
,

(3)

so that:

X0 ∼ p(x0; λ0) ∈ Px0

Xk ∼ p(xk | xk−1; λxk) ∈ Pxk |xk−1

Yk ∼ p(yk | xk; λyk) ∈ Pyk |xk ,

(4)
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for k = 1, . . . ,M, where λk = [λ0, λx0:k , λy0:k] ∈ Ωλk are the epistemic parameters for
the initial position, model parameters and observations, respectively. Similarly, the
epistemic distribution of the state at time tk given the observation up to that time can
be expressed as:

Pxk =
{
p(xk | y1:k; λk)|λk ∈ Ωλk

}
. (5)

4.1.2. Uncertainty propagation
To compute the generic posterior Eq. (5), two steps are executed iteratively from t0

to tk:

• uncertainty propagation: the posterior distribution at time tk−1 is propagated to
time tk through mapping

p(xk−1|y1:k−1) → p(xk|y1:k−1) . (6)

The resulting distribution is called prior at time tk. This propagation is performed
in two steps, detailed here below: the propagation of the polynomial represen-
tation of all possibles states at time tk as a function of the sates at time tk−1,
followed by the propagation of particles by inexpensive polynomial evaluations.
In this way, we reduce the cost of the particle propagation, which is the most
expensive step [10, 21].

• observation update: at discrete instances, the prior distribution is updated to
incorporate the last observation according to the unnormalised sequential Bayes’
rule

p(xk|y1:k) ∝ p(yk|xk) p(xk|y1:k−1) . (7)

The equation is evaluated for each particle to compute the corresponding weight.

4.1.3. Optimisation and estimation
In addition to uncertainty propagation, the RSE can provide the expectation on any

variable of interest, ϕ(x0:k), function of the propagated state (i.e. probability of collision).

E
[
ϕ(xk)

]
=

∫
Ωxk

ϕ(xk) p(xk|y1:k) dxk . (8)

This expectation depends on the on the posterior distribution. Due to the epistemic
uncertainty, the expectation is not single-valued, but interval-valued. The RSE is then
able to provide the upper and lower bound of the expectation as a function of the
epistemic parameters: E = minλ∈Ωλ(E

[
ϕ(xk)

]
),E = maxλ∈Ωλ(E

[
ϕ(xk)

]
).

The integral involving the expectation computation has no closed form solution due
to the non-parametric nature of the posterior pdf for generic distributions. In addition, it
is not practical to draw samples from non-parametric distributions to obtain a numerical
approximation of the integral. The chosen alternative is to use importance sampling
[10] to construct an estimator of the expectation:

E
[
ϕ(X0:k) | y1:k; λ

]
≈ θ̂

(
X0:k; λk

)
=

N∑
i=1

ŵ(i)
k (λk) ϕ(x(i)), (9)

This estimator, which exploits the sequential nature of the problem, is a weighted
sum of ϕ(x(i)) evaluated on fixed samples, and importance weights that depends on
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the epistemic parameters. Thus, the function of interest can be pre-computed with a
fixed number of samples drawn for a proposal posterior distribution, π(xk | x0:k−1, y1:k),
which does not depend on the epistemic parameters. Only the weights depend on the
epistemic parameter:

w(i)
k (λ) =

p(yk | x(i)
k ; λyk) p(x(i)

k | x(i)
k−1; λx)

π(x(i)
k | x(i)

0:k−1, y1:k)
ŵ(i)

k−1(λ)

ŵ(i)
k (λ) =

w(i)
k (λ)∑N

j=1 w( j)
k (λ)

,

(10)

In this way, it is possible to split the problem, particles can be drawn and propagated
once, while the optimisation over the epistemic parameters is executed only on the
weights of the pre-computed. Thus, the upper and lower bound of the expectation
estimator can be computed:

θ̂
(
X0:k

)
= min

λk
θ̂
(
X0:k; λk

)
θ̂
(
X0:k

)
= max

λk
θ̂
(
X0:k; λk

)
.

(11)

These optimisation problems are generally nonlinear and multimodal. Therefore,
a Brunch and Bound (B&B) approach over simplicial subdomains exploiting the es-
timator Lipschitz continuity is developed in [11]. This algorithm ensures asymptotic
convergence to the global bound and a measure of the distance from it at each itera-
tion.

4.2. IDSS
The IDSS automatically provides support to operators in decision-making when a

close encounter is detected. Using ML techniques, the IDSS uses the uncertainty en-
counter geometry and the reliability on the sources of information to make a decision
on which is the most suitable action to be taken. The decision is based on a classifica-
tion criterion of the encounter based on the probability of collision and the confidence
on this value given the reliability of the information [3].

4.2.1. Confidence on the variables of interest
The IDSS provides a decision based on the confidence on the correctness of the

PoC, which is quantified as the confidence of the PoC in being above or below a
certain safety threshold, where PoC is the probability of collision computed without
any assumption or simplification on the objects’ position distribution. This confidence
can be expressed as the expectation, Ep, function of the epistemic parameters λk, of
the PoC being above a certain threshold, PoC0, with uncertain space Ωλk . Details on
the computation of PoC and the limits on its expectation, Ep and Ep, can be found in
[11].

