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An effective variational model for
simultaneous reconstruction and
segmentation of blurred images

Bryan M Williams1, Jack A Spencer1, Ke Chen1,
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Abstract

The segmentation of blurred images is of great importance. There have been several recent pieces of work to tackle this

problem and to link the areas of image segmentation and image deconvolution in the case where the blur function � is

known or of known type, such as Gaussian, but not in the case where the blur function is not known due to a lack of

robust blind deconvolution methods. Here we propose two variational models for simultaneous reconstruction and

segmentation of blurred images with spatially invariant blur, without assuming a known blur or a known blur type. Based

on our recent work in blind deconvolution, we present two solution methods for the segmentation of blurred images

based on implicitly constrained image reconstruction and convex segmentation. The first method is aimed at obtaining a

good quality segmentation while the other is aimed at improving the speed while retaining the quality. Our results

demonstrate that, while existing models are capable of segmenting images corrupted by small amounts of blur, they begin

to struggle when faced with heavy blur degradation or noise, due to the limitation of edge detectors or a lack of strict

constraints. We demonstrate that our new algorithms are effective for segmenting blurred images without prior know-

ledge of the blur function, in the presence of noise and offer improved results for images corrupted by strong blur.
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Introduction

Image segmentation is an important technique in image
processing which aims to capture either all of the
objects of an image1–5 or only some of them (selective
segmentation6–9). Variational models that partition
images based on intensity often employ edge detection
techniques to aid the segmentation and some can
handle fuzzy boundaries.10,11 Many of these models
can deal with the presence of noise, but blur proves
to be more problematic and most variational models
struggle to capture all of the required objects, particu-
larly in cases where there is a reliance on the edge
detector.

Work in the segmentation of blurred images is at an
early stage but there exist models such as those presented
in the literature12–15 which aim to segment blurred images
based on Mumford–Shah4,16–18 or Chan–Vese4,19,20

segmentation and total variation image restoration.21,22

In Bar et al.,12 the authors attempt to segment blurred
images by forming a joint functional incorporating seg-
mentation and image reconstruction, assuming the blur
type is known (in the so-called semi-blind method).
A framework of alternate minimisation is adopted such
that the image is simultaneously restored and segmented.
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Similar techniques can also be found in other work such
as Jung et al.14 As an alternative approach, some models
such as those given in the literature13,15 treat the prob-
lems of image reconstruction and segmentation separ-
ately in a two-stage model by first restoring the image
and then segmenting the restored data.

The main contribution of this work is the proposal
of two new models which incorporate blind deconvolu-
tion (with implicitly constrained image reconstruction)
and convex segmentation. Here, the former task is par-
ticularly important in astronomical imaging and med-
ical imaging and offers advantages over hard
constraints such as scaling or truncation, while the
latter provides a global minimiser to the segmentation
problem with no reliance on the initial guess of objects.
In a similar manner to Bar et al.,12 we form a joint
functional and proceed to segment the image using
alternate minimisation, although it is feasible to use a
two-stage approach derived from the joint model
(as tested and compared later). We also present an
accelerated solution method for acceleration and con-
vergence while sacrificing only a small amount of qual-
ity. Our tests will show that related models which do
not impose constraints for the restoration (and the
restored blur kernel for the blind case) do not perform
as well when the underlying blur is heavy.

The rest of this paper is organised as follows. In the
‘Existing methods’ section, we review efforts to tackle
the problem of segmenting images which have been
corrupted by blur as well as introducing relevant seg-
mentation and image reconstruction models. In the
‘Two-stage restoration and segmentation of images
with unknown blur’ section, we introduce two new
two-stage models for the cases of segmenting blurred
images in the presence of Gaussian noise and Poisson
noise incorporating implicitly constrained deblurring
and convex segmentation. In the ‘Segmentation of
images corrupted by unknown blur’ section, we intro-
duce our main model which is a new joint model for the
segmentation of blurred images. In the ‘A relaxed model
for the segmentation of images with unknown blur’ sec-
tion, we introduce our relaxed model for the segmenta-
tion of blurred images using alternate direction methods
for joint convergence. In the ‘Experimental results’ sec-
tion, we present experimental results. In the final section,
we present the conclusions of this work.

Before proceeding, we make the assumption that the
image blur is spatially invariant. As such, we may
model the blurred image z as the convolution of the
true image u with a kernel function k (also referred to
as the blur function or point spread function (PSF))
with the possibility of some additive noise �

zðx, yÞ ¼ ½k � u�ðx, yÞ þ �ðx, yÞ ð1Þ

where the operation of convolution is denoted by * and
given by

½k � u�ðx, yÞ ¼

Z 1
�1

Z 1
�1

kðx� x0, y� y0Þuðx0, y0Þdx0dy0

Existing methods

In recent years, several approaches have been devel-
oped to tackle the problem of accurately segmenting
images which have been corrupted by blur. Such
approaches most commonly involve image reconstruc-
tion to restore the ‘true image’ and segmentation.
Models can be classed as two stage in which recon-
struction of the corrupted image is carried out, fol-
lowed by segmentation of the restored image.13,15 In
contrast, there also exist joint models which attempt
to deal with the tasks of reconstruction and segmen-
tation simultaneously by minimising a joint func-
tional.12,14 In this section, we review some existing
methods for two stage and joint segmentation of
blurred images.

Segmentation of blurred images

Bar et al. showed in their 2004 paper12 that the two
problems of segmentation and image restoration
could be coupled together and hence solved at the
same time. Both the case of non-blind deconvolution
where the kernel is known and the case of semi-blind
deconvolution assuming that the blur function is of
Gaussian type, leaving the argument � of the
Gaussian function describing the blur to be found,
are considered. The problem was solved by minimising
the joint functional

fBSKðu,k� ,vÞ ¼
1

2

Z
�

ðk� � u� zÞ2 d�þ �

Z
�

v2jruj2 d�

þ�

Z
�

"jrvj2þ
ðv� 1Þ2

4"
d�þ �

Z
�

jrk�j
2 d�

ð2Þ

which is dependent on the image u, the edge integration
map v and the kernel function parameter �. Minimising
with respect to the arguments, the authors simultan-
eously recover and segment the image. A special case
exists in the case of known blur where minimisation
with respect to the kernel width is not necessary, nor
is the final term of the functional.

Jung et al.14 presented models for joint multi-phase
segmentation, deblurring and denoising of images by
considering the region-based active contours without
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edges model and gave the joint formulation as the mini-
misation of the energy functional

fJCSVðc1, c2,�Þ ¼

Z
�

z� k � c1Hð�Þ þ c2ð1�Hð�ÞÞð Þ
�� ��2d�

þ 	

Z
�

jrHð�Þjd�

for two-phase segmentation. A similar model is also
presented to allow for the segmentation into m distinct
levels. This is then solved by alternate minimisation of
the arguments, solving the H1 gradient descent
�tðx, tÞ ¼ �rH1 fJCSVðc1, c2,�Þ: Paul et al.

23 further gen-
eralised this idea to image restoration.

Reddy et al.15 approach this problem in the blind
case, where the blur function is an unknown Gaussian
using the Chan–Vese model

fRCR ¼ 	Lengthð�Þ þ 
Areaðinsideð�ÞÞ

þ l1

Z
insideð�Þ

juðx, yÞ � c1j
2 d�

þ l2

Z
outsideð�Þ

juðx, yÞ � c2j
2 d�

where � is the contour of the segmentation,
uðx, yÞ ¼ jkðx, yÞ � zðx, yÞj2 is the square of the convolu-
tion of the received data z and a Gaussian kernel, c1
and c2 are constants which approximate the image
intensities inside and outside of the contour � and
	, 
, l1, l2 are non-negative parameters. The authors
adopt a two-stage approach, first applying a deblurring
algorithm, followed by segmentation of the recon-
structed image.

