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Highlights

• Kisspeptins (KPs) were first discovered to have antimetastatic action. Histori-

cally, a role in reproduction was demonstrated. Today, there is growing experi-

mental and clinical evidence that KPs and their receptors regulate metabolism.

• Disruption of KP and receptor interaction provides an interesting approach

to treating metabolic conditions, as well as reproductive disorders.

• Clinical trials have focused mainly on treating reproductive dysfunctions; how-

ever, greater understanding of the biology and mechanisms of action of KPs is

being used in the therapeutic armory against insulin-related dysfunctions.

• Linkage between reproduction and metabolism via the KP system also

allows for therapeutic targeting.
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Abstract

Kisspeptins (KPs) are proteins that were first recognized to have antimetastatic

action. Later, the critical role of this peptide in the regulation of reproduction

was proved. In recent years, evidence has been accumulated supporting a role

for KPs in regulating metabolic processes in a sexual dimorphic manner. It has

been proposed that KPs regulate metabolism both indirectly via gonadal hor-

mones and/or directly via the kisspeptin receptor in the brain, brown adipose

tissue, and pancreas. The aim of the review is to provide both experimental

and clinical evidence indicating that KPs are peptides linking metabolism and

reproduction. We propose that KPs could be used as a potential target to treat

both metabolic and reproductive abnormalities. Thus, we focus on the conse-

quences of disruptions in KPs and their receptors in metabolic conditions such

as diabetes, undernutrition, obesity, and reproductive disorders (hypogonado-

tropic hypogonadism and polycystic ovary syndrome). Data from both animal

models and human subjects indicate that alterations in KPs in the case of met-

abolic imbalance lead also to disruptions in reproductive functions. Changes

both in the hypothalamic and peripheral KP systems in animal models of the

aforementioned disorders are discussed. Finally, an overview of current clini-

cal studies involving KP in fertility and metabolism show fewer studies on

metabolism (15%) and only one to date on both. Presented data indicate a

dynamic and emerging field of KP studies as possible therapeutic targets in

treatments of both reproductive and metabolic dysfunctions.
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1 | INTRODUCTION

1.1 | Emerging functions of
kisspeptins (KPs)

The role of kisspeptins (KPs) was first investigated in the
field of oncology as an antimetastatic factor, known as
metastin, later in reproductive biology, and more recently
in the control of metabolic functions.1–3 Their effect has
an impact throughout the body, including the brain,
reproductive organs, pancreas, cardiovascular system,
and kidneys.4

The unraveling of the complexities of this family of
peptides in the regulation of reproduction began with the
concept of the existence of hypothalamic releasing hor-
mones and subsequent gonadotropin-releasing hormone
(GnRH).5 However, it was recognized that GnRH was
not the sole regulator of reproductive function, particu-
larly as satisfactory explanations could not be found for
the pulsatile release of GnRH and the onset of puberty.
Hence, some other factor(s) had to be involved. Growing
evidence from genetic loss-of-function variant studies in
the early 2000s led to the understanding of the involve-
ment of KPs in GnRH release6 and the regulation of
puberty.7–9 This was surprising because knowledge of KP
and the KISS1 gene was already established in an antime-
tastasis role.10

1.2 | KP and its receptor

The gene for KP was named KISS1 as it was first cloned
in Hershey, Pennsylvania, a city known for making choc-
olate kisses.11 The 54 amino acid peptide, Kisspeptin-54
(Kp-54), is the major known fraction. Figure 1 shows
how different fractions of KPs are derived from the first
transcription of KISS1, which consists of 145 amino acids
(pre-pro-kisspeptin) that are then proteolytically cleaved
to produce Kp-54 and the less common Kp-14, Kp-13,
and Kp-10 peptides.14

KISS1 mRNA is widely expressed in numerous tissues
including the placenta,15 testis,16 ovaries,17 liver,18

pancreas,19 small intestine,7 and crucially in the central
nervous system (CNS), in particular the hypothalamus,
where KISS1 is a key regulator in fertility.20,21 It is impor-
tant to note that in the hypothalmus, expression of kis-
speptin and its receptor varies considerably depending on
the species and gender and throughout the life stage of
an organism.22 Aligned with its role in the development
and regulation of cancers, KISS1 and its receptor are also
found in a number of human cancers including breast
and prostate, where they can serve as both prognostic
biomarkers and therapeutic targets.23 The receptor is

classed as a G-protein coupled receptor (GPCR) with
weak homology to galanin receptors.24 The human KP
receptor (KISS1R) is also known as AXOR12, HH8, and
hOT7T175, with the most common name being GPR54.25

The way in which the KPs interact with the receptor has
been reviewed by Trevisan et al.14

1.3 | Role of KP in reproduction

Fertility and reproductive function are regulated via the
hypothalamic–pituitary-gonadal axis (HPG). This is a
complex neurohormonal system of control, driven by
GnRH in the hypothalamus, luteinizing hormone (LH),
and follicle-stimulating hormone (FSH) in the pituitary
and then steroids in the gonads.

