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Abstract. Energy efficiency is at a critical point now with rising energy prices and decarbonisation of the residential sector to
meet the global NetZero agenda. Non-Intrusive Load Monitoring is a software-based technique to monitor individual appliances
inside a building from a single aggregate meter reading and recent approaches are based on supervised deep learning. Such
approaches are affected by practical constraints related to labelled data collection, particularly when a pre-trained model is
deployed in an unknown target environment and needs to be adapted to the new data domain. In this case, transfer learning is
usually adopted and the end-user is directly involved in the labelling process. Unlike previous literature, we propose a combined
weakly supervised and active learning approach to reduce the quantity of data to be labelled and the end user effort in providing
the labels. We demonstrate the efficacy of our method comparing it to a transfer learning approach based on weak supervision.
Our method reduces the quantity of weakly annotated data required by up to 82.6 - 98.5% in four target domains while improving
the appliance classification performance.
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1. Introduction

Energy efficiency has gained great traction in re-
cent years [1–3], to facilitate the transition to NET-
zero economy. Energy awareness plays a key role in
improving energy efficiency [4–9], and active user par-
ticipation can potentially increase a household’s en-
ergy flexibility, leading to energy savings of up to 30%
[8]. Evidence in [6] suggests that energy awareness en-
courages end-users to purchase energy-efficient prod-
ucts. This perspective may motivate users to actively
participate in energy conservation and invest in de-
vices that provide future energy and monetary sav-
ings. In fact, a study [5] conducted on two groups

*Corresponding author. E-mail: s.squartini@unipvm.it.

of low-income consumers revealed that 46.5% are in-
terested in saving energy both for environmental and
financial reasons, compared to the rest who are in-
terested only for financial benefit or only for envi-
ronmental reasons. A recent review [9] emphasised
that providing effective feedback about consumption
is another way to engage users actively in the long
term. Moreover, the findings of the study highlight
the need to develop strategies and technologies that
are more user-centred. Energy awareness can be im-
proved by monitoring energy [3] and particularly via
Load Monitoring that provides detailed information
about consumption. Specifically, Non-Intrusive Load
Monitoring (NILM) is a purely algorithmic approach
to estimate individual appliance power consumption
that contribute to the measured aggregate signal, via
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smart metering for example. Over the past 40 years,
NILM has been demonstrated as an effective software-
based method for obtaining detailed energy consump-
tion information, avoiding the installation of several
meters to monitor individual appliances. NILM algo-
rithms can be unsupervised and supervised, with the
latter being more popular due to their excellent perfor-
mance. Signal processing [10] and Machine Learning
(ML) [11–13] methods have been initially proposed
for NILM. Deep neural networks gained wide atten-
tion in the community in many fields [14–19]. Follow-
ing the work of Kelly et al. [11] that proposed three
deep learning-based approaches, deep neural networks
(DNNs) have been widely applied in NILM achiev-
ing the state-of-the-art performance [20–27]. Many of
these techniques have not demonstrated their perfor-
mance in unseen environments [28] due to significant
differences between source and target signal domains
and the related feature spaces [29]. In NILM, differ-
ences in appliance load signatures and unknown loads
inside the aggregate signal [30, 31] mainly affect the
performance when a pre-trained model is deployed in
a target environment.

To overcome domain differences, transfer learning
[32, 33] has been demonstrated to be an effective
strategy in increasing generalisation capability: recent
methods operate by pre-training a neural network on a
large dataset and then fine-tuning it on data acquired
from the target environment [28, 34–36]. However,
these approaches need an additional acquisition and la-
belling phase to be applied. Generally, data acquisition
and annotation are costly and time-consuming proce-
dures, also requiring expertise in the specific applica-
tion field. In fact, for NILM, acquiring new signals in
the target domain requires the installation of electri-
cal sensors for each monitored appliance or the users’
involvement in manually annotating appliances’ states
by recording and reporting the on-time and off-time re-
lated to the usage of one or more appliances. This type
of label is used in supervised learning approaches. In
the authors’ opinion, these annotations can be most ef-
fectively gathered via a mobile app on the users’ smart-
phone, which allows them to provide feedback about
their appliance usage. If the focus is on monitoring the
state of appliances, as in this work, there is no need for
any hardware installation.

To reduce the requirement for labelled data, ap-
proaches based on semi-supervised learning have been
proposed recently [36–38]. A different approach to
reducing the labelling effort has been proposed in

[39, 40], where a weakly supervised method is demon-
strated to be more effective than the semi-supervised
one [38]. Weak supervision allows a lightened data an-
notation since labels are required in a coarser form
[25]. In terms of the aforementioned manual annota-
tions, under this approach, users would only need to
indicate whether an appliance was used or not within
a certain time window. Also, for the transfer learning
procedure, in [41] weak supervision was demonstrated
to be effective compared to a supervised strategy, espe-
cially in the practical scenario of acquiring labels from
the user feedback. Considering the multi-label appli-
ance classification task, a weak label is provided for
an entire temporal segment of the aggregate signal in-
dicating whether an appliance is ON or OFF within
that segment. Differently, strong labels used in super-
vised learning methods are annotations at the sample
level, i.e., they indicate whether an appliance is ON
or OFF for each sample, thus representing more fine-
grained information. In Fig. 1, the concepts of weak
and strong labels are graphically explained. The srong
labelling approach is more prone to errors and requires
intrusive sub-metering or expert knowledge about ap-
pliance load signatures for manual labelling. On the
other hand, weak labels can be obtained more easily
directly from the users in the target environment, by
simply asking them if an appliance was active or not
in a certain time period during the day as opposed to
labels for each sample.

Although weak labels reduce the labelling effort, the
number of time periods that need to be labelled for
fine-tuning could be still large. Active Learning (AL)
approaches [42, 43] are used in literature to optimise
data selection for artificial intelligence algorithms by
choosing the most informative data, and that way re-
duce the number of data segments needed to be la-
belled and added to the training dataset, but without
compromising the algorithm performance [44]. AL ap-
proaches have been widely used for deep learning al-
gorithms recently [45]. Specifically for NILM, a super-
vised AL-based framework was proposed [46] to find
the trade-off between accuracy and number of queries
to enlarge the training set in an unseen domain, and to
improve the transferability of NILM models. Although
improving the performance, this approach was based
on a small original training set with strong labels, re-
quiring sample-by-sample annotations.

We suggest that integrating a weakly supervised
learning strategy into the AL framework with transfer
learning avoids the need for expert labelling of target
domain data, and annotation effort is reduced both in
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terms of the number of signal segments and the amount
of information requested from users.

In this work, we propose a weak AL NILM ap-
proach to reduce the number of signals that need to
be labelled by users. By asking users to assign only
weak labels to the most uncertain segments of the ag-
gregate signal and sampling the fine-tuning set, we fur-
ther reduce the user annotation effort while obtaining
improved performance compared to our previous work
[41, 46] upon which we build. The proposed method is
completely based on weak supervision, from the net-
work pre-training to the adaptation in the target envi-
ronment through to the AL procedure. We model the
multi-label classification task as a Multiple-Instance
Learning (MIL) [47] problem, and generate windows
of aggregate samples as in [39] to which we refer as
bags. We compare the proposed method with [41] and
demonstrate that sampling the fine-tuning set via AL
leads to better performance. Additionally, we compare
our method with a NILM benchmark semi-supervised
approach [48] demonstrating the effectiveness of weak
labels over unlabelled data.