Chan et al.13 recently presented a two-stage convex
method for segmenting blurred images which have been
corrupted by either Poisson or multiplicative Gamma
noise. Their technique is to extract a smooth image u
from the received image z and then to threshold u to
reveal segmentation features. The functional to be mini-
mised, given the blurring operator A, is

fCYZðuÞ ¼

Z
�

jrujd�þ
	

2

Z
�

jruj2 d�þ l
Z

�

Au

� f logAu d�

which has a unique solution and can be solved by split-
Bregman24 or Chambolle–Pock.25

In this paper, we shall consider both joint and two-
stage approaches using convex segmentation and impli-
citly constrained deblurring in an attempt to improve
the quality of the results. Below, we first review the
relevant segmentation and image reconstruction
techniques.

Two-stage restoration and segmentation of
images with known blur

We build a two-stage model for segmenting blurred
images in the non-blind case, assuming that we can
model precisely the blur degradation, by first deblur-
ring the image and subsequently finding the segmenta-
tion of the result. Assuming that we know the function
causing the degradation of the image and assuming the
presence of additive white Gaussian noise, we may
attempt to recover the hidden sharp image by solving
an ROF-type minimisation problem21 of a functional
consisting of a deconvolution fitting term and a regu-
larisation term such as that given by the total vari-
ation semi-norm. That is, we solve the minimisation
problem

min
uðxÞ

Z
�

ð½� � u�ðxÞ � zðxÞÞ2dxþ �

Z
�

jruðxÞjdx

� �
ð3Þ

where �ðxÞ is the PSF which describes the blur degrad-
ation of the sharp image and is assumed to be known,
zðxÞ is the known blurred and noisy image and uðxÞ is
the unknown sharp image which is to be restored; *
represents the operation of convolution and � is a regu-
larisation parameter which measures the trade-off
between data fitting and regularisation. The function
uðxÞ which minimises the functional of (3) is the
restored image in which we require features to be dis-
tinguished using techniques such as Chan–Vese seg-
mentation.4 This is formulated as a variational
minimisation problem given by

min
�ðxÞ, c1, c2

l1

Z
�

ðc1 � uðxÞÞ2Hð�Þdx

�

þl2

Z
�

ðc2 � uðxÞÞ2ð1�Hð�ÞÞdxþ

Z
�

jrHð�ðxÞÞjdx

�

ð4Þ

where c1, c2 2 R are, respectively, the average intensity
values inside and outside of the contour defined by the
Heaviside H of the indicator function �, uðxÞ is the
image to be segmented which is assumed to be known
and l1, l2 adjust the weights of the data fitting and
contour constraint. The segmentation of blurred
images is thus achieved by first solving the problem
(3) to obtain the restored image uðxÞ and then segment-
ing this image by solving the problem (4). This tech-
nique may achieve a good result; however, the blur
function must be already known and the segmentation
result of the non-convex problem (4) is heavily depend-
ent on the restored image which solves the deconvolu-
tion problem.
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In the following section, we extend this two-stage
idea to the blind case, where we do not know the blur
function. We attempt to improve the result by building
in transformations which allow for the image intensities
to be constrained implicitly and by adopting a segmen-
tation technique which is capable of finding the global
minimum of the problem.

Segmentation of images corrupted by

unknown blur

In this section, we consider the case of segment-
ing images with unknown blur which allows for
more generality in cases where the blur cannot be
estimated or found. We build refined blind two-
stage models and an improved joint model for sol-
ving such problems.

Two-stage restoration and segmentation of images
with unknown blur

Building on the previous section, we construct a two-
stage model for segmenting blurred images in the
blind case. That is, we first aim to reconstruct the
sharp image from the corrupted received data with-
out knowledge of the blur function and proceed to
segment the result. This is a popular formulation and
has been used in work such as Chan et al.13 and
Reddy et al.15

Proceeding in the case of blind deconvolution,
we may attempt to restore the image and blur func-
tion simultaneously. Following work such as Chan
and Wong26 and You and Kaveh27 we deblur the
image by solving the regularised joint minimisation
problem

argmin

�
fCWðu, �Þ ¼

Z
�

ð½� � u�ðxÞ � zðxÞÞ2d�

þR1ðuðxÞÞ þ R2ð�ðxÞÞ

� ð5Þ

where R1 and R2 are regularisation functions which
enforce smoothness constraints on the image and blur
function, respectively. A solution is sought subject to
the constraints

�ðxÞ � 0, uðxÞ � 0,

Z
�

�ðxÞd�¼ 1, �ðxÞ ¼ �ð�xÞ

ð6Þ

which are employed in an attempt to find a unique
solution to this non-jointly-convex problem and are
imposed explicitly at each outer iteration of an alter-
nate minimisation scheme. Chen et al.28 proposed an

improved way of imposing such constraints by enfor-
cing two of them implicitly in the functional, resulting
in the minimisation of the functional

fCHWZðu, �, ,!Þ ¼

Z
�

ð� � u� zÞ2d�þ R1ð�að ÞÞ

þ R2ð�bð!ÞÞ þAaðu, ; ’1, �1Þ

þAbð�,!; ’2, �2Þ

ð7Þ

where the functions R1 and R2 denote total variation
regularisation for the image and blur function,
respectively

R1ð�að ÞÞ ¼

Z
�

jr�að Þjd�, R2ð�bð!ÞÞ ¼

Z
�

jr�bð!Þjd�

and A denotes the ADMM term which is used to pen-
alise the distance between the image (respectively blur)
function and transformed  (respectively !) functions
and which is given by

Aaðu, ;’1, �1Þ ¼ �1

Z
�

u� �að Þð Þ
2d�

þ 5 ’1, u� �að Þ4
ð8Þ

Alternate minimisation of the functional is achieved
by solving the resulting Euler Lagrange equations

E
1
CHWZðu, �, , ’1Þ ¼ 0, E2CHWZðu, Þ ¼ 0,

E
1
CHWZð�, u,!, ’2Þ ¼ 0, E2CHWZð�,!Þ ¼ 0

where the functions E1CHWZ and E2CHWZ are given by

E
1
CHWZðu, �, , ’1Þ ¼ ky � ðk � u� zÞ þ �1 u� �að Þð Þ þ ’1

ð9Þ

E
2
CHWZðu, Þ ¼ �1

@�a
@ 
r �

r�að Þ

jr�að Þj

� �

þ �1 �að Þ � uð Þ
@�a
@ 
� ’1

@�a
@ 

ð10Þ

where kyðx, yÞ ¼ kð�x, � yÞ. We can solve equation (9)
efficiently using Fourier transforms and equation (10)
by gradient descent techniques. We solve for the blur
function k and ! similarly. We recover the image by
alternately minimising equation (7), solving equations
(9), (10) and the associated Euler Lagrange equations
for the blur function, followed by updating the dual
function ’1 until an acceptable tolerance is reached.

