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This paper proposes two, geodesic-curvature based, criteria for shape-preserving interpolation on 
smooth surfaces, the first criterion being of non-local nature, while the second criterion is a local 
(weaker) version of the first one. These criteria are tested against a family of on-surface 𝐶2 splines 
obtained by composing the parametric representation of the supporting surface with variable-

degree (≥ 3) splines amended with the preimages of the shortest-path geodesic arcs connecting 
each pair of consecutive interpolation points. After securing that the interpolation problem is well 
posed, we proceed to investigate the asymptotic behaviour of the proposed on-surface splines as 
degrees increase. Firstly, it is shown that the local-convexity sub-criterion of the local criterion 
is satisfied. Second, moving to non-local asymptotics, we prove that, as degrees increase, the 
interpolant tends uniformly to the spline curve consisting of the shortest-path geodesic arcs. Then, 
focusing on isometrically parametrized developable surfaces, sufficient conditions are derived, 
which secure that all criteria of the first (strong) criterion for shape-preserving interpolation 
are met. Finally, it is proved that, for adequately large degrees, the aforementioned sufficient 
conditions are satisfied. This permits to build an algorithm that, after a finite number of iterations, 
provides a 𝐶2 shape-preserving interpolant for a given data set on a developable surface.

1. Introduction

Shape Preservation (SP) in CAGD is any method of constructing a geometric entity, e.g., curve, surface, solid, that takes into account 
available shape information, e.g., monotonicity, convexity, moments of volume, the designer considers that have to be maintained 
throughout the geometric processing. For SP curves in the ambient space there exists an abundance of papers for the planar case, 
see, e.g., Augsdörfer et al. (2010), Costantini et al. (2010), Dyn et al. (1987), Dyn et al. (1992), Ferguson and Pruess (1991), Fletcher 
and McAllister (1986), Goodman and Unsworth (1988), Gregory (1986), Kaklis and Pandelis (1990), Kaklis and Sapidis (1995), 
Nyiri et al. (2011), Wever (1988), Yang (2006) for 2D SP-interpolation and Dierckx (1980), Dierckx (1996), Elfving and Anderson 
(1988), Elliott (1993), Juettler (1997), Kvasov (2000), Morandi et al. (2000), Pigounakis and Kaklis (1996), Schmidt and Scholz 
(1990), Wang and Xie (2022) for 2D SP-approximation. For spatial SP curves, pertinent literature is less extensive yet the reader 
can appeal to several works on 3D SP-interpolation, see, e.g., Costantini (2000), Costantini et al. (2001), Costantini and Manni 
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(2003), Goodman and Ong (1997), Kaklis and Karavelas (1997), Karavelas and Kaklis (2000), Lavery (2006) and Costantini and 
Pelosi (2001), Costantini and Pelosi (2004), Kong and Ong (2009) for 3D SP-approximation. These works exploit a broad spectrum 
of methods involving polynomial splines, rational splines, subdivision schemes and variational principles.

The problem of constructing SP interpolating/approximating (fitting) curves on surfaces, and more general on manifolds, is of 
practical interest in many domains, such as Geometric Modelling Azariadis and Aspragathos (2001), Patrikalakis and Bardis (1989), 
Computer Graphics Bennis et al. (1991) and Robotics Ma et al. (2020), Wu et al. (2016), Arvanitakis et al. (2013). In the latter domain 
of applications, which includes tool-machining on surfaces, inflection points are considered as the key CC (cutter-contact) points of 
the tool-axis vectors Ma et al. (2020). As for the analysis and control of robot motion on uneven terrains, the angular velocity of a 
robot is analogous to the geodesic curvature of its path Arvanitakis et al. (2013) and thus, extraneous inflection points of the geodesic 
curvature would result to abrupt and thus undesirable changes (jerks) Piazzi and Visioli (2000) in angular acceleration.

