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Abstract 

The formulation of high-concentration monoclonal antibody (mAb) solutions in low dose 
volumes for autoinjector devices poses challenges in manufacturability and patient 
administration due to elevated solution viscosity. In the current study, we present a 
systematic experimental framework for the computational screening of molecular descriptors 
to guide the design of mutants with modified viscosity profiles accompanied by experimental 
evaluation. Our observations using a model anti-IL8 antibody reveal that the reduction in 
viscosity is influenced by the location of hydrophobic interactions, while targeting positively 
charged patches in mAb1 leads to the most significant viscosity increase compared to the 
wild-type mAb. We conclude that existing in silico predictions of physicochemical properties 
exhibit poor correlation with experimental parameters for antibodies with suboptimal 
developability characteristics, emphasizing the necessity for comprehensive case-by-case 
evaluations of mAbs. This approach aids in the rational design of mAbs with tailored solution 
viscosities, ensuring improved manufacturability and patient convenience in self-
administration scenarios. 
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Introduction 

In the realm of modern medicine, therapeutic monoclonal antibodies (mAbs) have emerged 
as indispensable tools in the arsenal against chronic diseases such as diabetes, cancer, and 
autoimmune disorders. Empowering patients with self-administration regimens, 
subcutaneous injection has become the cornerstone of delivering these life-changing 
therapies, necessitating formulation design strategies to accommodate small injection 
volumes. However, this pursuit of patient convenience presents a formidable challenge: how 
to achieve high mAb formulation concentrations (>100 mg/mL) without succumbing to the 
challenges of elevated aggregation propensity and solution viscosity.  

The viscosity of mAb formulations, a critical parameter governing dosing and delivery 
efficacy, is intricately linked to protein-protein interactions arising from the mAb amino acid 
sequence and formulation excipient composition.  
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High concentrations exacerbate these interactions, leading to increased aggregation risk and 
elevated formulation viscosity (>30 centipoise).1 High mAb formulation concentrations result 
in an exponential increase in protein-protein interactions leading to a higher propensity for 
aggregation. Diffusion interaction coefficients (kD) are used to measure protein-protein 
interactions and colloid stability, with high viscosity mAbs generally exhibiting large negative 
kD values (attractive).2–4 

In this pursuit, various strategies have been employed to modulate protein-protein 
interactions and mitigate mAb solution viscosity. These strategies have ranged from the 
alteration of electrostatic properties by changing formulation buffer pH and salt composition, 
to employing viscosity reducing excipients (e.g., amino acids) to increase the solubility of 
partially folded and unfolded states.5–7 Furthermore, advancements in sequence-based 
engineering offer a promising avenue for targeting solvent-accessible electrostatic patches 
on the mAb surface, with the potential to revolutionize the mAb design landscape. 

In the emerging area of precision medicine, the integration of high throughput in silico 
predictions and molecular triaging approaches holds immense potential in streamlining early-
stage discovery campaigns.8–10 By elucidating the intricate relationship between mAb 
molecular descriptors and developability risks,11 these cutting-edge approaches empower 
researchers to more expediently identify candidate mAbs with superior physicochemical 
properties, paving the way for more agile drug development pipelines with less attrition.  

Current landscape analyses and models defining optimal developability for mAbs are based 
on clinically approved drug products with optimal characteristics. However, amidst these 
advancements, it is imperative to broaden our focus beyond clinically approved mAbs and 
encompass those with unknown or sub-optimal developability characteristics. In doing so, 
we expand our understanding of how to navigate high formulation concentration solution 
viscosity more effectively, ultimately enhancing the success rate of mAb drug development 
endeavors.2  

In this manuscript, we harness a range of computational molecular descriptors as a guiding 
tool for the design and triage of a mutant mAb panel disrupting solvent-accessible 
hydrophobic and electrostatic surface patches. Through a combined computational and 
experimental framework, we examine the relationship between single-point mutations and 
the biophysical properties of a model antibody, mAb1. Our findings show site-specific and 
strategy-dependent impact of mutations based on surface patch composition, offering an 
insight into downstream effects of molecular alterations. Here, we report significant 
alterations in surface potential from single-point mutations in the variable region and observe 
favourable developability characteristics for hydrophobic or negative patch-disrupting 
mutants compared to the mAb1 wild-type. We observe correlations between hydrophobicity-
based molecular descriptors as well as colloidal parameters in predicting hydrophobicity-
driven self-associations, impacting solution viscosity at high mAb concentrations. 

Results 

Generation of the mAb1 mutant panel 

Using homology models of mAb1, we compared the impact of targeting solvent-accessible 
hydrophobic and charged patches on solution viscosity at high mAb concentration.12–14 Patch 
analysis of a mAb1 wild-type (WT) IgG1 homology model identified residues contributing to 
positive, negative, and hydrophobic patches as potential candidates for mutation. We then 
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determined physicochemical molecular descriptors and conducted patch analyses on all 
mutants. 

Homology modelling and patch analysis of WT mAb1 
We constructed homology models of the full mAb1 structure and the Fv fragment of WT 
mAb1 in the MOE molecular modelling suite.15 Since the Fab crystal structure (PDB 5OB5) 
matched the framework and CDR regions perfectly, patch analysis was conducted on 
resulting structures (Figure 1A). The electrostatic potential mapped onto the mAb1 surface 
(Figure 1B), shows negative, positive, and hydrophobic patch distributions.  

Figure 1 Homology models of mAb1. a, the full IgG structure was modelled using the PDB 5OB5 template for 
the Fab region and IgG model in the MOE platform The Fc (grey), constant light chain 1 and heavy chain 1 
(blue), variable heavy chain (dark green) variable light chain (light green), heavy chain CDRs (red) and light chain 
CDRs (purple) were labelled using Kabat annotation. b, the hydrophobic (green), positive (blue), and negative 
(red) patches applied onto the full IgG1 homology model to demonstrate the exposed surface charges and 
accessible non-polar regions as potential sites for promoting protein-protein interactions. c, superimposition, and 
alignment of the mAb1 WT full IgG homology model (pink) onto the template 1IGY PDB IgG1 structure (blue) to 
model the Fc structure. d, the Fv region was modelled separately and used for most molecular descriptor 
calculations. e, patch analysis of the Fv to aid identification of candidate sites for single-point mutation. f, 
superimposition and alignment of the mAb1 WT Fv homology construct (pink) onto the template 5OB5 PDB fAb 
structure (blue) that was in complex with the GroBeta ligand (green).  