Once such u is computed, we then proceed to seg-
ment this restored image u by solving equation (11),
which allows for the global minimum of the
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segmentation problem to be found,2 replacing the data
function z with the restored image u, we have

min
0�
�1

	

Z
�

jr
jd�þ l1

Z
�

ju� c1j
2
d�

�

þl2

Z
�

ju� c2j
2ð1� 
Þd�

� ð11Þ

To enforce the constraint 
 2 ½0, 1�, we introduce a
regularised version of the penalty function, &ð
Þ,
given by

&"ð
Þ ¼ b"ð
ÞH" b"ð
Þð Þ, b"ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2x� 1Þ2 þ "

q
� 1

ð12Þ

where H" is the Heaviside approximation defined
above. This function and the effect of the " parameter
can be seen in Figure 1. When computing the global
minimiser, 
�, thresholding the function at any value
p 2 ð0, 1Þ gives the contour of the object, �p.

Incorporating this idea into our two-stage approach,
we obtain the segmentation of the restored image by
solving the problem (11) and enforce the constraint

 2 ½0, 1� using the penalty function &"ð
Þ given above
in equation (12). We then obtain the contour of the
object by thresholding the global minimiser 
� at a
value p 2 ð0, 1Þ. We present the joint segmentation
model as

min

,c1,c2

	

Z
�

jr
jd�þ l1

Z
�

ju� c1j
2
d�

�

þl2

Z
�

ju� c2j
2ð1� 
Þd�þ �

Z
�

b"H" b"ð Þd�

� ð13Þ

where b" ¼ b"ð
Þ. We derive the Euler Lagrange equa-
tion by minimising equation (13) with respect to 
. This
is given by Ecsð
Þ ¼ 0 where

Ecsð
Þ ¼ 	r �
r


jr
j

� �
þ l1ðu� c1Þ

2
� l2ðu� c2Þ

2

þ
2�ð2
� 1Þ

b" þ 1
H" b"ð Þ�" b"ð Þb"ð Þ

ð14Þ

where �ð
Þ is a smooth approximation of the delta
function depending on the parameter ". We solve this
equation using additive operator splitting (AOS)29,30 as
follows. Letting

f ¼ �lððu� c1Þ
2
� ðu� c2Þ

2
Þ�

�
2�ð2
� 1Þ

bð
Þ þ 1
H" b"ð
Þð Þ�" b"ð
Þð Þb"ð
Þð Þ

and denoting W ¼ jr
j�1, we can write 
t ¼ �E1ð
Þ in
the form

@


@t
¼ 	ð@xðW@x
Þ þ @yðW@y
ÞÞ þ f

After discretisation, we rewrite in the matrix-vector
form (
̂n ¼ 
n þ �fn)


nþ1 ¼
1

2

X2
‘¼1

ðI� 2�	A‘ ð

nÞÞ
�1
̂n ð15Þ

Here, A‘ is the diffusion quantity in the ‘ direction
(‘ ¼ 1, 2 for x and y directions, respectively). Keeping the
other arguments fixed and minimising with respect to c1
and c2, we have, respectively, the equations given below

c1ðu, 
Þ ¼

R
�
u 
d�R

� 
d�
, c2ðu, 
Þ ¼

R
�
uð1� 
Þd�R

� ð1� 
Þd�
ð16Þ

In order to solve this model, we make an initial esti-
mate of the image, which is typically the received data
since it is the closest approximation we have. Using this
information, we obtain the approximation u of the
true image and using this we proceed with alternate mini-
misation of equation (13) until we reach an acceptable
tolerance. Our overall algorithm is presented in
Algorithm 1.

Algorithm 1. Segmentation of blurred images:


ð‘ Þ  A
T
1 

ð0Þ, z,maxit

� 	
1: uð0Þ  z,  ð0Þ  �a uð0Þ

� 	
2: ’ð0Þ1  1

3: for ‘ 1 : maxit do
4: Update uð‘ Þ by solving (9)
5: Update  ð‘ Þ by solving (10)
6: Update ’ð‘ Þ1  ’ð‘�1Þ1 þ �1 uð‘ Þ � �a  

ð‘ Þ
� 	� 	

7: Update �ð‘ Þ

8: Update !ð‘ Þ

9: Update ’ð‘ Þ2  ’ð‘�1Þ2 þ �2 �
ð‘ Þ � �b !

ð‘ Þ
� 	� 	

10: end for

11: u �a  
‘

� 	
12: for ‘ 1 : maxit do
13: Calculate c

ð‘ Þ
1  c1 u, 
ð‘�1Þ

� 	
, c
ð‘ Þ
2  c2

u, 
ð‘�1Þ
� 	

using (16)
14: Update 
ð‘ Þ by solving Ecsð


ð‘�1ÞÞ ¼ 0 using (14)
15: end for

Considering now the case of Poisson noise being
present in the image, we make an alteration to our
deblurring algorithm to take this into account. We
thus attempt to restore the true image from the cor-
rupted image by solving the Robust Richardson Lucy
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problem introduced above for the image, employing the
function �ðsÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
sþ �
p

.31 Solving this problem, we
obtain an approximation of the true image. In this
two-stage setting, once we have obtained the approxi-
mation of the image, we proceed with the segmentation
as described in the Gaussian case above. This is out-
lined in Algorithm 2 below. It can be noted that while
this restoration method provides a restriction on the
lower bound of the restored image u, it does not pro-
vide an upper limit. We may obtain this by a projection
P of the restored data onto the ideal range at each
iteration.

Algorithm 2. Segmentation of blurred images:

ð‘Þ  A

T
1 

ð0Þ, z,maxit

� 	

1: uð0Þ  z
2: for ‘ 1 : maxit do
3: Update the image uð‘ Þ

4: Update the blur function �ð‘ Þ

5: Update transformed blur function !ð‘ Þ

6: Update ’ð‘ Þ2  ’ð‘�1Þ2 þ �2 �
ð‘ Þ � �b !

ð‘ Þ
� 	� 	

7: end for

8: u u‘

9: for ‘ 1 : maxit do
10: Calculate c

ð‘ Þ
1  c1 u, 
ð‘�1Þ

� 	
, c
ð‘ Þ
2  c2

u, 
ð‘�1Þ
� 	

using (16)
11: Update 
ð‘ Þ by solving Ecsð


ð‘�1ÞÞ ¼ 0 using (14)
12: end for

We will demonstrate in Result set 1 in the
‘Experimental results’ section that deblurring consider-
ations are important for obtaining a good segmentation
of a blurred image. We also demonstrate in Result sets
1 and 2 that the advanced techniques which we describe
in this section are able to give improvements over simi-
lar techniques.

In the following section, we introduce our approach
to the problem of segmenting blurred images by forming
joint models which aim to reduce computation time by
simultaneously deblurring and segmenting the image.

A new joint model for the segmentation of
images with unknown blur

We now construct a joint variational model for the seg-
mentation of blurred images which includes terms
designed for the segmentation of an image and which
takes into account the possible presence of blur and
noise corruption. By the minimisation of this single
energy functional, an image may be simultaneously
restored and segmented, thus providing an accurate

segmentation of the blurred image. There are two key
formats for forming such a joint functional in the lit-
erature. First, we may replace the image in the deblur-
ring problem with the binary segmentation and attempt
to restore this while recovering the average intensities.
While this may provide good results, Paul et al.23 have
shown that this may not be robust. We therefore opt
for the second approach as follows. We form the joint
model by replacing the received data term zðxÞ in the
segmentation functional (13) by the restored image
function uðxÞ and add the constraint that this function
should satisfy the deconvolution minimisation problem
(5) and associated constraints (6). Imposing this con-
straint by incorporating the terms into the existing
functional, we form the new joint minimisation
model. We present this joint approach as the minimisa-
tion of the functional