In the experiments, two widely used benchmark
datasets, UK-DALE [49] and REFIT [50], were used
to evaluate the performance of the proposed method.
They were used respectively as the source and tar-
get domain datasets to pre-train, fine-tune, and test the
neural network. The results show that the Weak AL
approach improves the performance compared to an
non-annotated fine-tuning set, demonstrating that sig-
nificant benefits can be obtained with coarser informa-
tion on a small number of signals.

The paper is organised as follows. Section 2 re-
views recent approaches for multi-label classification
and AL in NILM. Section 3 illustrates the contribu-
tions of this paper. Section 4 presents the problem for-
mulation and the proposed method. Section 5 describes
the experimental settings in detail. Section 6 presents
and discusses the obtained results. Finally, Section 7
concludes the paper and discusses future work.

2. Background

2.1. NILM as Multi-label Appliance Classification

The recent trend in low-frequency NILM literature,
as illustrated by the methods discussed below, fo-
cuses on the disaggregation of more commonly avail-
able smart meter time-series measurements of low-
frequency aggregate active power. Furthermore, most

NILM research proposed for multi-label appliance
classification is based on ML and approaches the prob-
lem using a supervised learning strategy.

Reference [13] proposed Random k-Label set (RAkEL)
and Multi-Label K-Nearest Neighbours (ML-KNN)
using both time- and wavelet-domain features to train
the ML models. Multi-label Restricted Boltzmann Ma-
chine (ML-RBM) was proposed by Verma and col-
leagues [20] due to its effectiveness in learning high-
level features and correlations. To achieve higher ac-
curacy with continuously varying appliances and over-
come low-frequency sampling-related problems, deep
dictionary learning was adopted in [21]. A Sparse Rep-
resentation Classification approach was proposed in
[22], reducing the number of logging data collected for
training. Temporal pooling was implemented in [23]
to concatenate different time resolution information.
A Gated Recurrent Units (GRUs) based approach was
proposed in [24], where features from the aggregate
signal and spikes are extracted using convolutional lay-
ers. A convolutional-recurrent and random-forest (RF)
based architecture that addresses label correlation and
class-unbalancing was proposed in [51].

An encoder-decoder architecture based on a Long
Short-Term Memory network (LSTM) was adopted in
[26]. A CNN followed by three different fully con-
nected sub-networks was implemented for multi-label
state and event type classification in [27]. Deep Blind
Compressed Sensing was proposed in [52], exploiting
compressed information to reduce transmission rate to
detect devices’ states.

To reduce the quantity of annotations required to
train the ML algorithms, semi-supervised learning
strategies have also been proposed. A semi-supervised
approach is proposed in [37] with the Virtual Ad-
versarial Learning strategy while [38] proposed a
semi-supervised learning procedure based on teacher-
student architecture and a Temporal Convolutional
Network. Alternatively [39] proposed an approach
based on a Convolutional Recurrent Neural Network
(CRNN) trained with weakly labelled data, lightening
the labelling effort by using a coarser type of labels to
train the network.

It is worth highlighting that the approaches reviewed
above still face domain adaptation issues when moving
from one well-known data domain to another. Transfer
learning methods are required to mitigate the domain
shift. In [36], a semi-supervised Knowledge Distilla-
tion approach has been proposed to improve the do-
main adaptation to classify the activation states and re-
cently in [41], a weakly supervised transfer learning

3

A weakly supervised active learning framework for non-intrusive load monitoring



approach has been proposed to reduce the labelling
effort exploiting coarser labels, assigned to an entire
window of the aggregate signal, modelled as a bag of
aggregate samples. Although a better performance was
obtained, the approach still relied on a large number of
windows from the aggregate signal.

2.2. AL for NILM

AL [44] is a concept introduced to reduce the la-
belling effort needed to train ML algorithms, selecting
only a subset of data to be labelled while keeping an
acceptable level of performance. Unlabelled data sam-
ples belonging to the query pool are usually ranked
according to informativeness or distance criteria, or a
combination of both. Then, based on the ranking, la-
bels are requested only for a small portion of data, i.e.,
for the data samples that will contribute to the model
training the most. AL has been popular in many ar-
eas recently, such as natural language processing [53]
and medical image processing [54]. A recent survey of
[45] gives an overview of AL approaches applied to
deep learning algorithms.

AL for NILM has not been extensively investi-
gated yet - there have only been a few attempts for
event-based methods using high-frequency load mea-
surements, based on: k-Nearest Neighbours (k-NN) in
[55], Support Vector Machines (SVM) in [56], Ran-
dom Forest with semi-supervised and AL combined
in [57], and a DNN, using high-frequency measure-
ments and event detection in [58], and only one ap-
proach using low-frequency measurements and super-
vised model-based NILM in [46]. However, in [46],
only strong labels are used, which can be hard to ob-
tain from end users in a real-world scenario.

3. Contributions

Weak supervision and AL-based strategies are effec-
tive in labelling effort reduction, but it is worth high-
lighting that:

– as reported in [41], the weakly supervised ap-
proach for NILM requires a dataset annotated
with weak labels to train the network. This learn-
ing strategy could have a concrete consequence
in a real-world data collection scenario where the
end-user is involved in the labelling process.

– the AL proposed for NILM [46] depends on a
sample-by-sample labelling strategy that is chal-
lenging for a non-expert end-user.
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Fig. 1. Representation of strong and weak labels for a segment of
the aggregate power signal. Strong labels give information about the
state of activation for each instance (thus each sample of the signal
y(t)) while the weak label gives an overall and coarse label indicat-
ing if, inside that aggregate window (i.e., a bag), a specific appliance
is active. KE stands for Kettle, MW for Microwave, and DW for
Dishwasher.

We address the above two challenges and fill the gaps
of the existing literature by introducing a weak AL
framework for low-frequency, model-based NILM so-
lutions. In this way, we exploit the advantages of both
weak supervision and AL strategies, by querying the
user to assign weak (bag-level) labels to specific ag-
gregate windows selected by the AL loop. In summary,
the contributions of this work are:

– Algorithm 1, a multiple instance learning-based
approach that embeds both weak supervision and
AL to reduce the quantity of data to be weakly
labelled, compared to the state of the art [28, 39],
by selecting only the ones on which the network
indicates poor confidence;

– Development of a feasible AL framework in
a real-world scenario where the end-user does
not need to annotate power profiles sample-by-
sample, differently from [28, 39]. In this way, the
effort is reduced, and annotations are less affected
by errors.

– Adapted acquisition function to multi-label clas-
sification with weak labels (Algorithm 2) consid-
ering different behaviours and confidence levels
for different appliances.
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– Determining the optimal point, where additional
samples will only negligibly, or not all improve
performance via fine-tuning.

– Demonstration of the efficiency of the proposed
method on two commonly used public datasets
and four common household appliances (kettle,
microwave, washing machine and dishwasher) to
facilitate benchmarking.

Moreover, we demonstrate how the proposed ap-
proach of integrating the weakly supervised learning
strategy into the AL framework improves network per-
formance compared to our previous work [41] with re-
duced labelling effort.