Although known in the 1970s that the initiation of
mammalian sexual maturation requires the activation
of the hypothalamic GnRH neurons,26 the mechanism
responsible for it remained unknown. The key role of KP
in the stimulation of GnRH neurons and, consequently,
in the initiation of sexual maturation has been demon-
strated by scientists led by the De Roux group,27 on what
was then referred to as family-related idiopathic hypogo-
nadotrophic hypogonadism (IHH). In the siblings of an
examined child, four out of five brothers developed symp-
toms of IHH (characterized as undeveloped testes, no
pubic hair, and a 15-year-old skeletal system), and one of
two sisters showed symptoms of partial hypogonadism
(her breasts developed only partially and up to the age of
16 had only had one menstrual period). Each of his sib-
lings had low blood levels of gonadotropins and gonadal
hormones, and further tests showed that the family had a
KISS1R gene variant. Based on these studies it was con-
cluded that the KISS1/KISS1R system is responsible for
initiating sexual maturation. Further, the research of
Seminara et al,8 who diagnosed the syndrome of IHH in
six members (four men and two women) of a family,
showed it was due to a KISS1 gene variant. The impor-
tance of the KISS/KISS1R system in the proper function-
ing of the HPG axis was also confirmed by later work of
this group on mice with a Kiss1r gene variant. Thus, KP
is essential in the initiation of puberty. KISS1R activates
phospholipase C (PLC) when it is coupled to the G pro-
tein subunit, Gq/11α.14 PLC activation causes phosphati-
dylinositol bisphosphate to be hydrolyzed and form
diacylglycerol (DAG).28 DAG activates protein kinase C,
which phosphorylates mitogen-activated protein kinases
that then serve as activators for β-arrestin and inositol-1,-
4,5-triphosphate.29 As a result of these cascades, calcium
is released intracellularly to depolarize the neuron.30 Cal-
cium levels may increase intracellularly as a result of
PLC-independent mechanisms, leading to opening

2 of 14 SLIWOWSKA ET AL.

 17530407, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1753-0407.13541 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



potassium channels and nonselective cation channels.31

Synapses are formed between KP and GnRH expressing
neurons and KP neurons are depolarized, as are GnRH
neurons. This depolarization causes release of LH and
FSH.32,33 Prolonged exposure to KP desensitizes
KISS1R.32 KP administration stimulates gonadotropin
secretion in a wide range of species including rodents,
goats, sheep, pigs, cows, horses, and monkeys34 as well as
humans.35–37

In the peripheral reproductive system there is evi-
dence that KP and KISS1R play a role in local control of
reproductive function within the ovary, testis, uterus,
and placenta.38 Furthermore, KP is involved in all stages
of reproduction including onset of puberty, menstrual
cycle, pregnancy and in the menopause.14,39 The
response of KP in both genders is different and the roles
of KP and GnRH are reviewed comprehensively by Mar-
quez et al.40

FIGURE 1 Kisspeptin and the human GPR54 structure. (A) Schematic diagram showing pre-pro-kisspeptin and the proteolytic cleavage

pathway from which active kisspeptins Kp-10, Kp-13, Kp-14, and Kp-54 occur. (B) The 3-dimensional Cryo-EM structure of CPR54 (SWISS-

MODEL, SMLT ID: 7xjk.1).12 The membrane bilayer is indicated by the black double lines and the transmembrane helices of CPR54 and

colored and numbered (Helix1: blue, Helix2: red, Helix3: yellow, Helix4: green, Helix5: cyan, Helix6: purple, and Helix7: pink), whereas the

extra- and intracellular loops are depicted with black color. The dashed lines indicate the missing segments of the GPR54 reported crystal

structure. Image was made using the VMD software.13 GPR54, G-protein-coupled receptor; KP, kisspeptin.

SLIWOWSKA ET AL. 3 of 14

 17530407, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1753-0407.13541 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1.4 | KP does not act alone

Within the hypothalamic arcuate nucleus (ARC), KP acts
together with two cotransmitters: neurokinin B (NKB)
and dynorphin (Dyn). The neurons responsible in the
ARC are called KNDy (from the first letter of peptides: K
– kisspeptin, N – neurokinin B, D – dynorphin).41 In
rodents, NKB is a tachykinin peptide that binds to the
NK3R.42 TAC3 is the name for NKB in humans, which
acts on TAC3R.43,44 Dyn belongs to a class of endogenous
opioid peptides that act on opioid kappa receptors.45 In
the hypothalamus, KP release is stimulated by NKB and
inhibited by Dyn.46 However, there are species differ-
ences in the colocalization of the aforementioned pep-
tides, and a low degree of overlap between KP, NKB, and
Dyn immunoreactivities found in the infundibular recess
(equivalent to the ARC) of young men challenges KNDy
neuron concepts in humans.47 For further information,
refer to the comprehensive review of the KNDy hypothe-
sis by Lehman et al.48 In mammals, besides the popula-
tion of KP neurons in the ARC there is another
population of KP-synthesizing neurons in the anterior
preoptic area. In rodents, KP neurons are located in two
main populations of the rostral periventricular area of
the third ventricle (RP3V) and in the ARC.48 In humans,
both KP cell populations are also present, with the major-
ity of neurons localized in the infundibular nucleus.49,50