Overall, we observed the largest contribution to the surface potential of WT mAb1 IgG 
(Figure 1B) from hydrophobic (3,790 Å2), positive (2,940 Å2) and negative (2,250 Å2) 
patches, with a net charge of +22.68 C (pH 6). A similar trend was seen with the mAb1 Fv 
(Figure 1C and D), with surface area coverage of 520, 160, and 50 Å2 for hydrophobic, 
positive and negative patches, respectively, and a net charge of +0.05 C (pH 6). We then 
identified mutant residues in the mAb1 framework and CDRs that would significantly disrupt 
hydrophobic, positive, and negative patches (Supplementary Table S1), potentially 
influencing protein-protein interactions and self-association.  



4 

Patch analysis of mAb1 mutants 
We explored the effects of single point mutations on the mAb1 charge and hydrophobic 
patch distributions, by introducing Fv point mutations. Employing strategies targeting 
positive, hydrophobic, and negative patches, we observed changes in electrostatic surface 
potentials following framework region and CDR mutations (Figure 2).12–14 The mAb1 Fv 
carries a net positive charge (+0.05 C, pH 6.0), with heterogeneous surface charge 
distribution, resulting in asymmetry between heavy and light chain net charges (3.93 C and -
1.23 C, respectively). Patch analysis of the WT Fv revealed significant hydrophobicity (520 
Å

2) with prevalent surface coverage by positive patches (blue).  

Residues with the highest contributions to positive (blue), negative (red), and hydrophobic 
(green) patches were identified from patch analysis of the mAb1 WT Fv homology model. 
Key residues for sequence-based modification included those contributing to positive (blue) 
(e.g., K42, K23, R18, K13, R85 and R70 for the framework region, and R53 and K63 for 
CDRs), negative (red) (e.g., D70, E10, E87, D17 for the framework region, and E30A, D56, 
Q27 and D28 for CDRs) and hydrophobic (green) (e.g., F83, L110, V11, V5 for the 
framework region, and W32, Y99, F57 and Y55 for CDRs, Supplementary Tables S1-S2) 
patches.  

Figure 2 Patch analysis of WT (a) and mutant Fv homology models disrupting hydrophobic patches 
(green- c-b), negative patches (red- d, f), and positive patches (blue- e, g). VL (light green), VH (dark green), 
heavy chain CDRs (red), and light chain CDRs (purple) are shown. The WT (left) and corresponding mutant 
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(right) are represented for each molecule. White arrows show the location of the single point mutation. Dashed 
lines represent residues behind the field of view. 

Global patch analysis of mAb1 Fv mutants (Figure 2) revealed that R�G and K�E mutants 
(positive patch-targeting12) exhibited reduced positive patch coverage, while V/W/L/F�Q 
and F/Y�L mutants (hydrophobic patch-targeting13) showed reduced hydrophobic patch 
area coverage. D�N and E�Q mutants (negative patch-targeting14) displayed a reduction in 
negative patch area coverage. However, these mutations did not exclusively impact the 
targeted patch, with depletion and enhancement of neighbouring patches being observed. 

Next, we computed physicochemical molecular descriptors for all candidate mutant Fv 
homology structures, some of which have shown prior positive or negative correlations with 
viscosity (Supplementary Table S3).16,17 We found that charge-based mutant Fvs resulted 
in changes in predicted net charge, ensemble charge (ens_charge), zeta potential, 
isoelectric point (pI_seq and pI_3D), and light and heavy chain charge imbalance (Fv_chml) 
(Supplementary Table S4). Significant differences in hydrophobicity descriptors were 
observed with mutants targeting hydrophobic patches (Supplementary Table S5).13 The 
therapeutic antibody profiler (TAP)18,19 was used to predict developability risk for each 
candidate mutant (Supplementary Figure S1). All mutants were amber-flagged for 
hydrophobic patches near CDRs, red-flagged for a positive patch targeting mutant (K42E) 
and a hydrophobic patch targeting mutant (W102Q). We evaluated charge symmetry, with 
three positive patch-targeting mutants (K42E, R18G and R53G) being amber flagged. From 
TAP analyses, we identified specific mutants (W102Q, R18G, R53G and K42E) as the ‘least 
developable’ candidates. 

Light chain-heavy chain charge separation 
We observed shifts in charge distribution profiles reflected in Fv_chml and FvCSP 
descriptors, which indicate charge imbalances between heavy (VH net charge) and light 
chains (VL net charge). In all cases, VL net charge was negative (-1.23 C for the mAb1 WT) 
and VH net charge was positive (+3.93 C for the mAb1 WT). Since FvCSP is a product of 
VH and VL charges, we noted a larger difference with negatively-charged VL mutants. For 
example, with VL and VH charges at -1 C and -4 C, respectively, a 1 C drop in VL net 
charge reduced FvCSP from -4 to -8 C. A 1 C reduction in VH net charge reduced FvCSP 
from -4 C to -3 C. When net charges of either VL or VH chain were 0, FvCSP was 0, 
potentially misinterpreted as no existing charge differences between chains.20 This 
underscores the importance of Fv_chml descriptors, which subtract VL charge from VH 
charge.  

Mutants targeting negative patches in VL,14 resulted in a ≤0.91 C charge increase, with a 
similar increase seen for VH mutants. For nearly all VL D�N mutants, we observed 
increased FvCSP and reduced Fv_chml, suggesting enhanced charge symmetry between 
VH and VL chains. However, VH E�Q mutants showed a reduction in FvCSP and increased 
Fv-chml, indicating increased charge imbalance, absent in Q27N. 