The IDSS assumes that the fast encounter hypothesis holds [22]. Under these
circumstances, the distribution of the position in the impact plane can be approximated
as Gaussian distributions and the computation of the probability of collision can be
simplified as:

PoC ≈ PC =
1

2π
√
∥Σb∥

∫
B((0,0),R)

e(− 1
2µ

T
bΣ

−1
b µb)dξdζ, (12)
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where µb(λk) and Σb(λk) are the mean and covariance matrix and are a function of the
uncertain vector λk, and B((0, 0),R) is the Hard Body Radius (HBR) of the combined
objects, with B : Rn × Rn → R2 the transformation from the two object’s state to the
coordinates in the impact plane.

Thus, the uncertain space, ΩU , can be now defined in the impact plane, and the
variable of interest whose upper and lower limits with respect to the λk are to be pro-
vided by the RSE are the component of the mean and covariance of the miss distance:
ΩU = [µ

bξ
, µbξ] × [µ

bζ
, µbζ ] × [σ2

bξ
, σ2

bξ] × [σ2
bζ
, σ2

bζ ] × [σbξζ
, σbξζ ] .

Given the set Φ = {PC |PC ≥ PC0} and the subset in the epistemic uncertainty space
Ω = {u ∈ ΩU |PC(u) ∈ Φ}, with u = [µbξ , µbζ , σ

2
bξ
, σ2

bζ
, σbξζ ]

T , we can compute the upper
and lower probability on the values of PC:

P =
∑
Ui⊂Ω

m(Ui)

P =
∑

Ui∩Ω,∅

m(Ui).
(13)

where ΩU =
⋃

i Ui and m is a function that assigns a value between 0 and 1 to each
subset Ui so that

∑
Ui⊂Ω

m(Ui) = 1. This is analogous to what was proposed in [3] with
Dempster-Shafer theory of evidence. Note that since, by construction, U is an outer
approximation of the set defined by B, it is possible state that: P ≤ Ep ≤ Ep ≤ P.

The advantage of using PC instead of PoC in the IDSS is mainly computational: it
is possible to use a more reduced uncertainty space, independently of the number of
observations. In the following, we will assume the fast encounters hypothesis holds,
so the IDSS will use PC and P. Nevertheless, an analogous system would work in a
similar way using the more general variables PoC, λk, and Ep, Ep, and Ωλk , instead of
PC, u, P, P and ΩU , respectively.

4.2.2. Classification criteria
The IDSS suggests the best action to an operator according to a 5 field classifi-

cation criterion, which takes into account whether the confidence on the probability of
collision is above a certain safety threshold (lower expectation on the PC and the De-
gree of Uncertainty), and the time to the encounter (time to TCA). Table 2 summarises
the criterion, where: TCA1 and TCA2 divides the events in short/mid/long term; PCe

differentiates events according to the risk level, being PCe | P(PC) < P0 ∀ PC > PCe, with
P0 a minimum confidence acceptable value; and ∆ is the degree of uncertainty at PC0

indicating the level of uncertainty affecting the event.
The decision is encoded in these 5 classes:

• Class 1: Execute CAM. For high risk and short-term encounters or short-term
uncertain events.

• Class 2: Design CAM. For high-risk events where there is time before the en-
counter to collect new measurements.

• Class 3: Collect more observations. Events affected by such a degree of un-
certainty a decision on whether or not cannot be confidently made based on the
available information, but there is time to collect more information.
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Table 2: Epistemic classification criterion.

Time to
TCA

PCe for
P = P0

Degree of
uncertainty
at PC0

Class

tTCA < T1

PCe ≥ PC0 - 1

PCe < PC0
P − P ≤ ∆ 5
P − P > ∆ 1

T1 ≤ tTCA

tTCA < T2

PCe ≥ PC0 - 2

PCe < PC0
P − P ≤ ∆ 5
P − P > ∆ 3

T2 ≤ tTCA

PCe ≥ PC0 - 2

PCe < PC0
P − P ≤ ∆ 4
P − P > ∆ 3

• Class 4. Low risk events occurring in the mid/long-term. The available infor-
mation confidently indicates the event presents low risk, but the event can be
followed up if the operators considers so.

• Class 5. No need to perform a CAM. Low risk short-term events where a CAM is
not required.

More details on the classification criterion can be found in [3].

4.2.3. Intelligent Classification System
The classification system would require the computation of PC and the confidence

bounds P and P for every new conjunction. Instead, we train an ML algorithm to classify
an event simply starting from u and the TCA.

In this work, we use a Random Forest (RF) classifier trained on 28,800 synthetic
conjunction events with different geometries and different values of u. In previous
works [3], we tested and compared different machine learning techniques (Random
Forests, Artificial Neural Networks, Support Vector Machine and K-Nearest Neigh-
bours) on a large data set of different scenarios and RF was found to be the best
performing algorithm. For all the cases in this paper, we used the same settings pre-
sented in [3].

Given a conjunction event, the outcome of the IDSS is the risk class indicating the
most suitable action to be taken. The output of the IDSS can then be used to schedule
a new observation and update the PC, or execute a CAM and re-assess the PC.