4. Proposed Method

Each load inside a building contributes to the total
power consumption y(t) at time instant t based on the
following relationship:

y(t) =
N∑

n=1

sn(t)xn(t) + ϵ(t), (1)

with ϵ(t) being the measurement noise, sn(t) ∈ {0, 1}
and xn(t), denoting, respectively, the state and the
power associated to the n-th load at time instant t. In
this work, we propose a method for multi-label appli-
ance classification that refers to the estimation of sn(t)
for all the K ⩽ N appliances of interest, using one
network. Thus, for each time instant, we have the acti-
vation state for each monitored appliance, as shown in
Fig. 2, where for one particular input window, the ac-
tivations for two detected appliances (Kettle and Dish-
washer) are shown in that window.

The appliances’ states are estimated using a CRNN,
and the task is modelled as a MIL problem [47] to ex-
ploit weak labels. Based on the concept of instances
and bags, MIL performs a weak supervision strategy
in which the ground-truth is provided only at the bag
level.

In our method, instances refer to the raw samples
of the aggregate signal y(t), and the corresponding
strong labels are represented by one-hot vectors s(t) =
[s1(t), s2(t), . . . , sK(t)]T ∈ {0, 1}K×1 composed of the
appliances states. Bags refer to segments of y(t) of
length L, where the i-th bag is represented by the fol-
lowing vector:

yi = [y(iL), . . . , y(iL + L− 1)]T ∈ RL. (2)

The related weak label is encoded as a one-hot vector
wi having the same dimensions as s(t). Furthermore,
Si = [s(iL), s(iL + 1), . . . , s(iL + L− 1)] ∈ {0, 1}K×L

represents the set of strong labels of all the appliances
related to bag i. Bags and instances, as well as weak
labels and strong labels are represented in Fig. 1.

With the above definitions, it is now possible to de-
fine formally the multi-label appliance classification
task based on weak labels. Specifically, by exploiting
only the aggregate power signal yi, the aim is to learn
a function fθ : RL → {0, 1}K×L that provides an es-
timate Ŝi of Si. In this work, the function fθ(·) is rep-
resented by a CRNN, with trainable parameters θ, de-
scribed in the following section.

4.1. Neural Network Architecture

The proposed method is based on a CRNN that was
originally proposed in [59] and then adapted for the
NILM problem in [39, 41], demonstrating good re-
sults that exceed benchmarks. It comprises a convo-
lutional and a recurrent subpart, as shown in Fig. 2.
The H convolutional blocks are composed of a convo-
lutional layer with F × H filters and kernel size Ke,
a batch normalisation layer, a ReLu activation layer,
and a drop out layer with rate p. The recurrent sub-
part consists of a bidirectional layer of U GRU units.
In the following, the bag index i will be omitted for the
sake of simplicity. The output Ŝ is provided by a fully
connected layer with sigmoid activation function. This
layer will be denoted as instance layer in the follow-
ing. The final layer of the network is the bag layer with
sigmoid activation function that provides the estimate
ŵ. The relationship between the instance layer output
Ŝ and the bag layer output ŵ is calculated by applying
the sigmoid function σ(·) to the output of a pooling
function po : RK×L → RK :

ŵ = σ
(

po(Ŝ)
)
. (3)

As in [60] that applied MIL to the sound event detec-
tion task, we adopt the linear softmax pooling function
defined as follows:

ŵk = σ

(∑
t ŝ2k (t)∑
t ŝk(t)

)
, (4)

where ŵk is the k-th element of ŵ, i.e., the weak label
of the k-th appliance. After the bag layer, the instance-
level predictions can be multiplied to the bag-level out-
put. This procedure is performed during training and
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Fig. 2. CRNN architecture. FCL = Fully Connected Layer, BiGRU = Bidirectional Gated Recurrent Units.

referred to as Clip Smoothing (CS) [61]. It is based
on the consistency between weak and strong labels to
better deal with false activations. The final predictions
are obtained applying a threshold to the instance level
output.

4.2. Learning Strategy

Consider a pre-training dataset DDD(pt) given by

DDD(pt) = DDD(pt)
strong−weak ∪DDD(pt)

weak, (5)

where

DDD(pt)
strong−weak = {(y1,w1,S1), . . . , (yM ,wM ,SM)}

is a dataset composed of M bags annotated with strong
and weak labels, and

DDD(pt)
weak = {(yM+1,wM+1), . . . , (yM+B,wM+B)}

is a dataset composed of B bags annotated with weak
labels only, from the source domain. Another set DDDU =
{yM+B+1, . . . , yM+B+C} of electricity load measure-
ments, called query pool, composed of C unlabelled
bags is collected in the target environment, represent-
ing the pool for the AL process.

Based on the neural network architecture, two loss
terms are defined Ls and Lw, respectively, related to
the instance and bag output. Both losses are the Binary
Cross-Entropy functions for the related output calcu-
lated as follows:

Ls = −
1

K
1

L

K∑
k=1

L∑
t=1

[sk(t) log(ŝk(t))+

+ (1− sk(t)) log(1− ŝk(t))], (6)

and:

Lw = − 1

K

K∑
k=1

[wk log(ŵk) + (1− wk) log(1− ŵk)] ,

(7)

where the bag index i has been omitted for simplic-
ity of notation. Learning is initially performed by pre-
training the neural network on a large public dataset
DDD(pt). A significant advantage of the proposed method
is that it allows to use strong or weak labels in the pre-
training phase depending on the composition of DDD(pt).
The model is pre-trained both on strongly and weakly
annotated data if DDD(pt)

strong−weak ̸= ∅, or only on weakly

annotated data if DDD(pt)
strong−weak = ∅. In the first case,

the training loss is Lpt = Ls + λLw, where λ bal-
ances the contribution of the two losses, while in the
second case it is Lpt = Lw. During fine-tuning, the
weights of all the convolutional blocks are not updated
(i.e., they are frozen) to avoid performance degrada-
tion [28]. Instead, fine-tuning is performed only on the
recurrent subpart and on the instance layer using the
dataset QQQtot, j. This dataset contains a set of bags, an-
notated only with weak labels, obtained by labelling a
subset QQQU, j of DDDU at each iteration j. Additional de-
tails on QQQtot, j and QQQU, j are provided in Section 4.3. The
fine-tuning loss L f t is equal to Lw since we suppose to
collect only weak labels from the target environment
(i.e., QQQtot, j is annotated only with weak labels).

4.3. Weakly Supervised AL Framework

The proposed Weakly Supervised AL framework,
schematically illustrated in Fig. 3, comprises the CRNN
model pre-trained using DDD(pt), the query pool DDDU for
which only weak labels can be obtained on demand,
and an acquisition function q(·) used to rank bags from
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Fine-tuning dataset 
Qtot,j

Electricity load 
measurements – 
query pool DU

Acquisition 
function

CRNN model

Evaluation

Weakly labelled 
signals

Weak predictions
[0.9 0.1 0.0 0.7]

KE
DW

Strong predictions

Fig. 3. Weakly Supervised AL Scheme. Each block corresponds to an element of the framework. The Convolutional Recurrent Neural Network
(CRNN) model generates both strong and weak predictions. During the AL process, strong predictions are used to evaluate the current model,
while weak predictions serve as input for the acquisition function. The acquisition function selects the windows to be labelled based on the
uncertainty of the network predictions. The most uncertain windows are chosen, suggested to the user for annotation, and then incorporated into
the fine-tuning set for the subsequent fine-tuning phase. A detailed description of the entire framework can be found in Section 4.3.

DDDU and choose the most informative ones to be in-
cluded in the fine-tuning of the model.