Conversely, mutants targeting positive patches12 exhibited increased VL negative charge 
(K42E: -1.9 C), resulting in more negative FvCSP and increased Fv_chml descriptors. VH 
mutants had reduced VH charge, approaching VL charge (~3 C), leading to increased 
FvCSP and decreased Fv_chml, reflecting reduced charge imbalance between VL and VH. 
Mutants primarily targeting hydrophobic patches13 resulted in FvCSP and Fv_chml 
comparable to mAb1 WT. These data emphasise that single-point mutations in VL versus 
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VH depend on parent WT mAb initial charge symmetry and must be evaluated on a case-by-
case basis.  

Triage of candidate mutants 
The mAb1 mutant panel was ranked using a summed normalised score, guiding our 
selection of mutants for expression and physicochemical measurements (Supplementary 
Table S7). We selected two hydrophobic-targeting mutants, four negative patch-targeting 
mutants, and two positive patch-targeting mutants for expression and subsequent 
formulation at high concentration (>200 mg/mL). We anticipated that the W32Q mutant, 
disrupting hydrophobic patches, would significantly reduce viscosity relative to mAb1 WT, 
while mutants disrupting positive patches (R53G and K42E) would likely show increased 
viscosity at high concentrations.  

Biophysical Parameters of the Expressed Mutant Panel 
We aimed to establish a comprehensive measurement pipeline for the expressed mAb1 
mutant panel, correlating these observations with predicted physicochemical descriptors and 
viscosity-related parameters to understand factors underlying elevated viscosity in high-
concentration antibody formulations. We confirmed the sequence identity and post-
translational modifications of WT and mutant mAb1 via mass spectrometry-based peptide 
mapping (Supplementary Table S8). Additionally, all mutants met the monomeric purity 
threshold by aSEC (≥ 95%,) (Supplementary S9). Apart from W32Q (CDRH2 mutant), 
mutants retained antigen binding affinity and kinetics equivalent to WT mAb1 
(Supplementary S10). Next, we analysed the mutants for their hydrophobic, colloidal, 
electrostatic, and conformational properties. 

Electrostatic properties of the mAb1 mutant panel and the correlation between 
predicted and experimental parameters.  
Therapeutic antibodies are typically formulated at high concentrations in the pH 5.2-6.3 
range, where the constant regions exhibit a positive net charge, driving repulsive 
interactions. Variations in charges within the variable region can influence viscosity at high 
concentrations.17,21 

Two strategies were employed to generate mutants, targeting positive and negative patches. 
Therefore, we evaluated electrostatic properties of the mutant mAb1 panel and correlated 
them with viscosity-concentration profiles. Predicted net charge, isoelectric point (pI), and 
zeta-potential based on mAb1 Fv (Supplementary Table S4) were compared with 
experimental measurements (Figure 3).  

Spatial charge distributions of mutants were visualised with two-dimensional maps 
(Supplementary Figure S2 and Table S6) to track changes resulting from single point 
mutations. For example, the D17N mutation led to the loss of a 30 Å2 negative patch and a 
similarly sized hydrophobic patch, with adjacent positive patch surface distributions shifting 
(WT 2D map numbers 9 and 18 � D17N 2D map numbers 10 and 6). Changes in measured 
pI were observed, with increased charge for negative patch disrupting mutants, decreased 
charge for positive patch disrupting mutants, and no significant changes for hydrophobic 
patch disrupting mutants.  (Figure 3e). The majority of mAb1 molecules displayed a 
negative zeta potential (Figure 3f), indicating predominantly attractive forces, except for 
W32Q and D56N, which had a positive zeta potential. D17N and R53G showed significant 
increases in zeta potential, while K42E (a positive patch-disrupting mutant) exhibited a 
reduced zeta potential relative to WT, suggesting increased attractive forces. 
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Figure 3 Negative and positive patch disrupting mutants show a strong correlation between predicted 
and measured PI. a, Poisson-Boltzmann surfaces were mapped onto all mAb1 mutant Fv models, categorised 
by location, demonstrating the impact of single-point mutations on electrostatic distributions around the mutation 
site (marked by an arrow). b-f, Charge-based profiling of mab1 mutant panel with cIEF (N=2) g, correlation 
analyses of zeta-potential showed a weak corelation between the in silico descriptor and experimental zeta-
potential (N=3) (R=0.47). Strong positive correlations were observed for pI_seq and pI_3D (sequence and 
structure based isoelectric point predictions) with the experimental isoelectric points (R=0.99 and 0.94, 
respectively). A one-way ANOVA with Dunnett’s comparison test was used to compare mAb1 mutants with the 
WT. *** denotes a P<0.001, ** P<0.01. Non-significant differences are not represented. R values were computed 
from simple linear regression of in silico molecular descriptors and experimental values.  

We correlated experimental charge data with predicted in silico zeta potential and pI 
descriptors using least-squared polynomial fits (Figure 3g). While no correlation was found 
between the predicted and experimental zeta potential (Pearson correlation coefficient, R 
=0.47), a strong positive correlation was observed for sequence- and structure-based pI 
descriptors and measured pI (R=0.99 and 0.94, respectively). 
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Hydrophobicity of the Mutant MAb1 Panel and the Correlation Between Predicted and 
Measured Parameters.  
As stated above, hydrophobic interactions drive protein-protein interactions and self-
association at high formulation concentrations, potentially leading to elevated viscosity. 
Here, we explored alterations in hydrophobic surface area coverage as a strategy to reduce 
viscosity, correlating predicted hydrophobicity descriptors with experimental measures.13  

Using Hydrophobic Interaction Chromatography (HIC), we probed changes in hydrophobicity 
among the mAb1 mutant panel. We anticipated reduced hydrophobicity for mutants targeting 
hydrophobic patches, and smaller changes for those targeting charged patches (Figure 4 
and Supplementary Figure S4). Indeed, we observed a shorter retention time for W32Q, 
consistent with predicted reduction in hydrophobicity. Unexpectedly, D70N also showed 
reduced retention time compared to WT, contrary to predictions. Interestingly, V5Q, 
predicted to have reduced hydrophobicity, exhibited longer retention time. However, this 
contradicted predictions, possibly due to differences in targeted hydrophobic patch sizes. 
Mutants in the CDRL region (D28N, D56N and R53G) showed longer retention times, 
correlating with spatial hydrophobicity profiles (Supplementary Figure S2 and Table S6). 
Using correlation analysis, we found a strong potential correlation (R=0.87) between 
normalised hydrophobicity score and summed residue contributions to hydrophobic patch 
area (res_hyd), offering insights into ranking the hydrophobicity of mAb1 mutants.  