The same structure would be followed if the approach using PoC, λk, Ep and Ep

were selected.

4.3. CAM
This model computes the optimal robust Collision Avoidance Manoeuvre (CAM) to

avoid a potential encounter, accounting for aleatory and epistemic uncertainty on the
12
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encounter, when the IDSS indicates an action should be taken. There are two different
models: the first model is a high-efficiency version based on a linear model relating
the manoeuvre with the change of position in the impact plane; the second model is a
high-fidelity version, that also accounts for uncertainty on the manoeuvre itself. Both
models can be combined, so the high-efficiency model quickly provides candidates to
the high-fidelity model to compute a more accurate manoeuvre.

4.3.1. Linear model
This approach is based in the following linear model:

δx = Tδv = BAtGδv (14)

where δx is the change in position in the B plane, δv is the change of velocity due to
the manoeuvre, B is the rotation matrix from a object’s centred < R,T,H > reference
frame to the B plane reference frame, At is the matrix relating the change in keplerian
elements at the manoeuvre positions with the change in position at the encounter,
expressed in the < R,T,H > reference frame, and G relates the change in velocity with
the change in orbit parameters at the manoeuvre positions [4].

While this model presents the advantage of being faster, it assumes the fast en-
counter hypothesis, the rigid displacement of the uncertainty ellipse due to the ma-
noeuvre, and Keplerian motion[4].

Under these assumptions, the optimal robust CAM can be obtained by solving the
following min-max problem:

minδv maxu∈Ωu PC

s.t.
re · δv > 0

(15)

where Ωu is the set of uncertain variables u, and re is the objects’ relative distance.
The minimisation of PC is equivalent to finding the eigenvector associated with the

maximum eigenvalue of the matrix TTΣ−1T, where Σ is the covariance matrix in the
impact plane. Thus, the minimisation step in the min-max algorithm is performed ana-
lytically. During the iteration (see Algorithm in [23] for more details), the matrix TTΣ−1T
has been replaced by TTAT, where A is the sum of the inverse covariance matrices of
the worst-case ellipses found so far: A = Σ−1

1 + Σ
−1
2 + ...

The maximisation step to find the worst-case ellipse given the δvopt from the min-
imisation step has been carried out using a numerical optimiser applied directly to
Eq. (12). Given the nature of the linear model and the fact that the manoeuvre does
not change the shape of the uncertainty region on the B-plane but simply translates it in
the same plane, the convergence is quite fast and requires only a handful of iterations.
More details on the algorithm can be found in [4].

4.3.2. High-fidelity model
This model computes a more accurate CAM, including also uncertainty on the ma-

noeuvre itself. The optimal CAM is generated by solving the following bilevel optimisa-
tion problem

min
∆v

∥∆v∥

s.t. PoC < ε ,
(16)
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Therefore, the optimal impulsive manoeuvre minimises the propellant expenditure
while realising a PoC below the safe threshold ε even in the epistemic worst case sce-
nario. The state at the encounter after the manoeuvre used to compute the PoC is
propagated using the aforementioned polynomial representation of all possible propa-
gated states.

The solution provided by the linear model approach can be used as initial guess for
this model to speed up the computation.

This model accounts for error in the execution, δV, quantified with the Gate’s model
[24]. According to this model, the realisation δv of the execution error is decomposed
in modulus and angular variations on the nominal manoeuvre ∆v.

In a frame centred in the spacecraft with the z-axis aligned with ∆v, the y-axis
perpendicular to both the ∆v and the ecliptic normal, and the x-axis completing the
right-handed frame, the execution error components are taken from zero-mean normal
distributions

δvx ∼ N(0, σ2
p f + σ

2
pp ∥∆v∥)

δvy ∼ N(0, σ2
p f + σ

2
pp ∥∆v∥)

δvz ∼ N(0, σ2
m f + σ

2
mp ∥∆v∥) .

(17)

The parameters σm f and σmp indicate the standard deviations of the fixed and pro-
portional magnitude components respectively, whereas σp f and σpp define the corre-
sponding pointing components. The error in the local frame is then rotated into the
inertial one where ∆v is defined to achieve the error δv. The executed control is the
sum of the nominal manoeuvre and the error. Eq. (17) defines the aleatory uncer-
tainty on the CAM and the execution error δV is incorporated in the uncertain model
parameters D.

5. Pipeline

In this section, the integrated pipeline of the modules explained above is presented.
First, the generic workflow and the different paths the decision making process can
follow is described. Second, we present an illustrative example for a (virtual) close
encounter between two space objects.

5.1. System workflow
The pipeline is illustrated in Fig. 3. The workflow starts in the left bottom corner of

the figure with the automatic screening of the catalogue (Catalogue box in Fig. 3) by
the ACS (ACS: All-vs-All block). The catalogue includes information on the states of
a number of objects at a certain epoch and information on the type of object (debris,
operational satellite, manoeuvrable, etc.). Using the All-vs-All mode, it detects NE
potential close encounters. After the analysis, the ACS provides an output file with
a reduced set of potential conjunction pairs, indicating the objects requiring further
screening. For this work, we compute the time to TCA with respect to the epoch of the
catalogue for individual encounters by propagation, although this could by replaced
using the One-vs-All mode as a second filter in future work.