The AL process is iterative, and we indicate the it-
erations with j and with fθ j the CRNN model trained
at iteration j. The pre-trained model fθ0 first makes
predictions on the whole query pool DDDU and provides
its predictions to the acquisition function. The acquisi-
tion function then chooses a subset QQQU, j ⊂ DDDU , with
j = 1, ..., J indexing the current query of most in-
formative aggregate bags, accounting for model un-
certainty when making predictions; the more uncer-
tain the model is about a bag, the more the bag con-
tributes towards the model prediction if included in
fine-tuning.

Then, labels are queried for the chosen subset of
bags as a result of the acquisition function. Let QQQweak, j

be the weakly annotated set during the j-th query, com-
posed of P bags. At the end of the loop, the model is
fine-tuned using bags belonging to

QQQtot, j = QQQtot, j−1 ∪QQQweak, j, j = 1, ..., J, (8)

queried up to the j-th query. Note that QQQtot,0 is an
empty set. The knowledge of the new, improved model
fθ j , j > 0 is used to further select samples for labelling.

This procedure runs iteratively until all bags from the
query pool are exhausted.

A pseudo-code of the weak AL procedure proposed
in this paper is given in Algorithm 1.

At the end of the process, only the model that satis-
fies the desired requirements (i.e., a balance good per-
formance and small number of data) is employed to
classify the appliances, without considering the previ-
ous intermediate models’ predictions. In fact, the mod-
els generated after each fine-tuning phase are utilised
to select the next batch of data for the subsequent fine-
tuning phase. After this, the model can be discarded as
it will not be used in the subsequent iterations.

The task of AL with weak labels for multi-appliance
NILM model is challenging by itself, because only
weak labels are available from the target domain, and
also because with this method we aim to monitor mul-
tiple appliances contemporarly with the same network.
The latter can be problematic because it is hard to im-
prove the performance for all the devices simultane-
ously - picking bags to improve one appliance type
does not mean improving the others as well - on the
contrary, it can happen that improving performance for
one appliance leads to decreased performance for the
others. This behaviour affects the AL process, espe-
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Algorithm 1 Pseudo-code for the Weakly Supervised
AL procedure.

j← 1
fθ0 : pre-trained CRNN model
q(·): acquisition function
DDDU : query pool, unlabelled
P: batch size
QQQtot, j ← ∅
while | DDDU |> 0 do

QQQU, j ← q(fθ j−1
, P,DDDU)

DDDU ← DDDU \QQQU, j

QQQweak, j ← weakly labelled QQQU, j

QQQtot, j ← QQQtot, j−1 ∪QQQweak, j

fθ j ← fθ0 fine-tuned with QQQtot, j

j← j + 1
end while

cially if there is an appliance with significantly lower
performance compared to other loads present in the
house - then chosen bags are more likely to improve
the most problematic appliance, and not all of them
simultaneously. We describe the strategy to address
these issues next.

4.3.1. Acquisition function
Acquisition function q(·) is used to rank bags in DU

with respect to their informativeness, choosing the best
subset QU to include in model fine-tuning.

The acquisition function used in this paper is uncertainty-
based, which demonstrated in [46] to be the best per-
forming among several compared acquisition func-
tions. In iteration j, j > 0, bags with the highest un-
certainty levels, QQQU, j ⊂ DDDU are chosen to be labelled,
denoted as QQQweak, j, and included in fine-tuning dataset
QQQtot, j.

Weak level prediction of the model for a given bag is
a vector containing probabilities of each appliance be-
ing in an active state inside that bag, which can be used
to estimate uncertainty levels of the model. If a proba-
bility for a particular appliance is higher than decision
threshold β then the model predicts that the appliance
was active during the bag time period. The closer the
prediction ŵk of the model for an appliance k to β is,
the more uncertain the model is about activation of this
appliance, and the closer ŵk to 1 or 0, the more certain
the model is. We formally define an estimate of model
uncertainty as:

δk[i] =

{
ŵk[i] ŵk[i] < β
1− ŵk[i] ŵk[i] ⩾ β

(9)

with δk[i] being the estimated uncertainty of the model
for bag i for single appliance k, and ŵk[i] is the model
output, i.e., the model’s estimated probability that k-th
appliance was active in the bag i.

Since the problem considered in this paper is multi-
label classification, with multiple appliances consid-
ered at the same time, two ways of estimating the over-
all model uncertainty δ[i] for bag i are:

– by taking maximum uncertainty level across ap-
pliances present in the house:

δ[i] = max
k
δk[i] (10)

– by averaging uncertainty level over all appliances
present in the house:

δ[i] =
1

K

K∑
k=1

δk[i]. (11)

Then, the set of bags QQQU, j with the highest uncer-
tainty δ[i] is included in the fine-tuning set. The result-
ing acquisition function, q(·), is as described in Algo-
rithm 2.

Algorithm 2 Acquisition function
f j: CRNN model
DDDU : query pool, unlabelled
P: batch size
function q(f j, P,DDDU)

for i in {1, ..., | DDDU |} do
ŵ[i]← f j(DDDU [i])
calculate uncertainty δ[i]

end for
ind = argsort([δ[1]...δ[| DDDU |]], descend.)[: P]
return DDDU [ind]

end function

A toy example of how the acquisition function de-
scribed above works, for both cases of maximising
and averaging uncertainties of individual appliances
is given in Table 1. Table 1 shows the selected bags
(a batch of P = 4) in grey for maximum uncertainty
across all appliances in the 4-th column and for maxi-
mum average uncertainty over all appliances in the 5-
th column.

The code used to implement the approach is avail-
able on Github1.

1https://github.com/GiuTan/WeaklySupervisedActiveLearning-
for-NILM
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Table 1
Uncertainty-based acquisition function example: Uncertainty levels for each appliance are calculated as per (9), and, maximum or mean uncer-
tainty values are calculated based on (10) and (11), respectively. In this example, a batch of P = 4 most uncertain bags is chosen.

Bag index Weak level prediction ŵk[i] Uncertainty δk[i] Maximum Mean
i KE MW WM DW KE MW WM DW uncertainty uncertainty

0 0.1 0.6 0.4 0.8 0.1 0.4 0.4 0.2 0.4 0.275
1 0.2 0.85 0.33 0.68 0.2 0.15 0.33 0.32 0.33 0.25
2 0.99 0.2 0.87 0.3 0.01 0.2 0.13 0.3 0.3 0.16
3 0.56 0.38 0.25 0.92 0.44 0.38 0.25 0.08 0.44 0.2875
4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5 0.67 0.43 0.01 0 0.33 0.43 0.01 0 0.43 0.1925
6 0.36 0.15 0.64 0.75 0.36 0.15 0.36 0.25 0.36 0.28
7 0.83 0.72 0.59 0.41 0.17 0.28 0.41 0.41 0.41 0.3175
8 0 0.5 0 0 0 0.5 0 0 0.5 0.125
9 0.04 0.99 0.88 0.02 0.04 0.01 0.12 0.02 0.12 0.0475

Table 2
Train and Validation sets characteristics of UK-DALE. The number of labels is reported in thousands. SL: Strong Labels. WL: Weak Labels.

