
Efficacy of a Low Irradiance Antimicrobial 405-nm Visible Light System for Inactivation of Bacteriophage Phi6 as a **Surrogate for SARS-CoV-2**

Lucy G Sinclair^{1*}, Zornitsa Ilieva², Scott J MacGregor¹ and Michelle Maclean^{1,2}

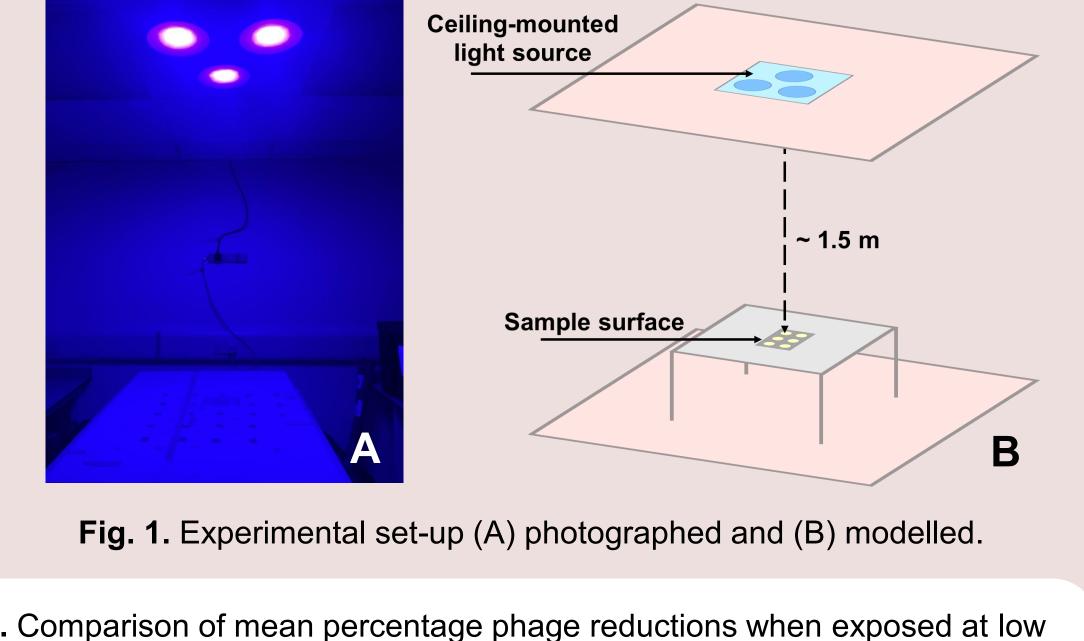
¹The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, UK. ²Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK. *Contact email: lucy.g.sinclair@strath.ac.uk

- INTRODUCTION

- The COVID-19 pandemic has increased the necessity for novel strategies to safely decontaminate public areas.
- Low irradiance 405-nm light environmental decontamination systems (EDS) have recently been developed, with studies demonstrating their ability to safely reduce bacterial levels within occupied healthcare environments¹⁻⁵.
- The 405-nm light emitted from these systems induces the

- METHODS

- A ceiling-mounted 405-nm light EDS in 'blue-only' mode (Fig. 1A) was used to expose phage samples.
- Bacteriophage phi6 was suspended in SM buffer and artificial human saliva at low (~10³ PFU mL⁻¹) and high (~10⁷ PFU mL⁻¹) densities, and 3 mL volumes were lightexposed at ~1.5 m below the light source (Fig. 1B).
- At this distance, the irradiance provided was ~ 0.5 mW cm⁻²,


Engineering and **Physical Sciences Research Council**

excitation of photosensitive molecules, namely porphyrins, within microbial cells, initiating the production of reactive oxygen species and ultimately cell death^{6,7}.

• Due to the absence of porphyrin molecules from viral structures, the viricidal properties of this technology are less understood.