For each of the NE conjunction pairs identified by the ACS, a more detailed con-
junction analysis is automatically activated, where information about the uncertainty
on the state, both epistemic and aleatory, is included in the analysis. Thus, the RSE
propagates the state and uncertainty of the objects to the TCA (RSE. Orbit & Uncer-
tainty Propagation box in the Figure). In case there are observations available for any
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Figure 3: Pipeline of the modules to be integrated in this work.

of the objects involved, they can be included in the uncertainty propagation process
(RSE: State Estimation box).

Once the uncertainty states of both objects are propagated to the TCA, and the
uncertain geometry of the encounter is defined, the IDSS will autonomously propose
the most suitable action to be made to address the event, according to the risk, the
available information and the confidence on this information (IDSS. Risky Conjunction?
decision box). This information is encoded in 5 classes (see Section 4.2). Three
possible actions can be suggested:

i) Low Risk, related with Class0 4 or 5. No further action.
ii) Uncertain, corresponding to Class0 3. Allocate new observations.
iii) High Risk, associated with Class0 1 or 2. Compute CAMs.

If the event returns low risk, the situation is safe enough not to require mitigation
actions (No further action box, right side of Fig. 3). In the case the event is classified
as Uncertain, new simulations will be allocated (Collect new observations box). In
this work, the new observations are simulated by the RSE (see Section 5.2). These
observations may introduce new uncertainty on the system (i.e. noise). The new state
and uncertainty are fed again to the RSE (represented by the RSE dashed box). If the
event is classified as High Risk, it is necessary to compute at least one CAM to avoid
the encounter or reduce its risk (CAM Computation block, right-top corner of Fig. 3). A
more comprehensive explanation of these steps around the decision-making, involving
the RSE, IDSS and CAM for a single encounter, can be found in [11].

In this last scenario, where the event is classified as Class0 1 or Class0 2, a new
iterative process starts. The CAM module will provide M robust optimal CAM candi-
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dates, sorted according to certain criteria and constraints, which can be selected by
the operator [25]: time to the encounter, cost of the manoeuvres, reduction of the risk,
disruption of the operational orbit, etc. As indicated in Section 4.3, to compute the
CAMs, the module can opt between the fast but less accurate linear model, the high
fidelity model accounting for uncertainty in the execution, or a combination of both.

The first step after obtaining the list of candidates is to evaluate the safety of the
new orbit, and whether it reduces the risk satisfactorily for the considered conjunction:
i.e. the IDSS should output a Classm greater than or equal to 3 for the encounter after
the CAM is performed (IDSS, CAMm and “m < M?” decision boxes). In case this is not
achieved by any of the proposed options (“Class0?” decision box):

• If the original Class0 before CAM was 2 (meaning a long/mid-term event), new
observations are allocated, and we return to the RSE state estimation and un-
certainty propagation.

• If the original class was Class0 = 1 (short-term high-risk event), there is no time
to allocate new measurements and an alert is raised to the operator (Alert box)
to perform a manual detailed analysis: relax constraints on the computation of
the CAM, widen the search of alternatives, etc.

For the CAM options that do reduce the risk of the event, the ephemerides asso-
ciated with the new post-CAM orbit are subsequently computed, starting with the top-
ranked alternative (as ranked by Classm). These ephemerides are then use to screen
the new orbit against all the objects in the catalogue to identify any new possible con-
junctions. This operation is also performed by the ACS, but under the One-vs-All mode
(ACS: 1-vs-All CAM Screening module). If new encounters are predicted, the ACS
generates a file containing the objects involved, predicted TCAs and the predicted
B-parameters for the N new encounters. This can result in three different situations
(“N > 0?, m < M?” decision box):

a) No new encounters are found, in which case the execution of the manoeuvre is
encouraged and the catalogue updated accordingly (Update Catalogue box).

b) New encounters are detected, but the analysed CAM is not the last of the pro-
posed options. In this case, the system loops back to the CAM module and the
next manoeuvre on the sorted list is selected. If the number of future encounters
is lower than for previous CAMs, this alternative is saved as the most promising
solution thus far.

c) Future encounters are anticipated and there are no more alternative manoeuvres
remaining. This possibility is described below.

In case none of the proposed options avoid the generation of new encounters (al-
ternative c above), the CAM resulting in the minimum number of new encounters is
selected for further analysis.

These N new encounters are fed back to the RSE-IDSS loop (N encounters as-
sessment dashed box): both orbits, the new post-CAM and that of the object in the
catalogue are propagated, along with their uncertainties, to the TCA using the RSE
(RSE new encounters module); then, the event is assessed with the IDSS (IDSS new
encounters decision box). Depending on the Classn output by the IDSS for these N
events, the following actions can be taken:
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I) All events present Classn ≥ 3. This means there is no evidence that the new
predicted events present a high risk. The best action is to perform the CAM to
avoid the initial encounter and update the catalogue.

II) At least one event presents Classn < 3 (high risk event) and the original event
without CAM was classified as Class0 = 2. Since there is enough time, new mea-
surements are allocated, returning to the RSE state estimation and uncertainty
propagation stage.