Preovulatory surge of GnRH and LH are controlled by
the first group of cells, and pulsatile LH release is gov-
erned by the second one that projects onto GnRH. Estra-
diol (E2) works in the opposite manner on both
populations of KP neurons. Whereas in the RP3V, KP
synthesis51 is enhanced by E2, in the ARC, estradiol
inhibits the synthesis of KP. Our understanding of the
KNDy neuronal network is critical to identifying new
roles for KP, not only in reproduction.

1.5 | KP as a neuropeptide linking
metabolism and reproduction and possible
tool to treat both metabolic and
reproduction dysfunction

Although KP control of reproduction is very well estab-
lished, its involvement in metabolism regulations is still
emerging. However, there are also interconnections
between these two processes.

First, reproduction, which is necessary for the perpet-
uation of the species, is very costly in terms of energy
consumption. Maturation and function of the HPG axis
are tightly connected with the energy status of an individ-
ual.52 Historically, in paleolithic ages, symbols of fertility
were presented as overweight women. Much later, in the

1960s and 1970s, the critical fat mass hypothesis was for-
mulated that stated a need for a certain threshold of body
fat mass to be reached in order for the attainment of
menarche and for maintaining reproductive function
later in life.53

However, today there is a worldwide epidemic of obe-
sity, and positive energy balance (especially excessive
consumption of foods, high in sugars and fats), reduced
physical activity, sedentary lifestyle, and limited physical
activity are factors contributing to the development of
this metabolic condition.54 Moreover, this type of lifestyle
promotes development of type 2 diabetes (T2D), which
accounts for 90% of diabetes cases. In these patients
besides metabolic problems, there are multiple secondary
physiological alterations including disruptions of the
menstrual cycle, premature childbirth, miscarriages,
decrease in testosterone concentrations in men, and fer-
tility impairment in both sexes.55,56 In men, obesity is
also associated with impaired gonadal function and hypo-
gonadism.57 It has been hypothesized that testosterone
(T) deficiency reported in obese and T2D patients is con-
nected with decreased endogenous KP secretion and
alterations in metabolic and endocrine factors.58

In women with polycystic ovary syndrome (PCOS),
obesity is common. It is pertinent to note that in Eastern
Europe and America, about 50% of women are over-
weight.56,59–62 KP levels are reportedly higher in women
with PCOS, and an overactive KISS system enhances
HPG-axis activity. This in turn results in irregular men-
strual cycles and excessive androgen release in these
women (reviewed in63). Moreover, fertility can be
affected by factors such as body weight (BW) and compo-
sition, physical activity, and nutrient intake.64 Impair-
ment of the HPG axis, oocyte quality, and uterine
receptivity have been reported in overweight and obese
women.65,66 On the other hand, obese men show a total
sperm count lower than normal weight controls.67 Evi-
dence suggests that physical activity and a proper diet
could significantly improve reproductive outcomes.64

Additionally, clinical data identify that a KP agonist,
MVT-602, could be a potential drug for treatment of
female reproductive disorders.68 KP-10 administration
stimulates serum T and LH secretion in men with T2D
and mild hypogonadism.69 Thus, the data support links
between metabolism and reproduction and the role of KP
in treatment of these conditions.

The World Health Organization provides the follow-
ing definitions of being overweight and obese as abnor-
mal or excessive fat accumulation that is a risk to health.
Moreover, a body mass index (BMI) >25 kg/m2 is catego-
rized as overweight, and >30 as obese.70 However, scien-
tific findings indicate that the interplay between
reproduction and metabolism occurs within the CNS, in
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particular in the ARC. Here, several populations of neu-
rons control food intake and metabolism such as neuro-
peptide Y (NPY), proopiomelanocrtin (POMC), cocaine
and amphetamine-regulated transcript, and a population
express agouti-related peptide.71,72 Besides these peptides,
there is strong evidence that KP neurons in the ARC play
a role in conveying information on metabolism to GnRH
neurons being a part of the HPG axis.52,73 Murine dual
immunofluorescence studies have revealed close apposi-
tions between KP fibers and GnRH cell bodies, which
increase in number throughout pubertal development.74

Recent research has focused on afferent inputs to KP
neurons especially in the area of energy balance, where
under- or severe overnutrition suppresses fertility. It is
suggested that KPs induce their metabolic effects indi-
rectly via gonadal hormones and/or directly via the KP
receptors in the brain, brown adipose tissue (BAT), and
pancreas.3 Other evidence for the role of the KP system
in metabolic functions comes from Kiss1r-knockout
(KO) mice, which exhibit increased adiposity and
reduced energy expenditure.