Figure 4 Hydrophobic Interaction Chromatography (HIC) of the WT and mutant mAb1 panel and 
correlation with predicted hydrophobicity molecular descriptors. a. protein patch surface maps are depicted 
for all mAb1 mutants, filtered for hydrophobic patches (green). b, HIC retention time and c, corresponding HIC 
peak widths for the mAb1 mutants (N=2). Statistical significance was assessed with a one-way ANOVA with 
Dunnett’s comparison test to WT (*** denotes a P<0.001, * P<0.1). Non-significant differences are not 
represented. d, correlation analysis between in silico hydrophobicity descriptors and experimental retention time 
for mAb1 mutants. Strong correlations (R ≥±0.8) are labelled in white. e, scatterplots showing linear correlations 
for mAb1 mutants with density of ellipses P= 0.95. All antibodies are colour-coded according to mutants targeting 
positive (red), negative (blue), and hydrophobic (green) patches.  
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Conformational Stability of the Mutant Mab1 Panel 
We employed intrinsic fluorescence DSF to measure the effects of single-point mutations on 
mAb1 conformational stability. We used first derivative 350/330 nm ratio traces and 
scattering traces were used to calculate the unfolding onset temperature (Tonset), melting 
temperatures, and the temperature of aggregation onset (Tagg). Overall, mutants showed 
comparable thermal stability, except for W32Q and R53G (Supplementary Figure S5 and 
Table S11). W32Q (hydrophobic patch-targeting) exhibited decreased Tonset, Tagg and Tm1, 
suggesting reduced thermal stability. This reduction may stem from the disruption of a large 
hydrophobic patch (150 Å2), critical for stabilising the CDRH2 domain secondary/tertiary 
structure. R53G (positive patch-disrupting mutant), also showed reduced thermal stability 
(decreased Tonset).  

Propensity for interactions promoting self-association. 
AC-SINS and high throughput diffusion self-interaction parameters (kD) were used to 
determine diffusion coefficients (Supplementary Figure S6) as surrogate measures of 
propensity for protein-protein interactions (Figure 5).  



Figure 5 WT and mutant mAb1 panel propensity for self-association as measured with AC-SINS and self-
interaction parameter (kD), categorised by mutation location, and coloured by mutation strategy. All antibodies 
are colour-coded according to mutants targeting positive (red), negative (blue), and hydrophobic (green) 
patches. a, schematic representation of the AC-SINS method and b-e, corresponding AC-SINS data (N=4) f-i, 
the self-interaction parameter calculated from analysis of diffusion coefficients (N=2) measured by DLS (1-30 
mg/mL). A dotted line at -15 mL/g represents an arbitrary threshold for kD. A one-way ANOVA with Dunnett’s 
comparison test to WT (*** denotes a P<0.001, ** P<0.01). Non-significant differences are not represented. j, 
colloidal interaction experimental results (kD and mean red shift) and hydrodynamic size (Z_ave) and the % high 
molecular weight species (soluble aggregates) were cross-correlated with in silico molecular descriptors 
describing the structural accessibility (Res-ASA and BSA_LC_HC), the charge/hydrophobicity ratios, and the 
aggregation propensity scores. These were selected describe the intrinsic biophysical profile of the mAb1 
mutants and their self-interaction propensity. Strong correlations (R ≥±0.8) are labelled in white. 

AC-SINS detects self-association by red shifts in UV-Vis spectra (Figure 5a), indicating 
increased particle size. Compared to the mAb1 WT, D70N and W32Q mutants showed 
reduced red shift in absorbance measurements (Figure 5b, d), suggesting decreased self-
association propensity.  
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The kD parameter, indicative of protein-protein interaction risk, was comparable to WT for all 
mutants except W32Q, which had a notably higher kD (>-15 mL/g), signifying reduced short-
range attractive self-interactions.22 (Figure 5h). D70N showed significant difference in kD 
compared to WT (Figure 5g). Overall, both AC-SINS and kD data suggest reduced 
aggregation risk for W32Q.  

TANGO aggregation propensity scores, serving as in silico predictors of aggregation, 
negatively correlated with kD, soluble aggregates (%HMwS) and hydrodynamic diameter (Z-
Ave) (Figure 5j), indicating solvent exposure plays a key role in driving mAb self-
association.23  

Viscosity-concentration profiles of mAb1 mutants. 
We evaluated the viscosity of the mAb1 panel at various concentrations using microfluidic 
rheometry and compared their viscosity profiles to the WT molecule. Non-Newtonian 
behaviours were not observed across shear sweep experiments (data not shown), so 
average apparent viscosities were determined with exponential growth fits (Figure 6a). 
Among the mutants, D70N (negative patch-disrupting FWRL) and W32Q (hydrophobic 
patch-disrupting CDRH), showed reduced viscosity compared to WT.  

Correlating in silico descriptors with biophysical characterisations 
We correlated all molecular descriptors used for designing mAb1 mutants with their 
biophysical characteristics (Figure 6b). For charge-based in silico descriptors, the strongest 
correlations were observed with mean experimental pI (Figure 3). Weak negative 
correlations were noted between net charge and pI_seq and the mean apparent viscosity 
(R= -0.6). A strong negative correlation was found between patch_cdr_pos area and the 
mean hydrodynamic diameter (R= -0.85).  