III) At least one event presents Classn < 3 (high risk event) and the original event
was classified as Class0 = 1 (i.e. short-term high-risk event): since there is no
more time to acquire measurements and all the CAM alternatives involve new
encounters, an alert is raised to the operator (Alert box). Possible alternatives
the operator can analyse are: to relax the constraints employed to obtain the list
of CAM alternatives, or to consider the possibility of performing a multi-encounter
CAM [25].

In summary, there are 5 possible exit points of the process, detailed below, for
each of the NE potential encounters detected by the ACS module in the All-vs-All
mode. Once any of these are reached, the system will restart the analysis for the next
encounter.

1. The encounter does not present an actual risk (Class0 ≥ 3), and no further ac-
tions are required.

2. The encounter requires a CAM (Class0 < 3), and the proposed CAMs do not
create new encounters (N = 0). This implies the execution of the manoeuvre and
updating of the catalogue.

3. The encounter requires a new CAM (Class0 < 3), which generates new encoun-
ters (N , 0), but none of them present, at the moment of the decision, evidence
of being high risk (Classn ≥ 3∀n = 1, ..,N). This also implies the execution of the
manoeuvre and updating of the catalogue.

4. The encounter presents a high risk, occurring in the short term (Class0 = 1), and
none of the proposed CAMs sufficiently reduce the risk (Classm ≥ 3∀m = 1, ..,M).
This scenario will raise an alert to the operators, who should decide what steps
to take (e.g. obtain new CAMs, relax constraints, change criteria to compute
alternatives, etc.).

5. The encounter presents a high risk, occurs in the short term (Class0 = 1), and
some of the new encounters generated by the new post-CAM orbit are also high
risk (∃n | Classn = 1 or Classn = 2, for n = 1, ...,N). In this situation, another alert
will be raised, indicating that the operator should start a multi-encounter CAM
analysis.

5.2. Study case
In the rest of this section, we present an example of the workflow with a synthetic

catalogue containing a potential encounter.
For this study case, we use a synthetic catalogue containing 20 objects including

their state vector and associated uncertainty at CNESJD 25718.999594907 (31-05-
2020, 23:59:25.00). The catalogue also includes information on the type of object:
operational with manoeuvre capabilities, non-manoeuvrable, debris or unknown. For
the scope of this work, and due to the characteristics of the database used to train the
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One-vs-All models of the ACS, a reduced catalogue including only orbits falling within
the bounds indicated in Table 1 has been used.

The catalogue is automatically screened by the ACS in the All-vs-All mode. This
mode takes the initial state vectors of each of the object pairs from the catalogue,
and returns a binary label as to whether the pairs will undergo a close encounter (as
defined by a 20 km screening volume) over a screening period of 7 days. Further
details of this mode are given in Section 3.1.

From the screening process, 10 pairs of potential encounters are detected. Two
output files are provided by the ACS. One includes the potential conjunction pairs found
by the system (Table 3 displays some of these), as well as the time to the encounter
and the type of object involved. The other file contains the state vector at the initial
epoch used for the screening, and the associated uncertainty (if any).

Table 3: 5 of the potential encounters detected by the ACS: All-vs-All.

Obj. 1 ID Obj. 2 ID Time to TCA [days] Manoeuvre Capab. Num. encs.

11111 22222 6.956327887 OP-DEB 1
36345 41138 6.956327887 DEB-DEB 1
42127 36337 1.929933804 DEB-DEB 1
7959 10520 1.210088713 DEB-OP 1
6843 44547 4.574278349 DEB-OP 1

For the rest of this example, we will focus the study on the first pair of satellites
(IDs: 11111 and 22222), whose initial conditions are included in Table 4. Note that
in this work, only the secondary object of the encounter is assumed to be affected by
uncertainty, and the uncertainty is given in the object’s < T,N,H > reference frame.
The primary object is assumed to be perfectly known.

Table 4: Initial state vector and uncertainty of objects involved in the first encounter
detected by the ACS. Epoch CNESJD 25718.999594907. Units: km and km/s

Obj. ID X Y Z Vx Vy Vz

11111 618.143 7143.340 7.183 1.119 -0.112 7.372
22222 -7183.237 -331.032 96.552 0.035 1.176 7.348

Obj. ID σt σn σh σvt σvn σvh

22222 0.104 0.556 0.139 5.59·10−6 1.10·10−6 1.48·10−6

Each of the encounters detected during the screening stage should undergo a
detailed conjunction analysis through the RSE and IDSS modules. For this analysis,
the first step is the propagation of the orbit and the uncertainty to the TCA using the
RSE. However, the uncertainties in Table 4 are merely presumed [26], and therefore far
from being well-characterised. More in general, the values of uncertainty associated
to the other objects in the catalogue lack details on how they have been obtained.
Hence, epistemic uncertainty is introduced on the covariance to account for this lack
of information by parameterising Σ0 using two epistemic parameters λ0 = [λ0−1, λ0−2].
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The covariance parameterisation reads as follows

Σ0(λ0) =

 λ0−1Σ0(1 : 3, 1 : 3) 03×3

03×3 λ0−2Σ0(4 : 6, 4 : 6)

 . (18)

The epistemic parameters scale respectively the position and velocity blocks of the
reference covariance Σ0 computed as above. The bounds considered for these multi-
pliers are λ0−1, λ0−2 ∈ [1/52, 52], that is, they can change the reference 1σ uncertainties
by roughly shrinking them up to 1/5, or expanding them by a factor of 5.