Finally, recent studies indicate a role of KP signaling
on sexual behavior75 (eg, sexual motivation, copulatory
behavior, bonding76). The role of hypothalamic KP in
metabolism has also been confirmed in numerous animal
studies in conditions such as undernutrition, obesity and
diabetes, which are discussed subsequently. Additionally,
the peripheral role of KP in the control of metabolism,
primarily obesity and diabetes, is described next.77

1.6 | What we can learn from animal
models of obesity and diabetes about the
role of KP in control of metabolism and
reproduction and how we can translate
this knowledge into the clinic

Many obesity experimental models exist, for example,
genetically induced obesity, obesity caused by a high-fat
(HFD), high-carbohydrate diets, or a combination of
both.78 Moreover, various animal fetal models of obe-
sity and diabetes exist (reviewed in79). The latter are
based on the concept of fetal/early programming,
according to which early environmental factors can per-
manently organize or imprint physiological and behav-
ioral systems. Thus, according to these concepts
environmental factor(s) such as maternal diet (eg,
undernutrition or overnutrition) affect the structure
and functions of tissues and organs. This in turn is in
agreement with the developmental origins of health
and disease approach, leading to lifelong effects, includ-
ing development of metabolic and reproductive prob-
lems in offspring.80

Similar to humans, in animal models of obesity, vari-
ous dysfunctions are observed including raised body fat
and triglyceride levels, glucose intolerance, and insulin
resistance, which may lead (especially in extended expo-
sure to HFD) to the development of T2D. A commonly
used method to induce T2D in animals employs combi-
nation of feeding with HFD followed by injections of low
doses of streptozotocin (a toxin that destroys the pan-
creas).81 Such animal models mimic the human condi-
tion, where T2D is often associated with obesity
and a HFD.

Importantly, animal models mimic human findings
with regard to reproductive problems reported in the case
of obesity; for example, in obese women as well as mon-
keys and rodents fed with HFD, advanced puberty is
observed.82–84 In search of possible mechanisms responsi-
ble for reproductive alterations in times of metabolic
imbalance, a role of altered KP signaling, linking metabo-
lism with reproduction is explored. Next we review data
on central and peripheral roles of KP in regulation of
metabolism and reproduction in animal models of obe-
sity and diabetes. Numerous studies have revealed that in
reproductive diseases (eg, hypogonadotropic hypogonad-
ism and PCOS) and metabolic ones (eg, obesity, diabetes,
undernutrition) there are alterations in the expression of
KP in the hypothalamus.

1.7 | Alterations in hypothalamic KP
expression

Hypothalamic KISS1 directly stimulates GnRH neurons,
which express KISS1R, and it was identified that patients
with IHH (characterized by impaired secretion of gonad-
otropins FSH and LH) had inactivating polymorphisms
in KISS1R. These findings were replicated in mice with
Kiss1 and Kiss1R variants.8

Moreover, in a mouse model of PCOS, characterized
by hyperandrogenemia, chronic anovulation, cystic ovar-
ian follicles, and LH and hyperpulsatility, changes in KP
were reported. These animals showed marked elevated
Kiss1 expression and increased Kiss1 neuronal activation
in the ARC.85 In prenatally androgenized (PNA) models
of PCOS in female rats, a significant increase in the num-
ber of KP-immunopositive neurons in the ACR was
found compared to control females.86 Another PNA rat
study reported increased Kiss1 mRNA expression in the
ARC.87 Besides alterations in expression of KISS1 in
the reproductive disorders there are also convincing
results on changes in this system in animal models of
metabolic disorders. Quennell et al73 showed that leptin
deficiency and diet-induced obesity in mice were associ-
ated with reduced Kiss1 expression in the hypothalamus.

SLIWOWSKA ET AL. 5 of 14
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This correlates with the concept that a decreased energy
status negatively has an effect on fertility. Thus, a reduc-
tion in leptin (a hormone controlling food intake) also
has a negative effect on fertility. Furthermore, increased
leptin levels increase Kiss1 gene expression. Fu and van
den Pol (2010)74 showed that Kiss1 directly interacts with
anorexigenic POMC neurons in the ARC through Kiss1r
on the neurons. In addition, they demonstrated that
Kiss1 inhibits NPY neurons in the ARC, indicating
that Kiss1 may modulate appetite and energy
homeostasis.

1.8 | Evidence from genetically modified
animals

Furthermore, using Kiss1r KO mice Tolson et al88 dem-
onstrated that they were characterized by sex-specific dif-
ferences in metabolic parameters. Whereas KO female
mice showed an obese and diabetic phenotype, with
increased BW, leptin levels, adiposity, and impaired glu-
cose intolerance, male KO mice had a normal BW and
glucose regulation.60 However, the reason for these d
phenotypes remains unknown. De Bond et al89 subse-
quently found that despite this development, hypotha-
lamic metabolic gene expression involved in the appetite
regulating, including neuropeptide Y (Npy), pro-
opiomelanocortin (Pomc), leptin receptor (Lepr), ghrelin
receptor (Ghsr), and melanocortin receptors 3 and
4 (Mc3r, Mc4r) remained unaltered. Thus, these changes
may be affected by peripheral rather than central influ-
ences. In follow-up developmental studies, Tolson et al90

proved that at 6 weeks old (young adult), KO females
already show altered adiposity, leptin levels, metabolism,
and energy expenditure, despite reported normal BWs.