Bacteriophage Phi6

- which is representative of the irradiance levels which can illuminate high-touch surfaces within clinical areas (e.g., bed rails, tray table, bedside table, IV poles).
- Post-exposure, the surviving phage population was determined using a double agar overlay plaque assay, overnight incubation and subsequent enumeration.

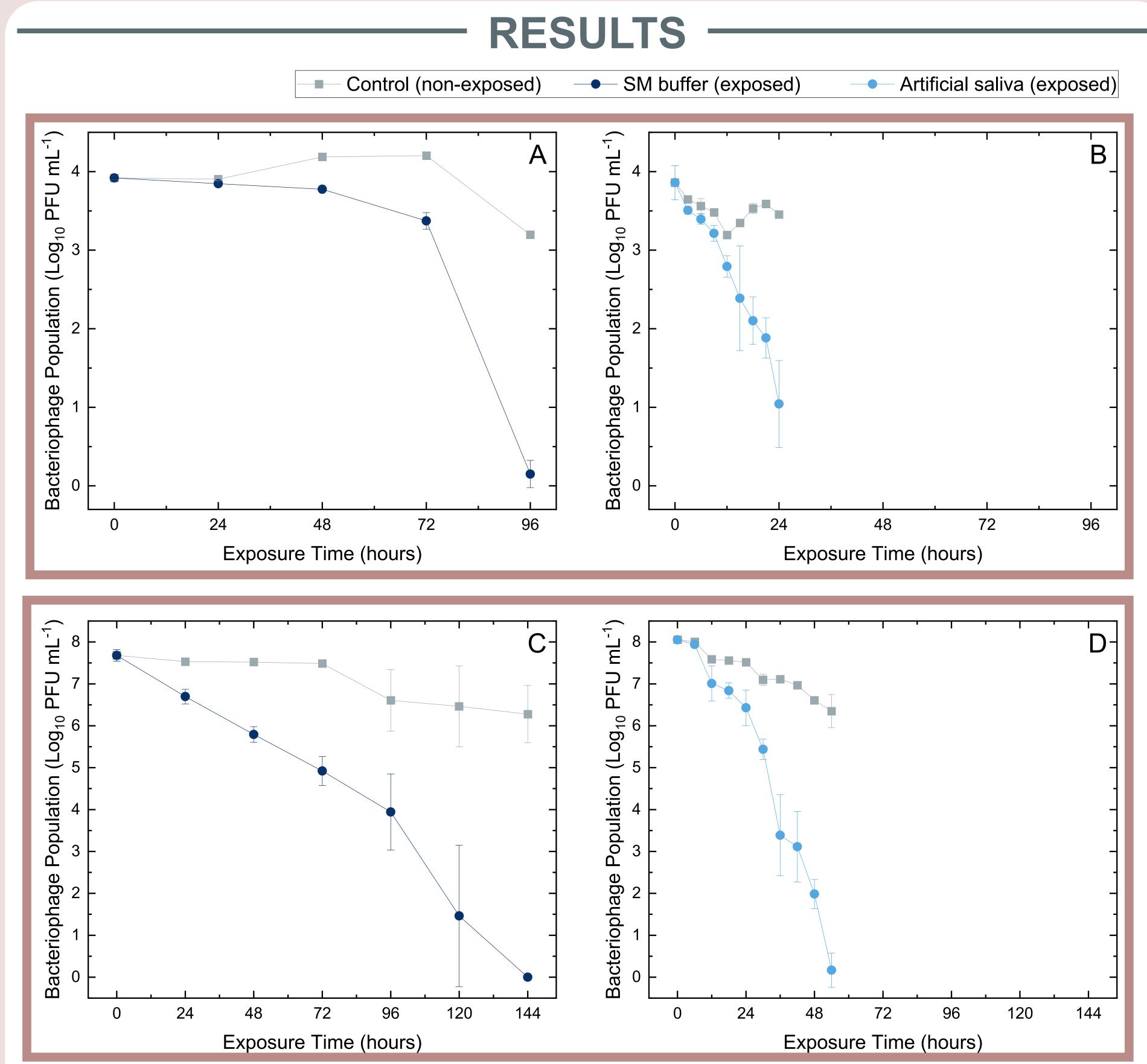


Table 1. Comparison of mean percentage phage reductions when exposed at low
 and high seeding densities in SM buffer and artificial saliva. Asterisks (*) represents a significant reduction in comparison to non-exposed controls ($P \le 0.05$).