f ðu, c1, c2,�, �Þ ¼ l1

Z
�

ju� c1j
2H"ð�Þd�

þ l2

Z
�

ju� c2j
2ð1�H"ð�ÞÞd�

þ 	

Z
�

jrH"ð�Þjd�þ
1

2
jjk � u� zjj2L2ð�Þ

þ �1

Z
�

jrujd�þ �2

Z
�

jrkjd�

ð17Þ

subject to the constraints (6). Here, the restored image u
provides the intensity and spatial information for the
segmentation terms following the coefficients l1, l2.
Following the ideas for implicitly constrained deconvo-
lution discussed in the previous section, we introduce
the functions  ,! in order to implicitly apply con-
straints on the intensity values of the image and blur
functions. We incorporate the transform functions
�að Þ, �bð!Þ into the functional with terms penalising
the distance of the image and blur functions from
these terms, resulting in the problem of minimising
the functional

f ðu, c1, c2,�, �, ,!,’1, ’2Þ

¼ l1

Z
�

j�að Þ � c1j
2H"ð�Þd�

þ l2

Z
�

j�að Þ � c2j
2ð1�H"ð�ÞÞd�

þ 	

Z
�

jrH"ð�Þjd�þ
1

2
jjk � u� zjj2L2ð�Þ

þ �1

Z
�

jr�að Þjd�þAaðu, ; ’1, �1Þ

þ �2

Z
�

jr�bð!Þjd�þAbð�,!; ’2, �2Þ

ð18Þ
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subject to unit integral and symmetry constraints on the
blur function and where Aa andAb are given by equa-
tion (8). Finally, we use the idea of finding the global
minimum of the segmentation problem. In order to
achieve this, we replace the regularised Heaviside of
the indicator function with the general function 
 and
add the condition that this function must have values in
the range [0, 1]. This is enforced by incorporating the
function &" (12) into the functional (18). Given these
considerations, we form our joint functional of global-
minimum segmentation and implicitly constrained
deconvolution as

fJ1 ð
, c1, c2, u, , k,!;’1, ’2Þ

¼ 	

Z
�

jr
jd� : segmentation regularisation

þ l1

Z
�

j�að Þ � c1j
2
d�þ l2

Z
�

j�að Þ � c2j
2

ð1� 
Þd� : segmentation fitting

þ �1

Z
�

jr�að Þjd�þAaðu, ;’1, �1Þ : image

regularisation þ constraint

þ �2

Z
�

jr�bð!Þjd�þAbð�,!; ’2, �2Þ : blur

regularisation þ constraint

þ �

Z
�

b"ð
ÞH" b"ð
Þð Þd�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
segmentation constraint

þ
1

2
jjk � u� zjj2L2ð�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deconvolution fitting

ð19Þ

In order to solve this model, we derive the partial
differential equations defined by the first-order optimal-
ity conditions. Solving the resulting equations, we aim
to minimise the joint functional. We will take each of
the arguments in turn.

Segmentation indicator function 
. Minimising the func-
tional (19) with respect to 
, fixing the other arguments,
we derive the Euler Lagrange equation from @fJ1=@

which is given by

	r �
r


jr
j

� �
þ l1ð�að Þ � c1Þ

2
� l2ð�að Þ � c2Þ

2

þ
2�ð2
� 1Þ

b" þ 1
H" b"ð Þ�" b"ð Þb"ð Þ ¼ 0

ð20Þ

where b" ¼ b"ð
Þ and �ð
Þ is a smooth approximation
to the delta function. We solve this equation for the
function 
, fixing the remaining functions and param-
eters, using AOS.29,30 This method is known to be

faster than gradient descent methods such as time
marching. Letting

f ¼ �lððu� c1Þ
2
� ðu� c2Þ

2
Þ�

�
2�ð2
� 1Þ

bð
Þ þ 1
H" b"ð
Þð Þ�" b"ð
Þð Þb"ð
Þð Þ

and denoting W ¼ jr
j�1, we can write 
t ¼ �E1ð
Þ in
the form

@


@t
¼ 	ð@xðW@x
Þ þ @yðW@y
ÞÞ þ f

After discretisation, we rewrite in the matrix-vector
form (
̂n ¼ 
n þ �fn)


nþ1 ¼
1

2

X2
‘¼1

ðI� 2�	A‘ ð

nÞÞ
�1
̂n ð21Þ

Region average intensity values c1, c2. Keeping the other
arguments fixed and minimising with respect to c1
and c2, we have, respectively, the equations given by
@fJ1=@c1 and @fJ1=@c2 which can be evaluated directly
to give the average intensities inside and outside of
the segmentation contour

c1ð , 
Þ ¼

R
� �að Þ
d�R

�

d�

, c2ð , 
Þ ¼

R
� �að Þð1� 
Þd�R

�
ð1� 
Þd�

ð22Þ

Image function u. Minimising now with respect to u, we
have the equation

ky � ðk � u� zÞ þ �1ðu� �að ÞÞ þ ’1 ¼ 0 ð23Þ

which contains the key deconvolution component. This
can be re-written with the left-hand side as a convolu-
tion of u as

½ky � kþ ��1� � u ¼ ky � zþ �1�að Þ � ’1

It is important to note that after the discretisation of
this equation, the term ky � k along with the operation
of convolution defines a symmetric positive definite
(spd) matrix. Put briefly, if k and u are the discretised
k and u, respectively, then we have

�k � k � u ¼ Hu

for an spd matrix H where � denotes the operation of
discrete convolution. We can solve this problem using
the preconditioned conjugate gradient (pcg) method
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with a preconditioner, following the idea of Vogel and
Oman,32 given by

P ¼ ð ~k � ~kþ �IÞ
1
2ð�Iþ ð�1 þ ’1ÞÞð ~k � ~kþ �IÞ

1
2 ð24Þ

where ~k is a circulant approximation to k.

Transformed image function  . Minimising equation (19)
with respect to the function  , we obtain

E ð Þ ¼ 2l1ð�að Þ � c1Þ

@�að Þ

 

þ 2l2ð�að Þ � c2Þð1� 
Þ
@�að Þ

 

þ �1
@�að Þ

 
r �

r�að Þ

jr�að Þj

� �

� �1ðu� �að ÞÞ
@�að Þ

 
� ’1

@�að Þ

@ 

ð25Þ

which may be solved by gradient descent. Letting
 ¼  ðx; tÞ, we solve the problem

 tðx, tÞ ¼ �E ð ðx, tÞÞ s:t:  tðx, tÞjt¼0 ¼  
ð0ÞðxÞ

Discretising this equation by forward differences in
terms of time t and rearranging, we have

 ðx, tþ 1Þ ¼  ðx, tÞ ��tE ð ðx, tÞÞ

Beginning with the initial estimate of  at t ¼ 0
which is determined by the inverse transform of the
received data z in the first instance and the latest
approximation in subsequent alternate minimisation
iterations, we evolve in time until the stopping criteria
are met. That is, until the L2-norm of the residual is
below a certain tolerance

 ðx, tþ 1Þ �  ðx, tÞ
�� ��

L2¼ �t E ð ðx, tÞÞ
�� ��

L2 5 tol

Point spread (blur) function k. Minimising now with
respect to the blur function k, we have the equation
for the blur function

uy � ðu � k� zÞ þ �2ðk� �bð!ÞÞ þ ’2 ¼ 0 ð26Þ

which may be solved for k in a similar manner to equa-
tion (23).

Transformed point spread (blur) function !. Minimising with
respect to !, we obtain

�2
@�bð!Þ

!
r �

r�bð!Þ

jr�bð!Þj

� �
� �2ðk� �bð!ÞÞ

@�bð!Þ

@!