Train Validation

Appliance Houses Nr. of SL Nr. of WL Houses Nr. of SL Nr. of WL

KE 1, 3, 5 996.6 43.1 1, 3, 5 196.3 6.9
MW 1, 5 849.7 42.9 1, 5 157.2 7.0
WM 1, 5 837.7 32.1 1, 5 881.4 1.2
DW 1, 5 554.5 31.9 1, 5 790.1 0.9

Nr. of bags 99.993 10.428

Table 3
Fine-Tuning and Test sets characteristics for REFIT. Number of la-
bels is reported in thousands. WL: Weak Labels.

Appliance Nr. of WL

House 2 House 4 House 5 House 19

KE 2.9 12 9.5 13.6
MW - 12 - 13.6
WM 2.9 - 0.5 -
DW 2.9 - 0.5 -

Nr. of bags 2.9 12 9.5 13.6

5. Experimental Setting

5.1. Dataset

UK-DALE [49] and REFIT [50] datasets are used to
evaluate the performance of the proposed method with
typical appliances present in most households - Ket-
tle (KE), Microwave (MW), Washing Machine (WM),
and Dishwasher (DW). We decided not to include the
fridge among the monitored appliances. This decision
was made since a fridge is typically always in oper-
ation, which would mean the user would consistently
assign the ON label. Although we did not monitor the
fridge, it is present in the aggregate dataset.

UK-DALE contains data from 5 houses, with the ag-
gregate power sampled at 1 Hz and appliance power
sampled at 1/6 Hz, while REFIT contains measure-
ments from 20 houses sampled at 1/8 Hz. To be aligned
with UK-DALE, aggregate and appliance signals were
up-sampled uniformly to 1/6 Hz. Selecting the same
periods of data and following the procedure detailed in
[39], both datasets have been used to create two sets of
bags, one with UK-DALE data from Houses 1, 3 and 5
and one with data from four REFIT Houses 2, 4, 5 and
19. This choice has been made to include 4 houses that
have different aggregate consumption characteristics,
and have at least two appliances present in each house
for evaluation, as shown in Table 3. Note that we bal-
anced the occurrence of appliance activations and the
number of strong labels associated with each appliance
in both sets of bags. Table 2 and Table 3 report the de-
tails about training, validation, and test sets for the two
sets of bags created, respectively, from UK-DALE and
REFIT. The set used to validate the performance dur-
ing AL process is the test set. Data was standardised
subtracting the mean and dividing by the standard de-
viation. We estimated these values on the pre-training
set.
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5.2. Experiments setup

The experimental setup has been designed to eval-
uate several possible real-world scenarios that differ
in annotation availability, based on the formulation in
Section 4.2. In this way, we can evaluate the bene-
fits from the AL procedure in more pre-training condi-
tions. The performance has always been evaluated on
70% of the REFIT “Test and Fine-tuning” set reported
in Table 3.

Referring to (5), we defined two pre-training dataset
compositions:

– Scenario 1: only weakly labelled data is available:
in this case, DDD(pt)

strong−weak = ∅ and DDD(pt)
weak ̸= ∅ is

composed of bags from the UK-DALE dataset.
– Scenario 2: both strongly and weakly labelled

data from the same domain are available: in this
case, DDD(pt)

strong−weak ̸= ∅ and DDD(pt)
weak ̸= ∅, and they

are both composed of bags from the UK-DALE
dataset.

Regardless of the pre-training condition, the validation
set is represented by UK-DALE as reported in Table 2.

The bags that populate the query pool DU for AL
and that are used for the fine-tuning are up to 30% of
the bags from each house of the REFIT “Test and Fine-
Tuning set”, reported in Table 3.

For each pre-training condition, the Hyperband al-
gorithm [62] from Keras tuner has been used to se-
lect the hyperparameters values that achieve the high-
est performance on the validation set. During the AL
process, we do not perform any optimisation of hyper-
parameters. This is because the structure of the fine-
tuned network is the same as that of the pre-trained
network. The pre-trained network has already been op-
timised during the pre-training phase, performed in our
previous work [41]. Adam [63] is used as optimiser
and the learning rate was fixed to 0.002 and F to 32. In
our experiments we use L = 2550 (that is a window of
4.15 hours) samples for the bag dimension and P = 64
is the batch size.

When the source dataset is only weakly labelled,
fine-tuning the bidirectional and instance layers has
proven the best performing method on the validation
set. When strongly labelled data are also available,
only the instance layer has been fine-tuned.

The threshold for the quantisation of instance level
predictions has been determined by optimal threshold-
ing strategy on the test set for each pre-training condi-
tion.

5.3. Benchmark method

In [41] a weakly supervised transfer learning ap-
proach has been proposed. Both the pre-training and
the fine-tuning exploits only weak labels, or both weak
and strong labels. In the fine-tuning phase, a set of
weakly annotated signals has been supplied to the net-
work to adapt the pre-trained model on the target en-
vironment domain. The best models obtained from the
proposed method have been compared to “No Fine-
Tuning” model [41], thus prior to fine-tuning, and
“Weak Transfer Learning” model [41] obtained using
the complete set of query pool data weakly annotated.

Additionally, we benchmark our method against a
semi-supervised method based on knowledge distilla-
tion, proposed in [48], that is pre-trained using only
strong labels, but in the fine-tuning phase only unla-
belled data is fed to the model, as we consider that la-
bels from the target environment are not readily avail-
able. Because of absence of labels from the target envi-
ronment, and the way that the model works, bags with
the lowest uncertainty were chosen instead of the high-
est during the AL process for this benchmark.

5.4. Evaluation metrics

Defining True Positive (TP(k)) as the number of
correctly classified active samples for appliance k,
False Positive (FP(k)) as the number of inactive sam-
ples incorrectly classified as active and False Nega-
tive (FN(k)) as the number of active samples incor-
rectly classified as inactive, we used the F(k)

1 -score,
commonly used in NILM classification literature, ex-
pressed as

F(k)
1 =

TP(k)

(TP(k) + 1/2 (FN(k) + FP(k)))

for k-th appliance. We report also the micro average
F1-micro, that considers the quantity of samples for
each appliance in the test set and it is expressed by:

F1-micro =

∑K
k=1 TP(k)∑K

k=1(TP(k) + 1/2 (FN(k) + FP(k)))

Optimal point of AL iteration process is determined
as a point at iteration j with F1-score F1, j that has
the minimum distance d j from an “ideal" point - no
data labelled, and perfect performance of F1 = 1, as in
[46]. The distance is calculated according to Equation
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(12), where |QQQtot, j| denotes the total number of bags
queried up to iteration j, and |QQQtot,J| denotes the maxi-
mum number of bags that can be queried.

d j =

√(
| QQQtot, j |
| QQQtot,J |

)2

+ (1− F1, j)2. (12)

6. Experimental results

This section presents the results obtained from the
two experimental scenarios, as well as from the semi-
supervised benchmark method. F1-scores are shown
per appliance for each house. Models pre-trained on
UK-DALE were transferred to REFIT houses 2, 4, 5
and 19 - Dataset column indicates the fine-tuning test
set. The optimal points and maximum performances
obtained during the AL process are given together with
the percentage of query pool data labelled and added
to the fine-tuning dataset to achieve that performance.
Note that not all houses contain all the appliances - re-
sults are shown only for monitored appliances installed
in the selected buildings.