Sex differences in several metabolic permanents were
also reported in mice lacking KP signaling due to global
inactivation of Kiss1r also referred to as Gpr54 in some
literature91 (eg, displaying profound hypogonadism;
Gpr54�/�). These animals were compared to Gpr54 null
mice with selective reintroduction of Gpr54 expression
only in GnRH cells (Gpr54�/�Tg) and preserved gonadal
function. Velasco et al92 found that in male mice, global
elimination of KP signaling manifested itself as decreased
BW, suppression of feeding, and increased adiposity,
without changes in glucose tolerance. On the other hand,
Gpr54�/� female mice had increased BW gain and adi-
posity and perturbed glucose tolerance, despite reduced
food intake. Gpr54�/�Tg rescued mice were character-
ized by altered BW gain in males and mild altered glu-
cose tolerance in females. When animals were challenged
and exposed to HFD, exaggerated BW gain and adiposity
in global Gpr54�/� mice of both sexes were observed,

with worse glucose tolerance, especially in females. In
the case of the rescued Gpr54�/�Tg males, intermediate
BW gain and feeding profiles and impaired glucose toler-
ance were reported. On the other hand, rescued
Gpr54�/�Tg females were similar to controls in many
parameters, except for a modest disruption of glucose tol-
erance following ovariectomy. Based on this study, a
global role of KP signaling in the control of BW and met-
abolic homeostasis was concluded. Moreover, sexually
dimorphic effects of KP in the regulation of BW gain,
feeding, and responses to HFD were proved. Finally, in
animal models of fasting, reduced Kiss1 mRNA expres-
sion in the hypothalamus in rodents were reported.93,94

Short-term undernutrition in male and female prepuber-
tal rats showed reduced whole hypothalamic Kiss1
mRNA and increased hypothalamic Kiss1r mRNA com-
pared with controls.93

1.9 | Changes in peripheral KP
expression

There is also evidence of the role of KP besides the brain
in regulation of metabolism. KISS1 and its receptor are
expressed in peripheral tissues involved in the control of
metabolism such as the pancreas, liver, and fat.56 Next
we discuss the role of KP in different metabolic organs.
Importantly, as KP levels dramatically increase during
pregnancy, we also present data linking alterations in this
peptide with gestational diabetes.95

1.9.1 | KP action in the pancreas

In the pancreas, the 54 amino acid KP isoform, Kp-54,
increases glucose-induced insulin secretion from human
and mice islets, without changing basal secretion.46,96

Additionally, studies in rats have also found that an
intracerebroventricular injection of the peptide had no
effect on insulin levels, which confirms a peripheral site
of action of Kp-54.97 Moreover, it was revealed that Kp-
10 and Kp-13 act directly on β-cells to potentiate insulin
secretion stimulated by glucose in murine, porcine, and
human islets.97,98 Finally, the expression of KISS1 and
KISS1R in the pancreas (mRNA and peptide) is altered
by an HFD and T2D.99

1.9.2 | KP action in the liver

In the liver, KP-10 administered peripherally had antioxi-
dant and thus protective effects on liver metabo-
lism.18,46,100,101 In diabetic mice (HFD-induced diabetes
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and genetic leptin receptor-deficient db/db animals) liver
KP levels were increased.18 Additionally, obese male rats
fed a HFD and those with T2D also had increased liver
KP expression.99 Importantly, studies in patients with
T2D revealed increased liver and plasma KP levels. The
role of KP in the regulation of metabolism was also
revealed in genetically modified animals. In a selective
liver KP knockdown mouse model, depressed glucose-
sensitive insulin secretion and improved glucose toler-
ance were found. Moreover, mice lacking liver Kiss1r
when fed a HFD had improved glucose tolerance.18

In nonalcoholic fatty liver disease, that correlates
with a rise in obesity and T2D, activation of the Kiss1r
signaling pathway had therapeutic effects in HFD-fed
C57BL/6J mice. Whereas in these animals, a deletion of
hepatic Kiss1r exacerbated hepatic steatosis, whereas
stimulation of Kiss1r offered protection against steatosis
and decreased fibrosis.102