� ’2
@�bð!Þ

@!
¼ 0

ð27Þ

which may be solved using a gradient descent scheme.

Overall algorithm. In order to solve this model, we make
an initial estimate of the image, which is typically the
received data since it is the closest approximation we
have. We also make an estimate of the PSF based on
visual observation of the received image. Using this
information, we obtain the initial estimates of  and
! and then calculate the first estimates of c1 and c2. We
next update the image,  , the PSF, !, the function 
, ’1
and ’2. We proceed to iterate until we reach an
acceptable tolerance. Our algorithm is presented in
Algorithm 3.

Algorithm 3. . Segmentation of blurred images:

ð‘ Þ  A

J
1 

ð0Þ, kð0Þ, z,maxit

� 	
1: uð0Þ  z,  ð0Þ  �a uð0Þ

� 	
, !ð0Þ  �b kð0Þ

� 	
2: ’ð0Þ1  1, ’ð0Þ2  1

3: for ‘ 1 : maxit do
4: Calculate c

ð‘ Þ
1  c1  

ð‘�1Þ, 
ð‘�1Þ
� 	

, c
ð‘ Þ
2  c2

 ð‘�1Þ, 
ð‘�1Þ
� 	

using (22)
5: Update uð‘ Þ by solving (23)
6: Update  ð‘ Þ by solving (25)
7: Update kð‘ Þ by solving (26)
8: Update !ð‘ Þ by solving (27)
9: Update 
ð‘ Þ by solving (20)
10: Update ’ð‘ Þ1  ’ð‘�1Þ1 þ �1 uð‘ Þ � �a  

ð‘ Þ
� 	� 	

11: Update ’ð‘ Þ2  ’ð‘�1Þ2 þ �2 kð‘ Þ � �b !
ð‘ Þ

� 	� 	
12: end for

We demonstrate in Result set 2 of the
‘Experimental results’ section that segmenting a
blurred image by the joint approach can offer
improved results over the corresponding two-stage
method. Furthermore, in Result set 3, we show that
our method offers improved results over comparable
methods. In the following section, we consider an
alternative joint method which aims to improve the
speed of obtaining a solution.
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A relaxed model for the segmentation

of images with unknown blur

In order to speed up the above model, we consider a
way to simplify the equation for  through relaxation
of the functional. We introduce into the segmentation
fitting terms a new variable $ðx, yÞ which should be
equal to the sharp image at convergence. We achieve
this by adding distance measures which penalise the
difference between the restored image and the function
$, thus driving them close together. We add penalisa-
tion parameters so that the influence of this relationship
can be tweaked. We present our joint problem func-
tional as

max
’1,’2,�

min

,c1,c2,$,u, ,k,!

�
fJ2ð
, c1, c2,$, u, , k,!; ’1, ’2, �Þ

¼ 	

Z
�

jr
jd�þ l1

Z
�

j$ � c1j
2
d�

þ l2

Z
�

j$ � c2j
2ð1� 
Þd�þ �

Z
�

b"ð
ÞH" b"ð
Þð Þd�

þ
1

2
jjk � u� zjj2L2ð�Þ þ �1

Z
�

jr�að Þjd�

þ
�1
2
jju� �að Þjj

2
L2ð�Þ þ 5 ’1, u� �að Þ4

þ
�

2
jj$ � �að Þjj

2
L2ð�Þ þ 5 �,$ � �að Þ4

þ�2

Z
�

jr�bð!Þjd�þ
�2
2
jjk� �bð!Þjj

2
L2ð�Þ

þ 5 ’2, k� �bð!Þ4
�

ð28Þ

In order to solve this model, we derive the partial
differential equations defined by the first-order optimal-
ity conditions. We will take the Euler–Lagrange equa-
tions for each argument in turn. Minimising with

respect to 
, we obtain the equation derived from
@fJ2=@


E1ð
Þ ¼ 	r �
r


jr
j

� �
þ l1

Z
�

j$ � c1j
2d�

� l2

Z
�

j$ � c2j
2d�þ

2�ð2
� 1Þ

b" þ 1
H" b"ð Þ þ �" b"ð Þb"ð Þ

ð29Þ

where b" ¼ b"ð
Þ. We find a solution to E1ð
Þ ¼ 0 (29)
using AOS as described earlier.

Minimising fJ2 with respect to u, we obtain the
equation

ky � k � uþ ð�1 þ ’1Þu ¼ ky � zþ ð�1 þ ’1Þ�að Þ ð30Þ

where kyðx, yÞ ¼ kð�x, � yÞ. This can be solved
quickly using pcg.33

Minimising fJ2 now with respect to  , we obtain the
equation

E2ð Þ ¼ �Rð Þ � �
0
að Þð�1 þ ’1Þðu� �að ÞÞ

þ �0að Þð�ð$ � �að ÞÞÞ � �
y�að ÞÞ

ð31Þ

where Rð Þ is the derivative of the regularisation termR
�
jr�að Þjd�. We can solve E2ð Þ ¼ 0 (31) using semi-

implicit time marching,  t ¼ �E2ð Þ by discretising the
time step.

Now, minimising fJ2 with respect to $, we obtain

E3ð$Þ ¼ 2l1ð$ � c1Þ
þ 2l2ð$ � c2Þð1� 
Þ

þ uð$ � �að ÞÞ þ �
yð$ � �að ÞÞ

Note that we can solve the sub-problem E3ð$Þ ¼ 0
directly by giving the solution to

2l1
þ 2l2ð1� 
Þ þ uþ �y
� 

$ ¼ 2l1c1
þ 2l2c2ð1� 
Þ

þ uþ �y
� 

�að Þ

ð32Þ

(a) (b) (c)

Figure 1. Illustration of the continuous approximation &" to the piecewise linear function &. For lower ", the approximation is very

close to &. (a) &ðxÞ, (b) &"ðxÞ, " ¼ 10�2 and (c) &"ðxÞ, " ¼ 10�3.
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Figure 2. Images used for test examples: (a) Im1, (b) Im2, (c) Im3, (d) Im4, (e) Im5 and (f) Im6.

Figure 3. Segmentation of images Im1–Im6 using model Mod1: (a) Im1 segemented by Mod1, (b) Im2 segemented by Mod1, (c) Im3

segemented by Mod1, (d) Im4 segemented by Mod1, (e) Im5 segemented by Mod1 and (f) Im6 segemented by Mod1.
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To obtain the average intensities, we minimise fJ2
with respect to c1 and c2, we obtain equations which
can be evaluated directly

c1 $,
ð Þ ¼ �a

R
�$
d�R

�

d�

� �
, c2 $,
ð Þ ¼ �a

R
�$ð1�
Þd�R

�
1�
d�

� �

ð33Þ

Finally, minimising with respect to k and !, we
obtain equations (26) and (27), respectively.

In order to solve the model (28), we make an initial
estimate of the image, which we allow to be given by the
received data z since this is the closest approximation to
the true data that we have. Alternatively, if we know
or can make an estimate of the PSF, we may solve

Table 1. Result set 1. Error values for Im1–Im6 corrupted by Gaussian blur and segmented by Mod1. Values in bold indicate the

lowest error achieved for each image.