Nevertheless, SP interpolation/approximation on surfaces has not triggered so far research activity analogous to that of the 
corresponding baseline problem, namely interpolating on general Riemannian manifolds or special ones, such as the Lie group 𝑆𝑂(3)
of rotations in ℝ3; see, e.g., Camarinha et al. (2023), Gabriel and Kajiya (1985), Noakes et al. (1989). One should however refer to 
a line of works, see, e.g., Hofer and Pottmann (2004); Pottmann and Hofer (2005) and Bergmann and Gousenbourger (2018), which 
provide counterparts on surfaces of interpolating/fitting variational ambient splines. More specifically, the on-surface 𝐶2 splines in 
tension, proposed in Hofer and Pottmann (2004); Pottmann and Hofer (2005), are SP-capable for, as tension parameters increase, 
they tend to the 𝐶0-spline composed by the geodesic segments connecting the on-surface interpolation points. This spline (𝚪 in our 
terminology) provides the basis for introducing the notion of shape-preserving interpolation in our work (see Definition 1). Except 
from Dirichlet-integral minimizers which are only 𝐶0, the 𝐶2∕𝐶4 on-surface cubic/quintic splines (Hofer and Pottmann, 2004; 
Pottmann and Hofer, 2005) are not SP in general for they prioritise, in analogy with their Euclidean counterparts, even spreading 
of curvature (lower-energy level) as opposed to curvature accumulation in the neighbourhood of the interpolation points, which 
occurs as tension increases. This is also the case for the work in Bergmann and Gousenbourger (2018), which derives a variational 
model to fit a 𝐶1 composite on-surface Bézier curve against a set of points on a Riemannian manifold via minimising its mean 
squared (covariant) acceleration while remaining close to the interpolation points. The afore-mentioned counterparts are computed 
in discrete setting (pointwise), which renders the approach of Hofer and Pottmann (2004), Pottmann and Hofer (2005) and Bergmann 
and Gousenbourger (2018) incompatible with the continuous nature of the non-local criteria (i) and (ii) of Definition 1. One could, 
however, expect that it would be feasible to embed them in the local-convexity criterion (i) of Definition 2, which is essentially of 
discrete nature.

Another line of works with potential for SP interpolation/approximation on manifolds is that involving the non-linear general-

isation of linear subdivision schemes for surfaces via, e.g., geodesic-means Wallner (2006), geodesic inductive averaging Dyn and 
Sharon (2017), Fréchet-means or exponential maps Wallner (2020), and non-stationary non-uniform schemes which enable smooth 
(𝐶2 limit curve) interpolation on manifolds Dyn et al. (2022). The discrete nature of these subdivision schemes imply that their 
embedding in the non-local-convexity criterion of our Definition 1 does not seem straightforward as it is likely the case with the 
local-convexity criterion of Definition 2. Furthermore, as pointed out in Dyn and Sharon (2017), those of the afore-mentioned subdi-

vision schemes, that are based on the proximity concept, e.g., Wallnerand and Dyn (2005), Wallner (2006), are useful only for “dense 
enough data”, which is, in general, a condition that is hard to quantify and depends on the properties of the underline manifold (such as 
its curvature). On the contrary, the geodesic-inductive-averaging in Dyn and Sharon (2017) guarantees convergence from any initial 
manifold-valued sequence. Our approach is free from any dense-enough-data assumption, however, satisfying the non-local-convexity 
criterion (Definition 1) for non-developable surfaces depends on the parametrization of the underlying surface and its composition 
with a specific family of univariate splines (variable-degree splines), which is obviously not the case for subdivision schemes. One 
should, however, stress that the local-convexity criterion (Definition 2) is fulfilled by our method for general surfaces.

In this paper we start by proposing two criteria for shape-preserving interpolation on smooth surfaces, which are of geodesic-

curvature character (Definition 1 & 2 in §2). Next, §3 introduces a family of on-surface splines via composing the surface parametric 
representation with the so-called variable-degree splines, amended with the preimages of the shortest-path geodesic arcs connecting 
each pair of consecutive interpolation points. After showing that the interpolation problem is well posed (Theorem 1), we proceed to 
study their local (§3.1) and global (§3.2) asymptotic behaviour as the degrees increase. In this connection, it is first proved that the 
local-convexity criterion of Definition 2 is satisfied (Theorem 2) for large degrees. Then, regarding their global asymptotic behaviour, 
Theorem 3 secures that, as degrees increase, the interpolant tends uniformly to the spline curve consisting of the shortest-path 
geodesic arcs. For the non-local-convexity criterion of Definition 1, however, one can provide different point sets on the same, non-

developable, surface for which the proposed spline family succeeds (Example 2) or fails (Example 3) to satisfy the aforementioned 
criterion. In view of these experimental findings, §3.2.2 focuses on isometrically parametrized developable surfaces and derives 
sufficient conditions, securing that all criteria of Definition 1 are satisfied. Then, in §4 it is proved that, for adequately large degrees, 
the aforementioned sufficient conditions are satisfied (Theorem 7). This permits formulating Algorithm 1 with its performance 
illustrated in §5 against 4 data sets, 2 on a cone (see Examples 4, 5) and 2 on a cylinder (see Examples 6, 7). Finally, in §5.1, the 
impact of geodesic-length versus uniform parametrization associated to interpolation points is illustrated for 2 data sets.