Regarding hydrophobicity-based descriptors, strong correlations were observed with HIC 
retention time (Figure 4), affinity (KD), AC-SINS red shift and the self-association parameter 
kD. Some strong correlations were also noted between res_hyd (R=0.89), normalised 
hydrophobicity scores (R=0.88), and hydrophobic patch counts (Fv and near CDRs) (R=-
0.94 and -0.79, respectively) with the Tm1 unfolding temperatures, suggesting the influence 
of exposed hydrophobic patches on conformational stability of these mAb1 mutants. The 
number of hydrophobic patches near CDRs was correlated with the temperature of 
aggregation onset (Tagg). Additionally, a correlation was observed  between the number of 
hydrophobic patches and the % high molecular weight species from the aSEC analysis 
(R=0.86), aligning with hypotheses on the impact of hydrophobic interactions in the 
mechanism for aggregation.24,25 Strong correlations were observed with the TANGO 
aggregation propensity scores to hydrodynamic diameter (R=0.94), HIC retention time 
(R=0.83) and kD (R=-0.8). Finally, strong negative correlations were seen with Tomar and 
Sharma viscosity models, and experimental pIs (-0.98), which is expected as these models 
are primarily based on charge-related parameters. 
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Figure 6 mAb1 mutant panel viscosity correlation heatmap. a, Mean apparent viscosity-concentration profiles measured at 25 °C for all mAb1 variants (<120 mg/mL). 
Dotted grey line at 30cP represents ‘acceptable viscosity’. All measurement data were fitted to exponential growth equations through a least squares fitting method. b, 
correlation heat map values are reported with strong correlations (R >±0.8) in white font.
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Discussion 

The goal of this work was to assess how single-point mutations affect surface exposed 
electrostatic parameters, hydrophobicity, colloidal, and viscosity behaviour at high 
formulation concentration in an anti-IL-8 mAb, known for its high solution viscosity at 
elevated concentrations. We applied three sequence-structure based strategies to design 
mutants targeting charged (positive and negative) and hydrophobic patches, aiming to 
compare their effectiveness in predicting and engineering mAb1 developability 
properties.26,27  

Our in silico predictions of mAb1 physicochemical descriptors revealed notable changes in 
surface-exposed charged and hydrophobic patches. While mutations in the CDR have 
previously been associated with reduced mAb viscosity and antigen affinity loss, we 
expanded our screening to include mutants in the mAb1 heavy and light chain framework 
regions (Supplementary Table S10) 4,28 Except for W32Q (a CDRH mutation), all mutants 
maintained binding affinities for IL-8 equivalent to the WT mAb1 (3.9 nM). W32Q, however, 
exhibited a five-fold reduction in hydrophobic patch area coverage, suggesting a critical role 
for tryptophan in antigen binding. This observation aligns with prior studies, where 
substituting the tryptophan with non-polar and polar amino acids retained binding affinity for 
phenylalanine mutants, emphasising the importance of the aromatic ring in antigen binding.29  

We found most mAb1 properties- including monomeric purity and aggregation status- were 
acceptable for all mAb1 mutants and equivalent to the WT. Overall, point mutations in mAb1 
positive and negative patches significantly altered surface potential, inferred colloidal 
stability, charge heterogeneity and net charge (Figure 3).  

Charge-disrupting mutants do not mitigate for elevated viscosity at high-
concentration  

Adjusting the electrostatic surface potential of mAbs is routinely explored during formulation 
development, focusing on buffer composition, which alters the excluded volume of the 
protein in solution (the electroviscous effect).30,31 Chow et al.12 demonstrated viscosity 
reductions in an IgG4 Fab fragment by reducing charge imbalance across the Fv (R→G and 
K→E mutants), indicating the impact of positive patch disruption on protein-protein 
interactions. Conversely, Apgar et al.14 observed viscosity reduction in mAbs by reducing 
negative charge, as evidenced by viscosity reduction for D→E to N→Q mutants.26  

In the current study, the mAb1 WT Fv homology construct exhibited a high proportion of 
positive patches, indicating a potentially high baseline electrostatic potential with 
developability risks. We used various in silico molecular descriptors (supplementary 
information) to assess developability risks arising from mab1 electrostatic properties. We 
found negative patch-disrupting mutants reduced charge imbalance17, increased net 
charge,32 and ensemble charges,20 which have previously been correlated with viscosity 
reduction. These mutants also exhibited higher pIs, potentially enhancing mAb1 colloidal 
stability. Conversely, positive patch-disrupting mutants showed reduced ensemble charges 
and significantly decreased pIs, suggesting diminished colloidal stability. 

Zeta potential measurements were conducted on all mAb1 mutants, revealing predominantly 
negative values consistent with a net negative surface charge observed in the WT mAb1 (pH 
6.0). Notably, the K42E mutant exhibited a significantly lower zeta potential compared to the 
WT, supporting the notion that mutants disrupting positive patches tend to have more 
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negative zeta potentials. Conversely, the W32Q and D56N mutants showed positive zeta 
potentials, indicating predominant repulsive surface forces associated with hydrophobic and 
negative patch-disrupting CDR mutants, potentially indicating enhanced colloidal stability. 
Interestingly, no correlation was found between zeta potential and mutant pI, exemplified by 
the R53G, which resulted in an increased zeta potential despite having the second-lowest pI 
value in the mutant panel.  