Small Gaussian Blur, � ¼ 9 Large Gaussian Blur, � ¼ 19

Image Model Er1 Er2 Er3 Er1 Er2 Er3

Im1 Initial 101.16 64.34 0.13 101.16 64.34 0.13

Mod1 101.86 86.19 0.37 141.48 82.47 0.22

Mod2 15.32 22.54 0.96 44.82 65.81 0.85

NewT
G 13.09 19.85 0.97 17.24 25.46 0.95

Im2 Initial 104.31 32.03 0.23 104.31 32.03 0.23

Mod1 32.27 36.30 0.89 63.59 37.38 0.67

Mod2 18.99 23.73 0.97 14.73 28.28 0.89

NewT
G 7.27 12.74 0.99 10.50 16.45 0.99

Im3 Initial 109.65 34.84 0.42 109.65 34.84 0.42

Mod1 16.79 23.81 0.99 32.10 36.70 0.95

Mod2 1.62 0.00 1.00 1.71 0.00 1.00

NewT
G 1.57 0.00 1.00 1.56 0.00 1.00

Im4 Initial 138.19 97.49 0.19 138.19 97.49 0.19

Mod1 81.87 100.09 0.74 142.16 91.71 0.45

Mod2 21.69 30.98 0.89 48.71 68.60 0.88

NewT
G 17.94 25.92 0.98 20.29 29.17 0.98

Im5 Initial 109.07 104.47 0.29 109.07 104.47 0.29

Mod1 120.87 109.63 0.49 134.30 109.44 0.42

Mod2 44.96 66.06 0.87 46.33 65.98 0.86

NewT
G 16.11 24.54 0.98 27.18 38.99 0.95

Im6 Initial 145.97 70.51 0.27 145.97 70.51 0.27

Mod1 69.01 75.80 0.85 84.28 75.87 0.79

Mod2 46.22 67.20 0.88 35.91 52.68 0.95

NewT
G 18.01 26.50 0.99 27.74 40.31 0.97

Note: In many cases, the competition is close but NewT
G obtains the same or improved error values over competing models in all cases.

Figure 4. Result sets 1, 3. Illustration of the performance of the Mod1 for Im1 corrupted by Gaussian blur: (a) initial contour,

(b) segmentation given by Mod1, (c, d) segmentation given by NewJ. Mod1 gives a rough segmentation while the spaces between the

letters which are hidden by the blur are successfully segmented using NewJ.
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a Tikhonov model22 and attempt to use this as the initial
estimate based on visual judgement. We then calculate
the initial estimate of  as the inverse transform of the
initial estimate of the image. Similarly, in the blind case,
we make an initial estimate of the PSF based on visual
observation and compute its inverse transform function.
We next make an initial estimate of the contour, obtain-
ing the initial estimate of 
. Using these and equation
(33), we make the initial estimates of c1 and c2. We then
proceed to solve the model (28), alternately minimising
with respect to the arguments. The final segmentation is
then given by the contour �p derived from the final func-
tion 
. We present this algorithm in Algorithm 4 below.

Algorithm 4. Segmentation of blurred images:

ð‘ Þ  A

J
2 

ð0Þ, kð0Þ, z,maxit

� 	
1: uð0Þ  z, $ð0Þ  uð0Þ,  ð0Þ  �a uð0Þ

� 	
,

!ð0Þ  �b kð0Þ
� 	

2: ’ð0Þ1  1, ’ð0Þ2  1, �ð0Þ  1

3: for ‘ 1 : maxit do
4: Calculate c

ð‘ Þ
1  c1 $

ð‘�1Þ, 
ð‘�1Þ
� 	

, c
ð‘ Þ
2  c2

$ð‘�1Þ, 
ð‘�1Þ
� 	

using (33)
5: Update uð‘ Þ using (30)
6: Update  ð‘ Þ using (31)
7: Update kð‘ Þ

8: Update !ð‘ Þ

9: Update 
ð‘ Þ using (29)
10: Update $ð‘ Þ using (32)

11: Update ’ð‘ Þ1  ’ð‘�1Þ1 þ �1 uð‘ Þ � �a  
ð‘ Þ

� 	� 	
12: Update ’ð‘ Þ2  ’ð‘�1Þ2 þ �2 uð‘ Þ � �b !

ð‘ Þ
� 	� 	

13: Update �ð‘ Þ  �ð‘�1Þ þ � �a  
ð‘ Þ

� 	
� wð‘ Þ

� 	
14: end for

Experimental results

Attempting to segment a blurred image with a segmen-
tation technique (such Chan–Vese4) is sufficient to

Table 2. Result set 1. Error values for Im1–Im6 corrupted by Gaussian blur and segmented by Mod3 and NewT
P . Values in bold

indicate the lowest error achieved for each image.

Small Gaussian Blur, � ¼ 9 Large Gaussian Blur, �¼ 19

Image Model Er1 Er2 Er3 Er1 Er2 Er3

Im1 Mod1 101.86 86.19 0.37 141.48 82.47 0.22

Mod3 72.97 77.32 0.54 96.44 78.63 0.39

NewT
P 67.52 75.39 0.57 90.31 74.70 0.43

Im2 Mod1 32.27 36.30 0.89 63.59 37.38 0.67

Mod3 11.74 18.63 0.98 25.72 33.06 0.92

NewT
P 11.74 18.47 0.98 25.50 32.94 0.92

Im3 Mod1 16.79 23.81 0.99 32.10 36.70 0.95

Mod3 12.29 16.94 0.99 12.49 17.49 0.99

NewT
P 11.97 16.94 0.99 12.28 17.29 0.99

Im4 Mod1 81.87 100.10 0.74 142.16 91.72 0.45

Mod3 57.22 81.51 0.86 110.57 89.48 0.61

NewT
P 55.51 79.34 0.86 110.51 89.40 0.61

Im5 Mod1 120.87 109.63 0.49 134.30 109.44 0.42

Mod3 102.98 103.05 0.57 104.25 103.54 0.56

NewT
P 102.95 103.05 0.57 104.21 103.51 0.56

Im6 Mod1 69.01 75.80 0.85 84.29 75.87 0.79

Mod3 50.96 69.64 0.91 57.27 70.41 0.89

NewT
P 50.96 69.64 0.91 57.27 70.38 0.89

Note: The competition is close for most examples, but overall NewT
P outperforms Mod3.

Table 3. Result set 2. Error values given by Er1 for Im1–Im4 cor-

rupted by Gaussian blur and segmented by NewT
G , NewJ and New

J
R.

Values in bold indicate the lowest error achieved for each image.

Image Initial NewT
G NewJ New

J
R

Im1 101.1621 13.0888 15.3386 16.5861

Im2 104.3123 7.2681 5.8182 6.9165

Im3 109.6528 1.5731 1.0923 1.5249

Im4 138.1870 17.9387 14.3647 17.6317

Note: For Im1, NewT
G outperforms the other models but in the remaining

cases NewJ and New
J
R obtain improved results.
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obtain a close result if the degradation is not strong but
as the amount of corruption increases, it is not possible
to obtain a good result because such models are not
designed with blur degradation in mind. Meanwhile,
the work of Bar et al.12 is capable of segmenting blurred
images where the corruption is small but begins to
struggle to obtain good quality results in the presence
of significant blur degradation or noise.

In this section, through experiments, we demonstrate
that Algorithms 1 and 2 offer improvements over com-
peting models for blurred images. We also show that
Algorithm 3 is capable of obtaining a good quality
result with the possibility of slow convergence while
Algorithm 4 converges faster to a similar, if slightly
lower, quality.

We present results of segmenting the following
images (see Figure 2) with the addition of varying
levels of Gaussian blur and noise: Im1: Text
(Figure 2(a)), Im2: Cells medical (Figure 2(b)), Im3:
Box-Triangle (Figure 2(c)), Im4: QR Code (Figure 2(d)),
Im5: Fingerprint (Figure 2(e)), Im6: Tree (Figure 2(f)).