6.1. Semi-supervised benchmark results

Experimental results for the semi-supervised bench-
mark approach [48] are presented in Table 4. In this
case, strongly labelled data were used during the
pre-training phase, and unlabelled data were utilised
throughout the AL process. This scenario is chal-
lenging because with the semi-supervised strategy the
model is fine-tuned with unseen data from the target
environment without any labels provided. According
to Table 4, the performance in House 2 does not im-
prove after fine-tuning with all available data (100% of
unlabelled bags used). There is a very limited improve-
ment with AL for kettle only, but the performance level
of the fine-tuning case with 100% of unlabelled bags
used can be achieved using a smaller amount of data
(6.7% - 13.3%). In House 4, performance improves
when all available bags from target environment are
used, and the amount of data can be reduced to at least
38% of all data. In house 5, the situation is similar
as in house 2 - no improvement after fine-tuning with
all available unlabelled bags, and only small improve-
ment for kettle with large portion of unlabelled bags
used with AL. There is a similar situation in house 19
- no improvement after fine-tuning with all available
unlabelled data, but small improvement for microwave

with AL. The results from this benchmarking scenario
suggest that while some improvement can be achieved
using only unlabelled data to fine-tune the model to the
new environment, it is not sufficient, and adding some
labelled data is desirable. Therefore, results for weakly
supervised AL scenarios are presented next.

6.2. Weakly Supervised AL Performance

Experimental results for the scenario where only
weakly labelled data is available in the pre-training
phase - pre-training scenario 1, and weak labels are
used throughout the AL process, are presented in Ta-
ble 5. This scenario is very challenging, because the
model never sees strong labels, neither during pre-
training nor during fine-tuning phase.

In House 2, with weak transfer learning (100% bags
labelled), performance increases compared to the one
before fine-tuning (0% bags labelled) for dishwasher,
but drops for kettle and washing machine due to over-
fitting. However, for kettle, with AL when maximis-
ing uncertainty over appliances, performance increase
is achieved at optimal AL point with 13.3% bags la-
belled, and when averaging uncertainty over appli-
ances, performance increases with labelling 20% of
bags, reducing labelling effort by 86.7% and 80% re-
spectively. For washing machine, labelling 6.7% of
bags retains performance whether uncertainty is max-
imised or averaged over appliances. For dishwasher,
performance is increased at optimal point with only
13.3% of bags labelled with maximising, and with
6.7% when averaging uncertainty over appliances. Mi-
cro F1-score is retained in all AL cases.

This situation is a consequence of different appli-
ance signature characteristics - a kettle activation, as a
short duration appliance, is more likely to be present
in bags with other activations from other devices, and
hence needs more queries to augment its learning to
see sufficient kettle activations with different aggre-
gates. Washing machine is likely to be confused with
dishwasher and, hence, in the absence of strong labels
its performance cannot be improved, especially for the
low-power state. For dishwasher, there are more high
power samples in one activation and, therefore, with
more training samples in the weak labels, it is possible
to improve.

In House 4, weak transfer learning (100% bags la-
belled) increases performance for both kettle and mi-
crowave, as well as the micro F1-score. With weak
AL, for kettle, at optimal point, performance increase
is achieved with 1.7% and 8.8% bags labelled when
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maximising and averaging uncertainty over appli-
ances, respectively, reducing labelling effort by 98.3%
and 92.2%. For microwave, at optimal point perfor-
mance is increased with 1.7% and 10.5% bags labelled
when maximising and averaging uncertainty over ap-
pliances, respectively. Micro F1-score increased at op-
timal points with only 1.7% and 10.5% bags labelled
when maximising and averaging uncertainty over ap-
pliances, respectively.

Considering best F1-score, kettle needs 52% addi-
tional samples for fine-tuning when considering mean
uncertainty across appliances but only 1.7% more
when considering maximum uncertainty. This is due
to the fact that House 4 is much noisier in terms of un-
known appliances present in the aggregate signal - it
has noise to aggregate ratio (NAR [64]) of 0.91, with
noise calculated as in [41], compared to the NAR value
of house 2 which is 0.79. Microwave needs more ad-
ditional samples due to its short activation time and
high probability of activation in presence of other ap-
pliances, hence, the model requires more weakly la-
belled bags to improve.

In house 5, performance is poor before fine-tuning
for washing machine and dishwasher. However, over-
all performance, as well as per-appliance performance,
does improve (or remains the same for the dishwasher)
with weak transfer learning (100% bags labelled), and
also with weak AL with reduced amount of labelled
data. With weak AL, the amount of data that needs
labelling increases from 2.2 to 10.7 % when max-
imising uncertainty across appliances, and from 2.2 to
26.1 % when averaging, at optimal points. At best F1-
score, washing machine and dishwasher need signifi-
cantly larger portion of labelled data, due to poor per-
formance in the beginning. Consequently, micro F1-
score also peaks at higher percentage of data labelled.
House 5 is noisier than House 2 as indicated by a NAR
value of 0.84, but lower than House 4, hence it exhibits
a good performance for kettle, but washing machine
and dishwasher have more complex patterns which are
different from device to device, so it is hard to improve
them significantly with weak labels only for this house.

In House 19, performance improves with AL ex-
ceeding the performance of weak fine-tuning (100 %
bags labelled), requiring only 1.5 - 3.2 % of bags to
be weakly labelled when maximising, and 2.7 to 8.1 %
when averaging uncertainty across appliances, at op-
timal points. NAR value of House 19 is the highest
among all test houses - 0.93, but starting performance
before any fine-tuning is good, which indicates that

this domain has more similarities with training data
than previous testing domains.

Table 6 shows results where strong and weak labels
are used in the pre-training phase - pre-training sce-
nario 2, and weak labels are used in the AL phase. This
scenario is more favourable compared to the previous
one, because even though only weak labels are avail-
able during fine-tuning phase, strong labels are avail-
able in the pre-training phase.

Compared to Scenario 1, as expected, performance
for all appliances in all houses is improved over the
baseline [41] with significantly less additional fine-
tuning data. This behaviour can be attributed to the in-
clusion of strong labels during the pre-training phase,
which increased the network’s knowledge, thereby ne-
cessitating a lesser quantity of data to achieve compa-
rable or improved results.

Next we discuss levels of uncertainty observed at
the start of the AL process. In Scenario 1, weak la-
bels only are present in the pre-training phase, and the
model tends to be either overconfident or very uncon-
fident (as shown by the uncertainty histogram in Fig. 4
(top) - most of bags have low uncertainty values - and
lower uncertainty means higher confidence), and the
performance before fine-tuning is not as good as with
strong labels present (Scenario 2). On the other hand,
when strong labels are present in the pre-training phase
(Scenario 2), performance before fine-tuning is better,
but there are not as many low uncertainty (high con-
fidence) bags as in Scenario 1 (as shown in Figure
4). The model has been shown strong labels, hence
better performance, but is also more uncertain (i.e.,
histogram is more flat) due to learning from strong
labels with overlapping activations of multiple appli-
ances contained in a bag. It is also worth noting that
more high uncertainty bags are observed for kettle than
for microwave. Uncertainty levels among bags that are
queried for REFIT house 4 in each experimental sce-
nario are shown in Figure 5: Scenario 1 with mean
uncertainty across appliances – upper left; Scenario
1 with maximum uncertainty across appliances – up-
per right; Scenario 2 with mean uncertainty across ap-
pliances - lower left; and Scenario 2 with maximum
uncertainty across appliances – lower right. The fig-
ures show uncertainty level of microwave (orange)
stacked to uncertainty level of kettle (blue) for each
bag queried in the beginning of the AL process, be-
fore any fine tuning. In case of using maximum un-
certainty across appliances as overall uncertainty mea-
sure, the model tends to pick bags in which uncertainty
is high for kettle, but not necessarily for microwave –
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Table 4
Benchmark - semi supervised method [48]. Model is pre-trained using strong labels, but fine-tuned using only unlabelled data from target
environment. Results of the proposed approach are shown in the following format: metric (% of activation samples added to fine-tuning dataset).