1.9.3 | KP regulation of the adipose tissue

Kiss1 mRNA has been found in adipose tissue in rats99

and humans.103 Fasting has been shown to increase
expression of Kiss1 mRNA in rats, and an HFD decreases
it. In women, there is a positive correlation between BMI
and KISS1 mRNA levels in omental (surrounding perito-
neal organs) adipose tissue but not in subcutaneous
fat.103 In vitro studies on mouse 3 T3-L1 cells and isolated
rat adipocytes have revealed expression of Kiss1 and
Kiss1r (mRNA and peptide) and explored a possible role
of KP on lipid metabolism.104 It was found that KP inhib-
ited proliferation, viability, and adipogenesis in 3 T3-L1
cells and decreased expression of peroxisome
proliferator-activated receptor-gamma and CCAAT/
enhancer-binding protein beta genes, factors that are
involved in the differentiation processes and adipogen-
esis. Kp-10 also stimulated lipolysis in 3 T3-L1 cells and
rat adipocytes by increasing expression of perilipin
and hormone-sensitive lipase, as well as modulated glu-
cose uptake and lipogenesis. Additionally, KP decreased
glucose uptake and secretion of adiponectin and stimu-
lated secretion of leptin from rat adipocytes.104 From
these in vitro studies, it was concluded that Kp-10 may
decrease lipogenesis and slightly increase lipolysis. How-
ever, there is a need to perform more in vivo experiments
on the role of KP on adipose tissue. It was already found
that in underfed and fasting male rhesus monkeys there
is a stimulatory effect of Kp-10 on adiponectin but not
leptin levels.105

As Kiss1r is expressed in BAT, KO studies by Tolson
et al106 explored the role of this expression in relation to
obesity. The researchers first showed that global Kiss1r

KO mice have alterations in body temperature and BAT
thermogenic gene expression, factors which could con-
tribute to an obese phenotype. Later using Cre/lox tech-
nology they generated conditional Kiss1r KO exclusively
in BAT (BAT-Kiss1r KO). These mice were not hypogona-
dal, but both sexes had lower BW and adiposity than con-
trols. However, this phenotype was greater in females.
Thus, it was confirmed that the previously observed obe-
sity and decreased metabolism in global Kiss1r KOs
reflect impaired KP signaling in non-BAT tissues. This
study also added a role for endogenous KP signaling in
BAT in modulating metabolism and thermogenesis.
However, these experiments were performed on mice
and further experiments are needed in different species.

1.9.4 | Trihormonal regulatory circuit
linking role of KP in regulation of metabolism

Song et al18 proposed a trihormonal regulatory circuit
between pancreatic α-cells (secreting glucagon), hepato-
cytes, and β cells (secreting insulin), identifying a crucial
role for KP. According to this hypothesis, liver glucagon
receptor activation stimulates insulin secretion by
increased hepatic glucose production and hyperglycemia,
and liver glucagon action may inhibit insulin secretion
by stimulating KP production. Thus, in T2D patients, β
cells are exposed to two counteracting stimuli, glucagon-
induced hepatic glucose production, and hyperglycemia
stimulation, whereas KP production inhibits glucose-
stimulated insulin secretion. These findings suggest
potential for KP antagonism as a therapeutic tool to
improve β-cell function in diabetic patients.18 Indeed, it
was found that KP-10 administered to men with T2D and
central hypogonadism enabled increased T secretion.69

1.10 | KP alterations both in metabolic
and reproductive functions

Jayasena et al observed a massive placenta release of KP
into the maternal circulation, suggesting a role for this
peptide in pregnancy.95 Due to the dramatic rise of circu-
lating levels of KP during healthy pregnancy, it has been
proposed as a potential biomarker of placental function.
Furthermore, alterations in levels of this peptide are
often connected with an increased risk of maternal and
fetal complications.107 It was also revealed that KP is a
placental signal that plays a role in islet adaptation to
pregnancy, maintaining maternal glucose homeostasis,
acting through the β-cell Kiss1r. Consequently, it was
found that decreased placental KP production and
impaired KP-dependent β-cell compensation may play an
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important role in the development of gestational diabetes
in humans.108

The KP system was also reported to be altered in
reproductive organs such as ovaries and testes in animal
models of obesity. An HFD administered to female rats at
postweaning resulted in a marked suppression of ovarian
Kiss1 mRNA levels. Moreover, in the HFD group, the
immunoreactivity of KP was significantly lower in theca
cells from antral and preovulatory follicles.109 KP and
Kiss1r protein expression were reduced in testicular tis-
sues in the diet-induced obese male mice.110

Recently, a role of KP was also expanded on behav-
iors such as olfactory-mediated partner preference, sexual
motivation, copulatory behavior, bonding, mood, and
emotions.76 Thus, it would be of interest to study such
behaviors in relation to KP in obese and diabetic animals.

In summary, in addition to the central role of KP in
the hypothalamus in the regulation reproduction, there
are convincing data about the role of this peptide in the
regulation of metabolism.

1.11 | Clinical applications of KP

Reproductive dysfunction and metabolic disturbances are
often seen together in conditions such as diabetes, obe-
sity, eating disorders, and PCOS. KP may link reproduc-
tion and metabolism by obtaining signals about energy
needs at differing stages of development and influencing
HPG responses. For example, leptin may regulate meta-
bolic signals on KP as in the ARC, 40% of KP neurons
express leptin receptors, whereas GnRH neurons do
not.111 Although early studies showed direct linkage
between KP and leptin, GnRH and leptin connections are
more complex and may include a range of other mole-
cules such as ghrelin, NPY, and POMC, as well as involv-
ing estradiol, testosterone, progesterone, and stress
hormones.40 By studying the role of KP in disorders
involving reproductive and/or metabolic disturbances,
our knowledge of the biology of KP is expanding.