We denote by �Mod1 and 
Mod1 , respectively, the con-
tour obtained and the segmented area obtained by solving
Mod1. The notation is similar for the other models.

Experiments were carried out using Matlab R2013a
on a HPE-595uk with an Intel(R) Core(TM) i7-2600
processor and 16GB RAM.

Models

In order to compare our results with competing and
other relevant models, we define the following models
to be tested in this section:

Mod1: The Chan–Vese segmentation model (CV).4

Mod2: The two-stage model by standard TV deblurring

followed by CV segmentation.

Mod3: The two-stage model by standard deblurring for

Poisson noise followed by CV segmentation.

Mod4: The Bar et al. model12 using equation (2) – with-

out constraints on k� , u.

NewT
G: Algorithm 1 – a two-stage model given by impli-

citly constrained blind deblurring (7) for Gaussian

noise followed by convex segmentation (13).

Table 4. Result sets 3, 4. Error values and cpu times for images

Im1–Im6, ‘Circles’ and ‘Knee’ images corrupted by small Gaussian

blur. Values in bold indicate the lowest error and least CPU time

achieved for each image.

Model Er1 Er2 Er3 Er4 cpu

Im1 corrupted by small Gaussian blur

Initial 101.16 64.34 0.13 0.23

Mod1 101.86 86.19 0.37 0.54 317

Mod4 94.94 85.99 0.40 0.58 1362

NewJ 15.34 23.19 0.96 0.98 559

New
J
R 16.59 24.54 0.95 0.98 443

Im2 corrupted by small Gaussian blur

Initial 104.31 32.03 0.23 0.37

Mod1 32.27 36.30 0.89 0.94 527

Mod4 23.02 31.94 0.94 0.97 861

NewJ 5.82 11.14 0.99 0.99 546

New
J
R 6.92 12.33 0.99 0.99 427

Im3 corrupted by small Gaussian blur

Initial 109.65 34.84 0.42 0.59

Mod1 16.79 23.81 0.99 0.99 319

Mod4 13.64 19.44 0.99 0.99 634

NewJ 1.09 0 1 1 550

New
J
R 1.52 0 1 1 228

Im4 corrupted by small Gaussian blur

Initial 138.19 97.49 0.19 0.32

Mod1 81.87 100.10 0.74 0.85 527

Mod4 65.75 84.34 0.82 0.90 942

NewJ 14.36 20.30 0.99 0.99 586

New
J
R 17.63 25.16 0.98 0.99 331

Model Er1 Er2 Er3 Er4 cpu

Im5 corrupted by small Gaussian blur

Initial 109.07 104.47 0.29 0.45

Mod1 120.87 109.63 0.49 0.65 524

Mod4 113.26 110.01 0.52 0.68 835

NewJ 28.43 45.87 0.93 0.96 568

New
J
R 38.05 54.59 0.90 0.95 543

Im6 corrupted by small Gaussian blur

Initial 145.97 70.51 0.27 0.43

Mod1 69.01 75.80 0.85 0.92 525

Mod4 61.13 75.09 0.88 0.93 836

NewJ 32.41 48.61 0.96 0.98 562

New
J
R 35.34 50.49 0.95 0.98 537

‘Circles’ corrupted by small Gaussian blur

Initial 65.21 28.28 0.69 0.82

Mod1 37.52 30.02 0.89 0.94 423

Mod4 33.10 29.90 0.91 0.95 731

NewJ 18.63 26.98 0.97 0.99 330

New
J
R 18.59 26.98 0.97 0.99 320

‘Knee’ corrupted by small Gaussian blur

Initial 120.54 60.70 0.32 0.49

Mod1 78.07 63.56 0.76 0.87 538

(continued)

Table 4. Continued

Model Er1 Er2 Er3 Er4 cpu

Mod4 72.55 64.96 0.78 0.88 1166

NewJ 34.13 47.11 0.93 0.96 561

New
J
R 32.36 45.65 0.94 0.97 542

Note: In all cases, NewJ and New
J
R achieve improved results with NewJ

typically achieving better results. For many examples, the cpu time is

lower for Mod1 but it is closely followed by New
J
R which gives consider-

ably better results.
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Figure 5. Result sets 3, 4. Illustration of the performance of the NewJ for Im2 corrupted by Gaussian blur: (a) received data, (b, c)

segmentation using NewJ, (d) the difference between the segmentation using NewJ and using Mod1. The segmentation is closer to the

true edge using NewJ while Mod1 also captures the blurred edge.

Figure 6. Result sets 3, 4. Illustration of the performance of NewJ for (top-bottom) Im4, Im3, Im5 and Im6 corrupted by Gaussian

blur. The edges hidden by blur are successfully segmented by NewJ which cannot be segmented by Mod1.
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Table 5. Result set 3. Error values and cpu times for images Im1–Im6, ‘Circles’ and ‘Knee’ images corrupted by strong Gaussian blur.

Values in bold indicate the lowest error or least CPU time achieved for each image.

Model Er1 Er2 Er3 Er4 cpu

Im1 corrupted by large Gaussian blur

Initial 101.16 64.34 0.13 0.23

Mod1 141.48 82.47 0.22 0.36 520

Mod4 151.08 80.40 0.21 0.35 1479

NewJ 35.68 54.83 0.80 0.89 557

New
J
R 44.93 62.98 0.75 0.86 549

Im2 corrupted by large Gaussian blur

Initial 104.31 32.03 0.23 0.37

Mod1 63.59 37.38 0.67 0.80 522

Mod4 47.17 36.88 0.79 0.88 950

NewJ 6.79 13.86 0.99 0.99 566

New
J
R 10.17 16.31 0.99 0.99 434

Im3 corrupted by large Gaussian blur

Initial 109.65 34.84 0.42 0.59

Mod1 32.10 36.70 0.95 0.97 418

Mod4 28.31 36.76 0.96 0.98 730

NewJ 11.96 16.88 0.99 0.99 552

New
J
R 12.08 16.97 0.99 0.99 232

Im4 corrupted by large Gaussian blur

Initial 138.19 97.49 0.19 0.32

Mod1 142.16 91.72 0.45 0.62 525

Mod4 140.11 91.25 0.49 0.66 1477

NewJ 25.03 38.54 0.96 0.98 589

New
J
R 30.42 43.59 0.95 0.98 444

Model Er1 Er2 Er3 Er4 cpu

Im5 corrupted by large Gaussian blur

Initial 109.07 104.47 0.29 0.45

Mod1 134.30 109.44 0.42 0.59 523

Mod4 126.19 110.54 0.46 0.63 937

NewJ 74.10 91.39 0.71 0.83 564

New
J
R 74.77 92.98 0.69 0.81 334

Im6 corrupted by large Gaussian blur

Initial 145.97 70.51 0.27 0.43

Mod1 84.29 75.87 0.79 0.88 520

Mod4 76.36 76.09 0.82 0.90 940

NewJ 40.19 58.20 0.94 0.97 574

New
J
R 42.54 60.44 0.94 0.97 539

‘Circles’ corrupted by large Gaussian blur

Initial 65.21 28.28 0.69 0.82

Mod1 114.90 32.76 0.47 0.64 525

Mod4 124.12 33.08 0.44 0.61 1364

NewJ 26.29 29.82 0.93 0.96 543

New
J
R 24.81 29.75 0.95 0.97 430

‘Knee’ corrupted by large Gaussian blur

Initial 120.54 60.70 0.32 0.49

Mod1 89.11 63.17 0.70 0.82 522

Mod4 87.84 63.11 0.72 0.84 1148

NewJ 47.29 56.39 0.89 0.94 548

New
J
R 43.29 55.53 0.90 0.95 539

Note: In all cases, NewJ and New
J
R achieve improved results and competition is close between NewJ and New

J
R . For most cases, the cpu time is lower

for New
J
R with the exception of three examples which have slightly lower cpu time for Mod1 with deteriorated results.
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Figure 7. Result set 3. Illustration of the performance of the NewJ for (top-bottom) Im1, Im4, Im2 and Im6 corrupted by strong

Gaussian blur. NewJ is capable of segmenting edges in these challenging cases which cannot be segmented by Mod1.
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NewT
P: Algorithm 2 – adapted Algorithm 1 for Poisson

noise.