TAP predictions provide charge-based metrics for the mAb1 mutants, with flags indicating 
charge symmetry primarily in R53G and K42E positive patch targeting mutants 
(Supplementary Figure S1). However, all TAP scores for both positive and negative 
disrupting mutants fell within an ‘acceptable’ range, suggesting limited discriminatory power 
of TAP. This lack of differentiation in TAP scores has been noted in previous studies, 
highlighting potential limitations in its applicability for comprehensive mAb characterization.2  

Mutants targeting hydrophobic patches exhibit altered viscosity 

Research strategies have explored strategies beyond neutralising charged patches to 
reduce hydrophobic interactions, for mitigating high concentration mAb stability and viscosity 
risks.13 We computed hydrophobicity-based descriptors for correlation with viscosity and 
developability, and compared these with HIC retention times (Figure 4). Our analyses 
revealed a reduced hydrophobicity for W32Q, consistent with its predicted decrease in 
solvent-accessible hydrophobic patch area. However, smaller changes in hydrophobic patch 
area coverage were undetectable via HIC. Mutants with the lowest HIC retention times 
demonstrated lower solution viscosities (Figure 6), indicating a significant role for 
hydrophobic interactions in driving self-association. Strong correlations were observed 
between hydrophobic-based in silico descriptors and the observed HIC retention times for 
the mAb1 mutant panel, highlighting the predictive power of these descriptors in 
understanding viscosity behaviour.  

Various research efforts have explored colloidal self-interaction as part of early mAb 
developability assessments.33 The B22 or A2 second virial coefficient and the self-interaction 
parameter, kD, are key metrics capturing the thermodynamic effects of self-associating mAbs 
at dilute mAb concentrations.34 Negative values for B22 and kD indicate attractive protein-
protein interactions, associated with decreased formulation stability and increased solution 
viscosity at high concentrations.8, 12, 35 In this study, all mAb1 mutants exhibited negative kD 
values, with the W32Q mutant showing a less negative kD, aligning with its reduced 
hydrophobicity. The AC-SINS assay further supported reduced self-association propensity 
for W32Q, consistent with the measured kD (Figure 5). Trends were observed between 
colloidal parameters measured at lower mAb1 concentrations and viscosity-concentration 
profiles (<120mg/mL), indicating reduced self-association propensities and viscosities for 
D70N and W32Q.  

Most mutants showed similar unfolding temperatures to the WT, except for W32Q, 
suggesting a critical role for tryptophan in maintaining a large hydrophobic patch in the 
CDRH2, which impart stability which is lost upon mutation (Supplementary Figure S5). This 
reduced thermal stability also aligns with the observed reduction in antigen binding for 
W32Q.  

Overall trends for each mAb1 molecule in relation to in silico physicochemical descriptors 
and experimental parameters correlated with developability. Kingsbury et al.2 correlated 
multiple in silico parameters with opalescence and viscosity for a dataset of 59 commercial 
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mAbs and observed significant clustering with measured pI, effective charge and charge 
imbalances related to solution behaviour. Overall, we summarise the WT and mAb1 rankings 
across in silico and experimental molecular descriptors in Figure 7. 

Figure 7 Ranking matrix for the mAb1 mutant panel A colour-coded from min-max ranking in order of 
decreasing developability, and categorised by experimental parameters and molecular descriptors.  

This is the first study that enables comparison of predictive and empirical approaches to 
understand the role of electrostatic and hydrophobic patch targeting in altering viscosity in 
the same mAb molecule. While our findings offer valuable insight into these strategies, there 
are associated limitations. Unlike previous reports,9 we did not observe specific trends in 
viscosity reduction based on mutation site (CDR versus FWR) in the mAb1 scaffold. Given 
the variability in charge and non-polar patch distribution among individual mAbs, generalised 
approaches to reduce molecular interactions driving self-associations may not be suitable 
and require a systematic design-build-test-learn approach. While we explored single-point 
mutations, sequence engineering may require multiple mutation sites for improved 
developability. Previous studies have shown enhanced viscosity reduction through combined 
substitutions in both VH and VL regions.36 Additionally, our computational simulations 
focused on Fv models and did not consider the influence of hinge and constant domains on 
biophysical characteristics such as charge and hydrophobicity. 

Early-stage assessment of pharmaceutical candidates is crucial for guiding decisions on 
clinical translation. Various industry-wide criteria are used to triage lead biomolecules, and 
the use of data-driven sequence-engineering strategies to optimise lead candidates 
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represents a growing field. Our investigation shows that trends observed from molecular 
descriptors to biophysical properties have a strong dependence on the mutation strategy 
employed. We find that mutations with significant reductions in hydrophobic patches 
significantly improved mAb solution viscosity, suggesting the predictive power of 
hydrophobic-based descriptors. However, mutations altering electrostatic patch coverage 
alone were insufficient to impact viscosity, irrespective of mutation site. Integrating deep 
learning approaches holds promise for deeper mechanistic insights into mAb developability, 
yet challenges such as wider data availability in the pre-competitive research landscape 
remain. Our study highlights the importance of considering both sequence-based and 
structural alterations in optimising mAb developability characteristics.  

Materials and Methods 

Computational methods. 
In silico homology modelling and antibody molecular descriptor calculations were performed 
in the Molecular Operating Environment (MOE) software, version 2020.0901 (Chemical 
Computing Group, Montreal, Canada).  

Homology modelling. Full sequences of the heavy and light chains of an immunoglobulin 
G1 (IgG1) wild-type (WT) molecule were inputted as FASTA format into the MOE sequence 
editor and annotated with a Kabat numbering scheme. The Antibody modeller in MOE 
(version 2020.0901) was used to search for similar sequences with solved antibody 
structures as a template for homology constructs. The variable fragment (Fv) of mAb1 is 
published as PDB ID: 5OB5 (fAb complex with GroBeta). Fv fragments and full IgG 
structures were modelled by selecting ‘variable domain’ and ‘immunoglobulin’ model types, 
respectively. The immunoglobulin model type uses the 1IGY PDB structure as a template to 
model the Fc region. A refinement gradient limit value of 1 was applied, and C-termini were 
capped with neutral residues, and superimposed to confirm alignment of structures 
(Supplementary Figures S1-S2). Partial charges were added to all atoms, and energy 
minimization performed using the AMBER10:EHT default forcefield. The Protein Silo 
(PSILO) database was used to locate sites of hydrogen bonding and other potential 
interactions with the GroBeta ligand in complex with the Fv.  