Advances in the field of KP research are represented
by a number of clinical trials, which have increased in
the last decade. Table 1 shows recent and ongoing KP
clinical trials and their status. The main studies are being
carried out on kisspeptin 112–121 (or Kp-10) likely
because Kp-10 is the smallest length needed to stimulate
the receptor.14 Table 1 summarizes the range of studies
that are being conceptualized and the countries that are
interested in this field. From this perspective, the focus of
the majority of the studies is on fertility issues, or rather
conditions associated with infertility (such as PCOS),
improving implantation and successful pregnancy. This

then correlates to where funding is obtained from to
carry out these studies. Furthermore, this table highlights
that, to date, there are few published clinical studies on
both fertility and metabolism. This suggests that the con-
nectivity between fertility and metabolism is still in its
infancy, but it is envisaged that this will change in the
future.119 As peripherally administered kisspeptin-54 has
been demonstrated to cross the blood–brain barrier120

and potentially affect regulation of food intake. Thus, fur-
ther studies examining the acute and chronic effects of
KP on food intake in obese and diabetic patients are
needed. It was already found that KP administration to
healthy men enhances insulin secretion in response to an
intravenous glucose load, without influence on fasting
insulin levels or insulin levels in response to delivery of
food ad libitum.119 This may also open a possibility for a
potential therapeutic role for KP treatment in a state of
hyperglycemia observed during pregnancy.121,122 Finally,
it was already proved that KP could be used to enhance
both reproductive hormones and insulin levels in obese
hypogonadal men with T2D. However, further studies
including those that use imaging techniques are needed
to explore the role of KP in regulation of metabolism.
Such experiments have just begun to emerge. In a study
using functional magnetic resonance imaging it was
recently found that peripheral administration of KP to
healthy men does not alter brain responses to visual food
stimuli123 or psychometric indices of appetite. However,
this study was performed only on men and as was previ-
ously discussed, the KP system is sexually dimorphic.
Moreover, the odors cue was not taken into account.
Finally, in view of their presented findings it would be of
interest to study KP effects in obese and T2D patients
of different genders.

2 | CONCLUDING REMARKS

Emerging data from experiments conducted on animals
as well as from human clinical trials relating to KP indi-
cate a valuable therapeutic target to treat both metabolic
and reproductive dysfunctions. However, it is important
to consider differences in gender outcomes related to the
KP system. Thus, more research is needed to elucidate
the mechanisms of action to develop appropriate thera-
peutics. There is also recent evidence that KP is involved
in emotional behavior including fear, mood, and social
and sexual behavior (sexual motivation, copulatory
behavior, bonding76) that makes sense to enable success-
ful reproduction but may also serve to help control eating
disorders and depression.124 This is an exciting field,
which has yet to reveal its full therapeutic potential.
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TABLE 1 Recent clinical trials involving KP.

Study and phase Status Conditions Interventions Results

ClinicalTrials.gov
identifier
(location)

Metabolism studies

Evaluation of kisspeptin
glucose-stimulated insulin
secretion with oral glucose
tolerance Test (Phase I)

R � 2024
(n = 16)

• Metabolic diseases Kisspeptin N/A NCT04958109
(United States)

Evaluation of kisspeptin
stimulated insulin with

hyperglycemic clamp
(Phase I)

R � 2024
(n = 12)

• Metabolic disease KP-10 N/A NCT05456854
(United States)

Evaluation of kisspeptin
glucose-stimulated insulin
secretion with physiologic
mixed meal tolerance
(Phase I)

R � 2023
(n = 25)

• Assessment of beta-cell
responsitivity in healthy
women

Kp-10 N/A NCT04532801
(United States)

KP-10 and insulin secretion in

men (Phase III)

C 2014 (n = 14) • Action on healthy and

obese diabetic men

KP-10 No NCT03771326

(Pakistan)

Fertility studies

Detection of kisspeptins and
miRNAs in patients with
nonviable pregnancy (N/A)

R Prospective
(n = 433)

• Nonviable pregnancy N/A – diagnostic
observational

N/A NCT03877939
(Spain)

Reproductive hormones
during sustained
administration of kisspeptin

(N/A)

R � 2027
(n = 76)

• Fertility disorders
• Hypothalamic

dysfunction

Kisspeptin N/A NCT081924 (United
Kingdom)

Opioid Antagonism in

Individuals Ascertained
Through the Partners
Health Care Biobank
(Phase I)

R � 2025

(n = 23)

• Reproductive disorders Kisspeptin 112–121 N/A NCT04975347

(United States)

Administration of kisspeptin
to subjects with

reproductive disorders
(Phase I)

R � 2025
(n = 496)