In general, immediately after the ACS catalogue screening, no more observations
are available for the objects involved in the encounter. Thus, a single prediction step
is performed by the RSE. The outputs of this module are the bounds on the mean and
covariance elements of the miss distance in the B-plane. This information, along with
the time to the TCA, represents the inputs the IDSS uses to make the decision. The
threshold values used by the IDSS are included in Table 5. More information in the RF
model used in the IDSS for this example can be found in Section 4.2 and in [3].

Table 5: IDSS thresholds.

Variable Value

TCA1 [days] 2
TCA2 [days] 4
PC0 10−6

P 0.5
∆ 0.3
HBR [m] 0.3

Due to the large propagation time interval (more than 6 days) and the initial uncer-
tainty (both, aleatory and epistemic), the miss distance intervals in the impact plane
are very large (Table 6) and, as expected, the IDSS outputs a Class 3: the event is
affected by such a degree of uncertainty at this step that no confident decision can be
made. Thus, new measurements are allocated.

Table 6: Bounds output by the RSE if no observations available. Units in km and km2.

Variable Lower bound Upper bound

µξ -1.830 -0.7759
µξ -23.939 36.722
σ2
ξ 3.203 5.698
σ2
ζ 1.915·103 5.9448·104

σξζ -289.981 15.682

In this work, the observations are simulated within the RSE. The measurements
are simulated using the debris reference trajectory and then adding the sensor errors,
drawn from a zero-mean normal distribution with diagonal covariance Σy, whose non-
zero elements are: 1σyaz = 10 and σyel = 10 arcsec. Similarly to the uncertainty in the
initial position, epistemic uncertainty on the observations is added to quantified the
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lack of detail on the observation sensors. The epistemic uncertainty is considered on
the noise covariance by means of two parameters λy =

[
λy−az, λy−el

]
, which range in the

interval λy−az, λy−el ∈ [1/52, 52], in line with diverse 1σ values found in literature [27, 28].
As mentioned above, the primary satellite is assumed to be perfectly known, so

the observations refer only to the secondary object. 10 observations are simulated,
evenly distributed between the initial epoch and one day before the TCA. Again, the
initial state and uncertainty of the objects are propagated to the TCA, although in this
case, the position is updated sequentially with the information provided by the mea-
surements. The robust bounds of the new B-plane variables are included in Table 7.

Table 7: Bounds output by the RSE when 10 measurements. The time to TCA after the
last observation is 1 day. Units in km and km2.

Variable Lower bound Upper bound

µξ -2.0408·10−2 -1.1596·10−22
µξ 0.6783 1.20140
σ2
ξ 2.0571·10−11 2.1102·10−4

σ2
ζ 9.7038·10−4 5.81921·10−2

σξζ -2.0504·10−4 1.2473·10−3

These bounds along with the new time to the encounter (1 day) are inserted in the
IDSS, which classifies the event, accounting for the new information, as Class 1. This
means that a CAM should be performed.

This decision activates the CAM module, which computes a list of optimal ma-
noeuvres. In this work, we have only employed the linear model-based CAM (Sec-
tion 4.3.1). We have computed 7 possible CAMs, executed half an orbit before the
encounter position, for the 9 revolutions before the encounter, but the last two revolu-
tions, θm ∈ Θm |Θm = {kπ}, k = 5, 7, 9, ..., 17. The maximum capacity of the thruster has
been set to 10 cm/s. The only criterion considered to sort the proposed CAM options
was the disruption of the orbit (i.e. time away of the nominal orbit before the encounter),
thus the later manoeuvres are ranked first. For more information on other criteria, see
[25]. Table 8 includes the list of manoeuvres, expressed in the manoeuvrable satellite’s
< T,N,H > reference frame.

Table 8: List of ranked possible manoeuvres, expressed in the satellite’s < T,N,H >
reference frame. The last column includes the Classm of the event after the manoeuvre.
Units in rad. and m/s.

Alternative θm δvt δvn δvn Classm

CAM 1 5π 9.9994·10−2 -1.0527·10−4 0 5
CAM 2 7π 9.9997·10−2 -7.4706·10−5 0 5
CAM 3 9π 9.9998·10−2 -5.7745·10−5 0 5
CAM 4 11π 9.9998·10−2 -4.6958·10−5 0 5
CAM 5 13π 9.9999·10−2 -3.9492·10−5 0 5
CAM 6 15π 9.9999·10−2 -3.4018·10−5 0 5
CAM 7 17π 9.9999·10−2 -2.9830·10−5 0 5
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The different CAM alternatives are evaluated in order of priority. First, the risk
associated to the encounter after implementing the manoeuvre is computed. The
class of the encounter after the first manoeuvre is 5 (Table 8), meaning the new orbit
is safe. Then, the new ephemerides are computed and a further analysis performed
using the One-vs-All mode of the ACS to detect possible future conjunctions with other
catalogued objects. Note, that in case that the first alternative would not have reduced
the risk of the event to Class 4 or 5, the next alternative would have been chosen.