Method Labels Dataset KE MW WM DW F1-micro

H2

No Fine-Tuning [48] Strong UK-DALE 0.55 - 0.41 0.58 0.50
Unsupervised Transfer Learning [48] - REFIT 0.55 - 0.41 0.58 0.50
AL (max uncertainty) - optimal point - REFIT 0.55 (13.3%) - 0.41 (6.7%) 0.58 (6.7%) 0.50 (6.7%)

AL (max uncertainty) - best F1 - REFIT 0.56 (80%) - 0.41 (6.7%) 0.58 (6.7%) 0.50 (6.7%)
AL (mean uncertainty) - optimal point - REFIT 0.54 (13.3%) - 0.41 (6.7%) 0.58 (6.7%) 0.50 (6.7%)

H2

AL (mean uncertainty) - best F1 - REFIT 0.56 (73.3%) - 0.41 (6.7%) 0.58(6.7%) 0.50 (6.7%)

H4

No Fine-Tuning [48] Strong UK-DALE 0.42 0.38 - - 0.39
Unsupervised Transfer Learning [48] - REFIT 0.44 0.44 - - 0.44
AL (max uncertainty) - optimal point - REFIT 0.44 (13.8%) 0.41 (10.3%) - - 0.42 (13.8%)

AL (max uncertainty) - best F1 - REFIT 0.45 (20.7%) 0.44 (38%) - - 0.44 (38%)
AL (mean uncertainty) - optimal point - REFIT 0.45 (1.7%) 0.41 (12.1%) - - 0.41 (12.1%)

H4

AL (mean uncertainty) - best F1 - REFIT 0.45 (1.7%) 0.44 (98.2%) - - 0.44 (98.2%)

H5

No Fine-Tuning [48] Strong UK-DALE 0.86 - 0.02 0.04 0.05
Unsupervised Transfer Learning [48] - REFIT 0.86 - 0.02 0.04 0.05
AL (max uncertainty) - optimal point - REFIT 0.86 (4.3 %) - 0.02 (2.2 %) 0.04 (2.2 %) 0.05 (2.2 %)

AL (max uncertainty) - best F1 - REFIT 0.87 (60.9 %) - 0.02 (2.2 %) 0.04 (2.2 %) 0.05 (2.2 %)
AL (mean uncertainty) - optimal point - REFIT 0.86 (4.3 %) - 0.02 (2.2 %) 0.04 (2.2 %) 0.05 (2.2 %)

H5

AL (mean uncertainty) - best F1 - REFIT 0.87 (97.8 %) - 0.02 (2.2 %) 0.04 (2.2 %) 0.05 (2.2 %)

H19

No Fine-Tuning [48] Strong UK-DALE 0.82 0.61 - - 0.69
Unsupervised Transfer Learning [48] - REFIT 0.82 0.61 - - 0.69
AL (max uncertainty) - optimal point - REFIT 0.82 (3.1 %) 0.63 (1.5 %) - - 0.70 (1.5 %)

AL (max uncertainty) - best F1 - REFIT 0.82 (3.1 %) 0.64 (89.2 %) - - 0.70 (1.5 %)
AL (mean uncertainty) - optimal point - REFIT 0.82 (3.1 %) 0.62 (1.5 %) - - 0.69 (1.5 %)

H19

AL (mean uncertainty) - best F1 - REFIT 0.83 (43.1 %) 0.63 (60 %) - - 0.70 (60 %)

according to histograms in Figure 4, kettle has more
high uncertainty bags in general. On the other hand,
if using mean uncertainty across appliances as overall
uncertainty measure, bags are picked so that both ap-
pliances have high uncertainty. Therefore, as described
in Section 4.3, querying based on mean uncertainty is
more reliable and gives better overall improvement of
the model.

From both Tables 5 and 6, we observe that with our
proposed optimal point (Eq 12), performance improve-
ment (House 2: 1.2%, House 4: 14%, House 5: 2.9%,
House 19: 14%), for both acquisition functions, is al-
most the same as best F1 performance, with signifi-
cantly less additional fine-tuning data.

AL curve with optimal points marked obtained in
house 4 with mean uncertainty over appliances is
shown in Fig. 6. In the beginning of the AL process,
useful bags are chosen in the first couple of iterations,
after which performance becomes steady for kettle,
and improves further for microwave.

From the presented results, it is evident that some-
times adding less data is better than adding more,
because not all data samples are useful, and not all
data samples do improve the pre-trained model. There-
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Fig. 4. Observed uncertainty levels in Scenario 1 (top) and Scenario
2 (bottom) for the whole query pool of house 4 bags.

fore, AL approaches can be used to select only high-
uncertainty data and label and add only them to fine-
tuning dataset. An important note is that weak la-
bels only can be used throughout the AL process, and
model performance can still improve. This is very en-
couraging, especially bearing in mind that weak labels
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Table 5
Results - pre-training Scenario 1. Results of the proposed approach are shown in the following format: metric (% of activation samples added to
fine-tuning dataset).

Method Labels Dataset KE MW WM DW F1-micro

H2

No Fine-Tuning [41] Weak UK-DALE 0.73 - 0.62 0.70 0.67
Weak Transfer Learning [41] Weak REFIT 0.59 - 0.42 0.73 0.58

Proposed (max uncertainty) - optimal point Weak REFIT 0.74 (13.3%) - 0.62 (6.7%) 0.71 (13.3%) 0.67 (6.7%)
Proposed (max uncertainty) - best F1 Weak REFIT 0.79 (73.3%) - 0.62 (6.7%) 0.74 (33.3%) 0.67 (6.7%)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.80 (20%) - 0.62 (6.7%) 0.71 (6.7%) 0.67 (6.7%)
Proposed (mean uncertainty) - best F1 Weak REFIT 0.80 (20%) - 0.62 (6.7%) 0.73 (20%) 0.67 (6.7%)

H4

No Fine-Tuning [41] Weak UK-DALE 0.54 0.53 - - 0.53
Weak Transfer Learning [41] Weak REFIT 0.59 0.65 - - 0.63

Proposed (max uncertainty) - optimal point Weak REFIT 0.61(1.7%) 0.64 (1.7%) - - 0.63 (1.7%)
Proposed (max uncertainty) - best F1 Weak REFIT 0.61 (1.7%) 0.72 (67.2%) - - 0.65 (67.2%)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.58 (8.8%) 0.63 (10.5%) - - 0.61 (10.5%)
Proposed (mean uncertainty) - best F1 Weak REFIT 0.60 (52.6%) 0.70 (66.7%) - - 0.65 (66.7%)

H5

No Fine-Tuning [41] Weak UK-DALE 0.78 - 0.24 0.28 0.51
Weak Transfer Learning [41] Weak REFIT 0.79 - 0.32 0.28 0.55