• Hypogonadotropic
Hypogonadism

• Kallmann syndrome
• GnRH deficiency
• Polycystic Ovarian

syndrome

• Hyperprolactinemia

Kisspeptin 112–121 N/A NCT00914823
(United States)

Neuropeptides in human

reproduction (Phase I)

R � 2025

(n = 128)

• Hypogonadotropic

Hypogonadism

Kisspeptin 112–121 N/A NCT01952782

(United States)

Prolonged pulsatile kisspeptin
administration in
hypogonadotropic
hypogonadism

R � 2025
(n = 24)

• Hypogonadotropic
Hypogonadism

Kisspeptin 112–121 N/A NCT04648969
(United States)

Opioid antagonism in
hypergonadotropic

hypogonadism (Phase II)

R � 2024
(n = 23)

• Hypogonadotropic
Hypogonadism

Kisspeptin N/A NCT04975334
(United States)

Kisspeptin administration
subcutaneously to patients
with reproductive disorders
(KASPR) (Phase I)

R � 2024
(n = 50)

• Hypogonadotropic
Hypogonadism

• Hypothalamic
Amenorrhea

Kisspeptin 112–121 N/A NCT05633966
(United States)

Administration of kisspeptin
in patients with

hyperprolactinemia (Phase
II)

R � 2023
(n = 60)

• Hyperprolactinemia
• Hypogonadism

Kisspeptin 112–121 N/A NCT02956447
(United States)

(Continues)
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TABLE 1 (Continued)

Study and phase Status Conditions Interventions Results

ClinicalTrials.gov
identifier
(location)

Kisspeptin in the evaluation of
delayed puberty (Phase I)

R � 2023
(n = 60)

• Delayed Puberty
• Kallmann Syndrome
• Hypogonadotropic

Hypogonadism
• GnRH deficiency

Kisspeptin 112–121 N/A NCT01438034
(United States)

Elucidating kisspeptin

physiology by blocking
kisspeptin signaling (Phase
I)

C 2016 (n = 96) • Hypogonadotropic

Hypogonadism
• Healthy postmenopausal

women
• Primary gonadal

insufficiency in men

Kisspeptin 112–121 Yes35 NCT01438073

(United States)

Age-dependent changes in the

responsiveness of
hypothalamic pituitary

gonadal axis in men

C 2015 (n = 15) • Sterility

• Reproductive
physiological phenomena

Kp-10 Yes112 NCT03315325

(Pakistan)

Link between the sensitivity
of kisspeptin signaling and
pubertal onset in boys

(Phase III)

C 2015 (n = 30) • Reproductive
physiological phenomena

Kp-10 Yes113 NCT03286517
(Pakistan)

Effects of TAK-448 in middle-

aged and older men with
low testosterone (Phase II)

T 2016 (n = 17,

intended
n = 99)

• Low testosterone TAK-448 (KISS1R

agonist, kisspeptin
analog)

Partially

as terminated early so not
analyzed but available in
database

NCT02381288

(United States)

A Phase 2a pharmacodynamic
study of TAK-448 in
participants with

hypogonadotropic
hypogonadism (Phase IIa)

T 2015 (n = 15,
intended
n = 48)

• Hypogonadotropic
Hypogonadism

TAK-448 (KISS1R
agonist, kisspeptin
analog)

Partially as terminated early.
Published in114

NCT02369796
(United States)

Serum kisspeptin: A predictive
marker for miscarriage or
not (N/A)

C 2020
(n = 182)

• Miscarriage N/A – observational
KP levels

No NCT03940495
(China)

Tachykinin and Kisspeptin
expression in human

granulosa and cumulous
cells (N/A)

C 2019
(n = 236)

• Infertility N/A – observational
KISS1 and KISS1R

levels

Yes115 NCT02877992
(Spain)

Kisspeptin/GPR54 pathway
and early puberty (N/A)

C 2019
(n = 628)

• Precocious puberty N/A – observational
KP levels

Yes116 Yes116

Kisspeptin levels in early
pregnancy (N/A)

C 2019 (n = 88) • Early pregnancy
• Ectopic pregnancy

N/A – diagnostic
observational

No NCT04371991
(Turkey)

Serum kisspeptin levels in
infertile women (N/A)

C 2017 (n = 90) • Infertility
• Polycystic ovary

syndrome
• Male factor infertility

N/A – observational Yes117 NCT03018314
(Turkey)

The use of the hormone
kisspeptin in in vitro
fertilization” treatment

C 2016
(n = 175)

• Infertility Kisspeptin,
Kisspeptin-54

Yes118 NCT01667406
(United
Kingdom)

Metabolism and fertility studies

Kisspeptin influence on
glucose homeostasis (Phase I)

R � 2024
(n = 413)

• Impaired glucose
tolerance

• Hypogonadism

Kisspeptin 112–121 N/A NCT02953834
(United States)

Abbreviations: C, Completed; GnRH, gonadotropin-releasing hormone; KP, kisspeptin; N/A, not applicable; R, recruiting; T, terminated.
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