Patch analysis and identification of the mutant panel. The protein patch tool in MOE was 
applied to the WT Fv homology construct to identify electrostatic and hydrophobic surface 
patches. To aid visualisation of smaller surface patches, we set the following parameter 
thresholds: hydrophobic cut-off: ≥0.09 kcal/mol, hydrophobic min area: ≥30 Å2, charge cut-
off: ≥30 kcal/mol/C, charge min area: ≥30 Å2, probe sphere radius: 1.8 Å.  The residue 
contribution to the surface patches was analyzed using the Protein Properties tool, selecting 
the ‘res_hyd’, ‘res_pos’ and ‘res_neg’ descriptors. The top scoring residues were then 
selected as candidate residues for mutations, excluding terminal residues (Supplementary 
Table S1). Three approaches were implemented to alter solvent-accessible charged 
patches, by i) substituting aromatic hydrophobic residues to leucine or glutamine (L or Q),13 
and ii) substituting positively-charged residues (e.g., N or R) to glutamic acid or glycine (E or 
G),12 and iii) substituting negatively-charged glutamic acid or aspartic acid (E or D) to 
positive residues (e.g., N).14 We used Residue Scan in MOE to introduce point mutations in 
the WT mAb1 Fv IgG1 sequence.  



18 

Predicted physicochemical descriptors. We computed a range of physicochemical 
descriptors (Supplementary Table S2) for each Fv model using the MOE Protein Properties 
tool. A NaCl concentration of 0.1 M was used to mimic the ionic strength of the formulation 
buffer (pH 6). Hydrophobic imbalance and buried surface area, Fv_chml values were 
generated through BioMOE (version 2021-11-18, Chemical Computing Group, Montreal, 
Canada) for models protonated to pH 6 using the QuickPrep tool.  

TANGO aggregation propensity (http://tango.crg.es/tango.jsp).37,38 TANGO aggregation 
was used to predict the sequence-based propensity for beta-sheet formation for all mutants.  

Ranking mAb1 mutants. Candidate mAb1 mutant variants were ranked using a min-max 
normalisation method to triage mutants for further investigation. Physicochemical descriptors 
were selected based on prior correlations with viscosity and weighted evenly. Hydrophobic 
index, TANGO aggregation propensity, the normalised hydrophobic score (proportion of 
exposed hydrophobic areas (Res_hyd) to the total exposed surface area (Res_ASA)), zeta 
potential, buried surface area between heavy and light chains (BSA) and the ensemble 
charge (ens_charge) were parameters used for ranking. Descriptor values were normalised 
between 0-1 (Equation 3).  
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Where NDV is the normalised value for a mutant, x is the actual descriptor value for a 
mutant, and xmin and xmax are the minimum and maximum values found in the mutant panel 
for that descriptor.  

A normalised score was calculated by summing each normalised descriptor value (Equation 
4.A), or summing 1- normalised descriptor value for descriptors correlating negatively with
elevated viscosity (Equation 4.B). Therefore, a lower normalised score overall represented a
reduced hypothetical viscosity.
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DeepSCM (https://github.com/Lailabcode/DeepSCM).26 We used the spatial charge map to 
rank mutants by calculating the charge of side chain atoms of exposed residues of a 
homology Fv model over molecular dynamics simulations.26,39 We inputted mAb1 IgG Fv 
sequences were inputted as separate heavy and light chain FASTA files and the code was 
ran in a terminal.  
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Protein Expression and Purification. Chinese Hamster Ovary (CHO) K1 GS-KO 
(glutamine-synthetase-knockout) cells were used for expression of the mAb1 panel. 
Sequences for mAb1 variants underwent codon optimisation and plasmid generation by 
Atum Biosciences. The heavy and light chain genes were inserted into a large backbone 
with a cytomegalovirus (CMV) promoter (Newark, California, USA). Leap-in Transposase® 
pD2500 vectors with a CMV promoter including glutamine synthetase (for selection) and 
heavy and light chain insertions were nucleofected into CHO cells. Cells were maintained 
under selection conditions as stable pooled cultures. A fed-batch production process was 
employed over 15 days, with glucose and supplementary amino acid feeds added at various 
intervals. Expression media were harvested and the supernatant clarified by centrifugation at 
4 °C (4,000 g for 20 minutes) and sterile-filtered. Protein L chromatography on an ÄKTA 
Avant 150 system (Cytiva, Danaher, USA) was used for purification, followed by a cation 
exchange polishing step to achieve ≥95% monomeric purity. The purified mAbs were 
concentrated, diafiltered and buffer exchanged into formulation buffer containing histidine, 
trehalose, and arginine (pH 6) to a final concentration of ≥200 mg/mL using the Ambr 
Crossflow system (Sartorius, Germany).  

Analysis of the WT and mutant mAb1 panel biophysical parameters 

Analysis of mAb1 identity and purity. Peptide mapping was used to confirm the full 
sequence identity for the mAb1 WT and mutant panel. The monomeric purity of WT and 
mutant mAb1 variants was analysed by analytical size exclusion chromatography (aSEC) 
with UV detection (supplementary information).  

Hydrophobic interaction chromatography. Hydrophobicity of the mAb1 panel was 
assessed via hydrophobic interaction chromatography (HIC) with UV detection. A PolyLC 
PolyPROPUL 4.6 x 100 mm column was used on an Agilent 1260 series HPLC (Agilent, 
California, US). The mobile phase A contained high salt (1.3 M ammonium sulfate) in a 
potassium phosphate buffer (50 mM, pH 7), with stepwise gradient segments. All samples 
were analysed at a concentration of 1 mg/mL (with a 5 μL injection) at a flow rate of 0.7 
mL/min and detected at 214 and 280 nm wavelengths.  

Zeta potential. A Malvern Zetasizer (Malvern Panalytical, Malvern, UK) with a 633 nm laser 
was used to measure zeta potential by electrophoretic light scattering. The default settings 
included an equilibration time of 120s, automatic attenuation and 10-100 measurement runs. 
A 60-second pause was added between measurements and three technical replicate 
measurements were performed. Both the WT and mutant mAb1 molecules were prepared in 
formulation buffer and filtered prior to analysis.  