Proposed (max uncertainty) - optimal point Weak REFIT 0.80 (2.2%) - 0.30 (6.5 %) 0.27 (10.7 %) 0.56 (10.7 %)
Proposed (max uncertainty) - best F1 Weak REFIT 0.80 (2.2 %) - 0.36 (95.6 %) 0.28 (50 %) 0.57 (54.3 %)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.80 (2.2 %) - 0.34 (26.1 %) 0.28 (4.3 %) 0.56 (6.5 %)

H5

Proposed (mean uncertainty) - best F1 Weak REFIT 0.80 (2.2 %) - 0.34 (26.1 %) 0.29 (52.2 %) 0.56 (6.5 %)

H19

No Fine-Tuning [41] Weak UK-DALE 0.66 0.68 - - 0.67
Weak Transfer Learning [41] Weak REFIT 0.75 0.69 - - 0.71

Proposed (max uncertainty) - optimal point Weak REFIT 0.80 (3.1 %) 0.70 (1.5 %) - - 0.73 (1.5 %)
Proposed (max uncertainty) - best F1 Weak REFIT 0.81 (64.6 %) 0.71 (29.2 %) - - 0.73 (1.5 %)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.78 (2.7 %) 0.70 (8.1 %) - - 0.73 (2.7 %)

H19

Proposed (mean uncertainty) - best F1 Weak REFIT 0.79 (13.5 %) 0.71 (27 %) - - 0.74 (13.5 %)

Table 6
Results - pre-training Scenario 2. Results of the proposed approach are shown in the following format: metric (% of activation samples added to
fine-tuning dataset).

Method Labels Dataset KE MW WM DW F1-micro

H2

No Fine-Tuning [41] Strong & Weak UK-DALE 0.78 - 0.78 0.84 0.82
Weak Transfer Learning [41] Weak REFIT 0.83 - 0.82 0.83 0.82

Proposed (max uncertainty) - optimal point Weak REFIT 0.82 (6.7%) - 0.80 (6.7%) 0.83 (6.7%) 0.82 (6.7%)
Proposed (max uncertainty) - best F1 Weak REFIT 0.83 (13.33%) - 0.82 (46.7%) 0.84 (93.3%) 0.82 (6.7%)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.83 (6.7%) - 0.80 (6.7%) 0.83 (6.7%) 0.82 (6.7%)
Proposed (mean uncertainty) - best F1 Weak REFIT 0.84 (86.7%) - 0.82 (26.7%) 0.84 (33.3%) 0.83 (66.7%)

H4

No Fine-Tuning [41] Strong & Weak UK-DALE 0.71 0.69 - - 0.69
Weak Transfer Learning [41] Weak REFIT 0.73 0.73 - - 0.73

Proposed (max uncertainty) - optimal point Weak REFIT 0.76 (6.9%) 0.84 (5.2%) - - 0.81 (5.2%)
Proposed (max uncertainty) - best F1 Weak REFIT 0.77 (14%) 0.86 (73.7%) - - 0.81 (5.2%)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.78 (1.7%) 0.85 (1.7%) - - 0.83 (1.7%)
Proposed (mean uncertainty) - best F1 Weak REFIT 0.78 (1.7%) 0.86 (28.1%) - - 0.83 (1.7%)

H5

No Fine-Tuning [41] Strong & Weak UK-DALE 0.94 - 0.20 0.43 0.60
Weak Transfer Learning [41] Weak REFIT 0.95 - 0.41 0.55 0.70

Proposed (max uncertainty) - optimal point Weak REFIT 0.96 (4.3%) - 0.41 (26.1%) 0.54 (17.4%) 0.69 (17.4%)
Proposed (max uncertainty) - best F1 Weak REFIT 0.96 (4.3 %) - 0.42 (76.1%) 0.57 (60.9%) 0.72 (65.2%)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.96 (2.2 %) - 0.36 (28.3 %) 0.51 (2.2 %) 0.67 (2.2%)

H5

Proposed (mean uncertainty) - best F1 Weak REFIT 0.96 (2.1 %) - 0.40 (39.1 %) 0.58 (28.3 %) 0.71 (28.3 %)

H19

No Fine-Tuning [41] Strong & Weak UK-DALE 0.88 0.75 - - 0.80
Weak Transfer Learning [41] Weak REFIT 0.76 0.69 - - 0.71

Proposed (max uncertainty) - optimal point Weak REFIT 0.91 (7.7 %) 0.73 (1.5 %) - - 0.78 (1.5 %)
Proposed (max uncertainty) - best F1 Weak REFIT 0.94 (72.3 %) 0.73 (1.5 %) - - 0.78 (1.5 %)

Proposed (mean uncertainty) - optimal point Weak REFIT 0.89 (4.6 %) 0.76 (7.7 %) - - 0.80 (1.5 %)

H19

Proposed (mean uncertainty) - best F1 Weak REFIT 0.89 (4.6 %) 0.76 (7.7 %) - - 0.81 (7.7 %)
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Fig. 5. Observed ratio of uncertainty between kettle and microwave
in Scenarios 1 (top) and 2 (bottom), when using mean (left) and
maximum (right) uncertainty across present appliances.

Fig. 6. AL curve obtained at REFIT house 4 in Scenario 2 when
averaging uncertainty across present appliances. Original curve is
smoothed using Savitsky-Golay filter of length 11 and order 3.

are easily obtained, and that they could be obtained
even from lay users, who do not have any knowledge
of NILM and appliance signatures - weak labels could
be inferred by only asking users when did they run spe-
cific device.

6.3. Complexity

In this section, we provide a brief discussion on the
complexity of the proposed approach. It is worth not-
ing that this framework is primarily designed for data
efficiency without compromising performance, but the
method itself does not focus on reducing computa-
tional complexity.

In each AL iteration, there are two phases that re-
quire significant computational resources: acquisition
and fine-tuning phase. In the acquisition phase, the
model needs to examine all signal segments belong-
ing to the query pool and rank them by uncertainty,
which has the complexity of O(n2). The cost of this
step reduces as the AL process progresses because the
size of the query pool decreases. The fine-tuning phase
then uses acquired signal segments to fine-tune the
model. The cost of this increases as the AL process
progresses because the fine-tuning set size increases as
newly queried signal segments are added. The CRNN
model used in this paper consumes 976.28 kB of mem-
ory and has 1,100,847,745 FLOPs.

7. Conclusions

Non-Intrusive Load Monitoring approaches need to
be adapted to the new data domain, when deployed in
a target unseen environment, to ensure acceptable per-
formance. To this aim, data and labels collection phase
is required. Usually this task is performed by the end
users or service providers, where the labelling process
is time-consuming. The works in literature that pro-
posed approaches to help in reducing the user effort to
provide labels, still face issues related to the feasibility
of obtaining sample-by-sample annotations or to the
large quantity of data to be annotated to obtain accept-
able performance.

We proposed a weakly supervised AL framework in
order to address the above gaps, exploiting weak labels
and the AL loop to collect annotations for a reduced
set of data. We also propose an approach whereby it is
possible to determine the minimum number of samples
needed to achieve optimal performance and prove ex-
perimentally that under multiple scenarios and appli-
ances, across 4 test houses, including additional sam-
ples does not significantly improve performance. We
also demonstrated that our approach exceeds the per-
formance of a benchmark method while reducing the
labelling effort by up to 82.6-98.5% in four target do-
mains.

Future works will extend the method by considering
criteria based on explainability [65, 66] to select the
subset of data to be labelled by the users. Moreover,
advanced neural network techniques [67–69] will be
included to improve the effectiveness and efficiency of
the method.
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