The model use to predict future encounters in the One-vs-All ACS mode is de-
scribed in more detail in Section 3.2. This mode takes the newly computed ephemerids
of the manoeuvred object, and the ephemerids of the other catalogued objects over a
1-day period after the CAM as input, and predicts the evolution of the B-parameter for
each possible conjunction pair over a 3-day screening period. The threshold on the
B-parameter chosen to identify encounter events was set to 20 km.

The first CAM implemented already reduces the risk of the current encounter and,
according to the One-vs-All, does not generate further encounters. This means that
the system proposes the manoeuvre to the operators. In case the operators decides
to execute it, the catalogue has to be updated accordingly.

Once this manoeuvre has been analysed, the system automatically start the anal-
ysis of the next pairs found by the All-vs-All module.

6. Conclusion

In this paper we have presented new methods and functionalities of CASSANDRA,
a tool for supporting space operators in SEM problems.

Firstly, we have extended the capabilities of the ACS module, responsible for the
automatic screening of the catalogue to detect potential conjunctions. In addition to
the All-vs-All approach, we have included a higher-fidelity One-vs-All mode. Thus, the
ACS can be used in several kinds of scenarios, being activated periodically to screen
the whole catalogue (All-vs-All), or on demand to analyse specific scenarios (One-vs-
All).

Secondly, we have successfully established a framework where the ACS, RSE,
IDSS and CAM modules of CASSANDRA can work together. This framework enables
the scope of each individual module to be extended to address more complex prob-
lems, exemplified by the decision-making process that follows the automatic screening
of a space object catalogue. The proposed framework allows us to include uncer-
tainty at each single step, both epistemic and aleatory, enabling the system to propose
robust decisions to the operators.

Thirdly, we have illustrated the operation of this framework with a representative
study case, with which we have highlighted the main characteristics of the pipeline.
This example shows the automatic nature of the whole process for analysing a set
of potential encounters within a catalogue, and highlights the relevance of the robust
decision-making system to handle uncertain or incomplete information.

Finally, we have identified some promising avenues for future work. Multi-criteria
decision making algorithms are expected to be implemented throughout the pipeline to
classify the potential encounters identified by the All-vs-All mode of the ACS module,
or to sort the CAM alternatives, to avoid high-risk encounters based on more complex
criteria. Similarly, the CAM module will be improved to combine the fast linear model
with the high fidelity method. Lastly, we expect to extend the pipeline to integrate the
multi-encounter CAM method for those scenarios that require it.

21

An intelligent system for robust decision-making in the all-vs-all conjunction screening problem



Acknowledgments

This work was supported by the European Space Agency, through the Open Space
Innovation Platform (OSIP), Idea I-2019-01650: “Artificial Intelligence for Space Traffic
Management”, and partially by the European Commission’s Stardust-R programme,
through the by the EU H2020 MSCA ITN Stardust-R, grant agreement 813644.

References

[1] Sanchez, L., Vasile, M. and Minisci, E., ”AI and Space Safety: Collision Risk Assessment”, in:
Handbook of Space Security: Policies, Applications and Programs, Springer International Publish-
ing, Cham, 2020, pp. 1–19.

[2] Stevenson, E. and Rodriguez-Fernandez, V. and Urrutxa H. and Morand, V. and D. Camacho,
”Artificial Intelligence for All vs All Conjunction Screening”, in: Proceedings of the 8th European
Conference on Space Debris, ESA/ESOC. 20-23 April 2021.

[3] Sanchez, L. and Vasile, M, ”On the Use of Machine Learning and Evidence Theory to Improve
Collision Risk Management”, Acta Astronautica 181 (2021) 694–706.

[4] Sanchez, L. and Vasile, M., ”AI for Autonomous CAM Execution”, in: Proceedings 71st Interna-
tional Aeronautical Congress (IAC), The Cyber Space Edition. 12-14 October 2020.

[5] Vasile, M., Rodriguez-Fernandez, V., Serra, R., Camacho, D. and Riccardi, A., Artificial Intelli-
gence in Support to Space Traffic Management, in: Proceedings 68th International Astronautical
Congress (IAC), Adelaide, Australia. 25-29 September 2017.

[6] Flohrer, T., Krag, H., Merz, K. and Lemmens, S., ”CREAM - ESA’s Proposal for Collision Risk
Estimation and Automated Mitigation”, in: Proceedings of the Advanced Maui Optical and Space
Surveillance Technologies Conference (AMOS). 2019.

[7] Stevenson, E. and Rodriguez-Fernandez, V. and Minisci, E. and Camacho, D., ”A deep learning
approach to solar radio flux forecasting”, Acta Astronautica 193 (2022) 595–606.

[8] Manzi, M. and Vasile, M., ”Autoencoder-based Thermospheric Density Model for Uncertainty
Quantification and Real-Time Calibration”, in: Proceedings of the 8th European Conference on
Space Debris, ESA/ESOC. 20-23 April 2021.