Diffusion self-interaction parameter. We used a stunner (Unchained Labs, CA, USA) 
dynamic light scattering setup to measure hydrodynamic size, polydispersity, and the 
diffusion coefficient for each mAb1 mutant. Data were analysed using the Lunatic & Stunner 
Client software (version 8.1.0.254). The measurement temperature was set as 25 ℃ and
five, 10-second measurements were acquired with a corresponding 1% extinction coefficient 
of 1.55AU*L/(g*cm) for all samples. Custom dispersant settings were applied (viscosity 1.26 
cP and refractive index 1.33 at 20 °C) and all mAbs were prepared in formulation buffer (0.5-
20 mg/mL) for WT and mutant variants. The Lunatic & Stunner software (v8.1.0.244) were 
used for data export, and corresponding diffusion coefficients were used to calculate 
interaction parameters (kD) using linear regression plots.  

���� � ���1 � 	�
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Where Dapp refers to the apparent diffusion coefficient, D0 the self-diffusion coefficient at 
infinite dilution, and kD the interaction parameter. 

Analysis of mAb1 charge distribution profile. We used the iCE3 capillary isoelectric 
focusing instrument with a PrinCE autosampler (Protein Simple) to measure charge 
distribution profiles. A range of pI markers (pI 3.85-8.77) were used to capture all main and 
impurity isoforms for each sample (Bio-Teche, Protein Simple, USA). To minimise self-
association, we used 2M urea and ampholytes (Bio-Teche, Protein Simple, USA) in the pH 
3.0-10.0 and 8.0-10.5 ranges at a 1:1 ratio in the buffer mix. All samples were diluted to 1 
mg/mL in deionised water prior to a final dilution to 0.4 mg/mL in analyte buffer. The iCE3 
instrument was set to the following parameters: a pre-focus voltage of 1,500 V; a 10-12-
minute focus voltage of 3,000 V; an autosampler and transfer capillary temperature of 15 °C; 
UV detection at 280 nm; a sample injection pressure of 2,000 mbar; a pre-focus time of 1 
min; and a focus time of 10-12 min. All data were imported to the Empower 3 software (v4, 
Waters, US) for analysis.  

Analysis of mAb1 self-interaction. We used Affinity-Capture Self-Interaction Nanoparticle 
Spectroscopy (AC-SINS) to assess self-association propensity in the mAb1 panel. Goat anti-
human Fc and whole goat IgG antibodies (Jackson ImmunoResearch, PA, USA) were 
prepared in 20 mM acetate buffer (pH 4.3) and diluted to achieve final concentrations of 320 
µg anti-Fc IgG and 80 µg goat whole IgG, then mixed with 20 nM colloidal gold nanoparticle 
suspension (Ted Pella Inc., CA, USA, concentration 7.0 x 1011 particles /mL). After 
incubation and centrifugation, mAb1 test samples were prepared at 50 μg/mL in phosphate-
buffered saline (Gibco, Thermo Fisher Scientific, MA, USA). Aliquots (99 μL) of each sample 
were added to wells of a 96-well plate, with 11 μL of gold nanoparticle suspension added to 
each well, resulting in a final solution concentration of 50 µg/mL test mAb, 10x bead:anti-Fc 
conjugate and 0.02 mg/mL PEG2000. All samples were mixed, incubated for 90 minutes and 
gently centrifuged to remove air bubbles. Following incubation, the absorbance spectra (450-
650 nm) of the antibody-gold conjugates and analysed using a Pherastar FSX (BMG 
Labtech Ltd., Germany) plate reader. The spectra were analysed with MARS software 
(v3.32, BMG Labtech Ltd., Germany), applying smoothing to the best fit curves and the 
difference in plasmon wavelengths for each sample was calculated. Experimental cutoffs 
included a <535 nm wavelength for negative controls (i.e., buffer), and a red shift of >10 nm 
was flagged as a candidate at high risk of self-association. 

Analysis of unfolding temperatures. Thermal differential scanning fluorimetry (DSF) 
measurements were performed using a Prometheus NT.48 (NanoTemper Technologies, 
Germany) equipped with back-reflection technology for high-throughput analysis of unfolding 
temperature (Tm), calculated from the intrinsic fluorescence intensity ratio of tyrosine and 
tryptophan (350/330 nm).40 Prior to each experiment, the excitation power was set to 
achieve ≥5,000 counts in the discovery scan. Corresponding profiles were analysed in 
Prometheus NT.48 and the first derivative calculated. A temperature ramp of 2°C/minute 
from 20-95 °C was performed for each set of capillaries. Drop lines were assessed and 
corrected, to determine first-derivative peaks, marking the unfolding temperatures of 
antibody domains (Tm1 to Tm3) and the unfolding onset (Tonset). The first derivative peak of the 
scattering profile marked the aggregation temperature (Tagg) values. 

Viscosity measurement. Viscosity curves were generated using the VROC Initium 
(Rheosense, United States). The protocol was optimised to measure viscosity samples using 
the ‘Auto’ shear rate function and fixed shear rates ranging from 100-2000 s-1. The resulting 
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data were filtered based on specific criteria, including the exclusion of priming segments, 
ensuring the percent full scale fell within the 5-95% range, maintaining an R2 fit of the 
pressure sensor position of ≥0.998, and steady plateaus with no drift in transient curves. 
Exponential-growth decay fits were applied to each viscosity-concentration curve.  

Statistical approaches. GraphPad Prism (v5.04) was used for plotting scatter plots and bar 
graphs, and ANOVA statistical analysis to determine significant differences in experimental 
data. JMP Pro (v16.0.0, 2021) was used for the multivariate analyses of computational and 
experimental data to establish existing correlations.  

Data Availability. The authors declare that all data needed to support the findings of this 
study are presented in the body of this article and the supplementary information.  
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