NewJ: Algorithm 3 – the joint minimisation model (19)

for blind deblurring and convex segmentation, with

built-in constraints on k, u.

NewJ
R: Algorithm 4 – the relaxed joint minimisation

model (28) from (19).

Measuring error

In order to make a numerical evaluation of our model,
we require a ground truth. For the artificial images Im1

and Im3, we already know the contour and consider
this to be the ground truth segmentation. For the
remaining images, we estimate the true contour by
assuming that the segmentation of the true (uncor-
rupted) image is correct (see Figure 3) and we consider

methods of measuring the accuracy of the final contour
�, that is how close it is to the segmentation by Chan–
Vese of the true image given by �true. To this end, we
compare the final contours and indicator functions. We
compare results using the following error measures, of
which Er1 and Er2 tend to zero and Er3 and Er4 tend to
one as the segmentation of the blurred image tends
towards the segmentation of the true image.
Throughout, we denote the true, received and restored
image u as utrue, urec and urest, respectively, with similar
notation for the remaining functions. To distinguish
models, we also denote by �NewJ the contour obtained
by solving model NewJ and adopt similar notation for
the remaining models and functions.

. L2 area-based difference gives the L2 norm of the
difference in segmented images. It measures the
closeness of the final indicator functions

Er1 ¼ jj

rest � 
truejj22

where 
rest corresponds to the function achieved
from solving the model.

. Contour difference gives the L2 norm of the differ-
ence between final contours

Er2 ¼ jj�
rest � �truejj22

. Letting the set of points which are considered to be
inside in the contour be given by

Srest ¼ ðx, yÞ 2 �j
restðx, yÞ4 10�1
� �

we define Er3 (Tanimoto Coefficient)34–36 and Er4
(Dice Similarity Coefficient)34,37 as

Er3 ¼
N Srest \ Strueð Þ

N Srest [ Strueð Þ
and Er4 ¼

2N Srest \ Strueð Þ

N Srestð Þ þ N Strueð Þ

respectively where NðSÞ denotes the number of elem-
ents in S. It is clear that as the restored segmentation
tends towards the true segmentations, both error values
tend towards one.

Result sets

We group our experimental results by the following
result sets:

RS1: Result set 1 consists of images corrupted by blur

with the assumption that Gaussian noise is present. We

illustrate the performance of Mod1 to segment the

image and consider it against the performance of

Mod2 and NewT
G. We see in Table 1 and Figure 4

Table 6. Result set 3. Error values and cpu times for Im1, Im3–

Im5 corrupted by Gaussian blur and zero-mean Gaussian noise of

variance 0.005. Values in bold indicate the lowest error and least

CPU time achieved for each image.

Model Er1 Er2 Er3 Er4 cpu

Im1 corrupted by Gaussian blur and noise

Initial 101.16 64.34 0.13 0.23

Mod1 101.84 86.26 0.37 0.54 319

Mod4 94.93 86.12 0.40 0.58 1899

NewJ 13.86 19.85 0.97 0.98 607

New
J
R 14.90 20.95 0.96 0.98 452

Im3 corrupted by Gaussian blur and noise

Initial 109.65 34.84 0.42 0.59

Mod1 16.86 23.94 0.99 0.99 317

Mod4 14.32 21.54 0.99 0.99 633

NewJ 1.75 0 1 1 512

New
J
R 2.18 0 1 1 242

Model Er1 Er2 Er3 Er4 cpu

Im4 corrupted by Gaussian blur and noise

Initial 138.19 97.49 0.19 0.32

Mod1 81.91 99.99 0.74 0.85 530

Mod4 65.71 84.35 0.82 0.90 958

NewJ 26.84 36.25 0.96 0.98 640

New
J
R 23.90 32.14 0.97 0.99 342

Im5 corrupted by Gaussian blur and noise

Initial 109.07 104.47 0.29 0.45

Mod1 120.86 109.64 0.49 0.65 547

Mod4 113.25 109.98 0.52 0.68 877

NewJ 41.61 62.13 0.87 0.93 600

New
J
R 45.32 63.95 0.86 0.93 575

Note: In all cases, NewJ and New
J
R achieve improved results. Cpu time is

lower for New
J
R in two cases. In the remaining cases, it is lower for Mod1

and closely followed by New
J
R which achieved significantly improved results.
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that while Mod1 can give a reasonable result, it is not

reliable for segmenting blurred images. We also dem-

onstrate in Table 1 that the result can be improved by

using the two-stage model Mod2 and further enhanced

by the constrained model NewT
G. We also demonstrate

in Table 2 that this idea carries over to the case of

Poisson noise corruption in the image. It can be seen

that model NewT
P offers an improvement over the two-

stage Poisson model Mod3.

RS2: In Result set 2, we consider the comparison

between the results obtained by solving the two-stage

model NewT
G with those obtained as the solutions of the

joint models NewJ and NewJ
R. We can see in Table 3

that there is little advantage in considering the

Figure 8. Result set 3. Illustration of the performance of the NewJ for (top-bottom) Im1, Im3, Im4 and Im5 corrupted by Gaussian

blur and noise. The edges hidden by blur are successfully segmented by NewJ which cannot be segmented by Mod1.
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problems of deblurring and segmentation separately. In

most cases, the joint models achieve better results than

the two-stage model while the two-stage model obtains

an improved result in only one case.

RS3: Result set 3 consists of images corrupted by small

and large amounts of blur as well as noise. We demon-

strate in Table 4 and Figures 4 to 6 that model Mod1 is

sometimes sufficient to obtain a fairly close result but

misses a considerable amount of detail while Mod4 can

give an improvement over this. We also demonstrate that

the new joint models NewJ and NewJ
R are capable of seg-

menting these examples and offer further enhancement

over Mod4. Further to this, we demonstrate in Table 5

and Figure 7 that, when the level of blur is larger, NewJ

offers further improvements overMod4. Finally, we dem-

onstrate inTable 6 andFigure8 that, as the level ofnoise is

increased, NewJ continues to perform well.

RS4: Result set 4 demonstrates the ability of NewJ
R and

compares the performance of this model with NewJ.

We can see in in Tables 4–6 and Figure 9 that it is

generally the case that NewJ
R is faster than NewJ

while NewJ obtains better results.

Conclusions

We have proposed a new model for the effective segmen-
tation of blurred images in the blind case where the blur
function is unknown (NewJ) and presented results

demonstrating its ability to capture edges which are
blurred and difficult to segment closely as well as edges
that are hidden by blur. We have also presented an accel-
erated model (NewJ

R) which is also capable of achieving
good results with similar examples. We have also demon-
strated that these joint models can obtain improved per-
formance over comparable two-stage models. This model
can be further extended to the semi-blind case where
some information about the blur function may be
assumed to be known38–43 which allows for increases in
speed and to work with multi-channel images. This
model will be considered for selective segmentation9

and vessel segmentation techniques among others.
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