[9] Manzi, M. and Vasile, M., ”Discovering Unmodeled Components in Astrodynamics with Symbolic
Regression”, in: Proceedings 2020 IEEE Congress on Evolutionary Computation (CEC). 19-24
July 2020.

[10] Greco, C. and Vasile, M, ”Robust Bayesian Particle Filter for Space Object Tracking Under Severe
Uncertainty”, Journal of Guidance, Control, and Dynamics (2021) 1–18.

[11] Greco, C. and Sanchez, L. and Vasile, M., ”A Robust Bayesian Agent for Optimal Collision
Avoidance Manoeuvre Planning”, in: Proceedings 8th European Conference in Space Debris,
ESA/ESOC. 20-23 April 2021.

[12] Falchi, A. and Renato, V. and Minisci, M. and Vasile, M., ”FOSTRAD: An advanced open source
tool for re-entry analysis”, in: Proceedings 15th Reinventing Space Conference, Glasgow, United
Kingdom. 24-26 October 2017.

[13] Morand, V., Yanez, C., Dolado Perez, J. C., and Fernandez, C. and Roussel, S. and Pucel, X.
and Vidal, V., ”BAS3E: A framework to Conceive, Design, and Validate Present and Future SST
Architectures”, in: Proceedings of the 1st NASA International Orbital Debris Conference, p. 10.

[14] European Space Agency, ”Database and information system characterising objects in space”,
2022. https://discosweb.esoc.esa.int/.

[15] Bonnal, C., McKnight, D., Phipps, C., Dupont, C., Missonnier, S., Lequette, L., Merle, M. and
Rommelaere, S., ”Just in time collision avoidance – A review”, Acta Astronautica 170 (2020)
637–651.

[16] Sanchez, L., Vasile, M. and Minisci, E., ”AI to Support Decision Making in Collision Risk Assess-
ment”, in: Proceedings 70th International Aeronautical Congress (IAC), Washington D.C., USA.
21-25 October 2019.

[17] Jah, M., ”Derivation of the B-plane (Body Plane) and its Associated Parameters”, in: A Lecture
Series on Orbit Mechanics and Interplanetary Mission Design, University of Colorado. 2002.

[18] Alfano, S., ”Review of conjunction probability methods for short-term encounters”, Advances in
the Astronautical Sciences 127 (2007) 719–746.

22

An intelligent system for robust decision-making in the all-vs-all conjunction screening problem

https://discosweb.esoc.esa.int/


[19] Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., Webb, G. I.,
Idoumghar, L., Muller, P. and Petitjean, F., ”InceptionTime: Finding AlexNet for time series classifi-
cation”, Data Mining and Knowledge Discovery 34 (2020) 1936–1962.

[20] Oguiza, I., ”tsai - A state-of-the-art deep learning library for time series and sequential data”,
Github, 2022. https://github.com/timeseriesAI/tsai.

[21] Greco, C. and Campagnola, S. and Vasile, M, ”Robust Space Trajectory Design using Belief
Optimal Control”, Journal of Guidance, Control, and Dynamics (Under review).

[22] Serra, R. and Arzelier, D. and Joldes, M and Lasserre, J. B. and Rondepierre, A. and Salvy,
B., ”Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters”,
Journal of Guidance, Control, and Dynamics 39 (2016) 1–13.

[23] Vasile M., ”On the Solution of Min-Max Problems in Robust Optimization”, in: Proceedings of the
EVOLVE of Guidance, Control and Dynamics International Conference, Beijing, China. 2014.

[24] Gates, C.R., ”A Simplified Model of Midcourse Maneuver Execution Errors”, JPL technical report,
Jet Propulsion Laboratory, California Institute of Technology, 1963.

[25] Sanchez, L. and Vasile, M., ”Constrained Optimal Collision Avoidance Manoeuvre Allocation Under
Uncertainty for Subsequent Conjunction Events ”, in: Proceedings 72nd International Aeronautical
Congress (IAC), Dubai, UAE. 25-29 October 2021.

[26] Klinkrad, H. and Alarcon, J. R. and Sanchez, N., ”Collision avoidance for operational ESA satel-
lites”, in: Proceedings of the 4th European Conference on Space Debris, ESA/ESOC, Darmstad,
Germany. 18-20 April 2005.

[27] Bennett, J. C. and Sang, J. and Smith, C. and Zhang, K., ”An analysis of very short-arc orbit
determination for low-Earth objects using sparse optical and laser tracking data”, Advances in
Space Research 55(2) (2015) 617–629.

[28] Li, B. and Sang, J. and Zhang, Z., ”A real-time orbit determination method for smooth transition
from optical tracking to laser ranging of debris”, Sensors 16(7) (2016).

23

An intelligent system for robust decision-making in the all-vs-all conjunction screening problem

https://github.com/timeseriesAI/tsai

	Introduction
	CASSANDRA
	Catalogue screening
	All-vs-All
	One-vs-All

	Uncertainty propagation and decision making
	Robust State Estimation
	Robust formulation
	Uncertainty propagation
	Optimisation and estimation

	IDSS
	Confidence on the variables of interest
	Classification criteria
	Intelligent Classification System

	CAM
	Linear model
	High-fidelity model


	Pipeline
	System workflow
	Study case

	Conclusion