Mean Percentage Phage Reduction (%)

This study investigates the efficacy of low irradiance 405-nm light systems for the inactivation of bacteriophage phi6 as a surrogate for SARS-CoV-2.

Exposure Time (hours)	mean recentage r nage Reduction (70)			
	SM buffer 10 ³ PFU mL ⁻¹	SM buffer 10 ⁷ PFU mL ⁻¹	Artificial saliva 10 ³ PFU mL ⁻¹	Artificial saliva 10 ⁷ PFU mL ⁻¹
6			31.36*	12.12
12			58.63*	61.87*
18			95.60*	78.95*
24	12.19*	84.04*	99.41*	87.69*
36				99.94*
48	60.48*	97.97*		99.99*
72	83.06*	99.64*		
96	99.32*	98.98*		
120		99.89*		

 Low-irradiance 405-nm light significantly reduced (P ≤ 0.05) phi6 suspended in both artificial saliva and SM buffer at both low and high seeding densities.

Inactivation was significantly enhanced ($P \leq 0.05$) when exposed in artificial saliva: 83.3-87.5% and 50% less dose was required for a $1-\log_{10}$ reduction of phi6 at low and high seeding densities, respectively.

 Significantly greater exposure times were required for complete/near-complete inactivation at higher densities ($P \leq$

Fig. 2. Inactivation of bacteriophage phi6 suspended at 10³⁻⁴ PFU mL⁻¹ in (A) SM buffer and (B) artificial saliva, and at 10⁷⁻⁸ PFU mL⁻¹ in (C) SM buffer and (D) artificial saliva, upon exposure to increasing doses of ~ 0.5 mWcm⁻² 405-nm light (n \ge 4 ± SD).

0.05); however, the dose requirements for a $1-\log_{10}$ reduction were **similar** for both low and high seeding densities.

- CONCLUSIONS

- Low-irradiance 405-nm light systems can successfully reduce phi6 at irradiances typically implemented for whole-room decontamination.
- Inactivation was successfully achieved in SM buffer; suggesting 405-nm light viral inactivation is possible in the absence of external photosensitisers, possibly due to light interactions with the phage envelope⁸.
- An increased inactivation efficacy was observed when exposed in saliva, suggesting photosensitive components within this suspension can act as external photosensitisers and impart localised oxidative damage to the phage; highlighting its potential for decontamination of SARS-CoV-2 in environmental respiratory droplets.
- These findings establish a basis for further investigation into the viricidal properties of 405-nm light and demonstrate that, with further investigation, low irradiance 405-nm light systems hold potential as a novel approach to tackling COVID-19 transmission within occupied settings.

References

- Maclean et al., (2010). J. Hosp. Infect. 76(3), 247-251 ² Bache *et al.,* (2012). *Burns* 38(1), 69-76. ³ Maclean et al., (2013). J. Infect. Prev. 14(5), 176-181. ⁴ Bache et al., (2018). J. Hosp. Infect. 98(1), 67-73. ⁵ Murrell *et al.,* (2019). *Am. J. Infect. Control* 47(7), 804-810. ⁶ Hamblin et al., (2005). Curr. Opin. Microbiol. 49(7), 2822-2827.
- ⁷ Maclean et al., (2008). J. Photochem. Photobiol. B. 92(3) 180-184.
 - ⁸ Rathnasinghe *et al.*, (2021). Sci. Rep. 11(1), 1-10.

Acknowledgements

LGS is supported by an EPSRC Doctoral Training Grant (Reference: EP/R513349/1).