2. Two criteria for shape-preserving interpolation on surfaces

Let be given a smooth parametric surface 𝐒(𝑢, 𝑣), (𝑢, 𝑣) ∈ Ω ⊆ ℝ2, and a set of points  = {𝐈𝑖 = 𝐒(𝑢𝑖, 𝑣𝑖), (𝑢𝑖, 𝑣𝑖)∈Ω, 𝑖 = 0, 1, ..., 𝑛}
on it. We aim to set up a methodology for constructing smooth curves 𝐜(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑛], that lie on 𝐒(𝑢, 𝑣), interpolate the given points, 
2

𝐜(𝑡𝑖) = 𝐈𝑖, 𝑖 = 0, 1, ..., 𝑛, on it, with 𝑡𝑖 being user-specified parameters in [𝑡0, 𝑡𝑛], and are shape preserving. Towards this aim we have 
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first to introduce and establish a notion of shape-preserving interpolation on a surface. For this purpose, we appeal to the shortest-path 
geodesics 𝛾𝑖(𝑡), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], that connect each consecutive pair of interpolation points with 𝛾𝑖(𝑡𝑖) = 𝐈𝑖, 𝛾𝑖(𝑡𝑖+1) = 𝐈𝑖+1, 𝑖 = 0, 1, ..., 𝑛 − 1. 
This notion seems to provide a natural way for moving in a continuous manner from shape-preserving interpolation on the plane to 
that on a general (curved) surface. To start with, let us recall the definition of the geodesic curvature 𝜅𝑔 of a regular curve 𝐜(𝑡) on 
𝐒(𝑢, 𝑣):

𝜅𝑔(𝑡; 𝐜) =
(𝐜̇(𝑡), 𝐜̈(𝑡),𝐧(𝑡))‖𝐜̇(𝑡)‖3 , (1)

where dot denotes differentiation with respect to the parameter 𝑡, 𝐧 is the normal on 𝐒(𝑢, 𝑣) at the point 𝐜(𝑡)∈𝐒(𝑢, 𝑣) and (𝐚, 𝐛, 𝐜)
denotes the triple (mixed) scalar product of the vectors 𝐚, 𝐛 and 𝐜. The above formula implies that 𝜅𝑔 measures the curvature of the 
projection of 𝐜(𝑡) on the plane tangent to 𝐒(𝑢, 𝑣) at the point under consideration. Curves for which 𝜅𝑔 = 0 are geodesic lines, e.g., 
linear segments on the plane, great-circle arcs on the sphere, etc.

In the planar case, the shape-preserving interpolation criterion in Kaklis and Sapidis (1995) is based on the sign sequence of the 
so-called convexity indicators c2𝐷,𝑖, 𝑖 = 1, ..., 𝑛 − 1, at the vertices of the polygonal line 𝐋 passing through the interpolation points 𝐈𝑖, 
𝑖 = 0, 1, ..., 𝑛. More specifically, for any non-collinear triplet 𝑖 = {𝐈𝑚, 𝑚 = 𝑖 − 1, 𝑖, 𝑖 + 1}, we have:

c2𝐷,𝑖 =
𝐋𝑖−1×2𝐷𝐋𝑖‖𝐋𝑖−1×2𝐷𝐋𝑖‖ = ±1, 𝐋𝑖 = 𝐈𝑖+1 − 𝐈𝑖, 𝑖 = 1, ..., 𝑛− 1, (2)

where 𝐚×2𝐷𝐛 denotes the projection of the typical vector product on the axis vertical to the plane defined by the vectors 𝐚 and 𝐛. In 
the case that the data set is closed (𝐈0 = 𝐈𝑛), c2𝐷,𝑖 can be defined for the two boundary points by setting 𝐋−1 = 𝐋𝑛 = 𝐈0 − 𝐈𝑛−1. Now, 
in view of (1), formula (2) can be alternatively written as:

c2𝐷,𝑖 =
(𝐋𝑖−1,𝐋𝑖, 𝐞3)‖𝐋𝑖−1×2𝐷𝐋𝑖‖ = ±1, (3)

where 𝐞3 is the unit normal on the plane defined by 𝐋𝑖−1 and 𝐋𝑖. The question then naturally arises if one can rationally extract (3)

from (1) and exploit this path for introducing a notion of generalized convexity indicators c𝑖 at the vertices of the curve 𝚪, that lies on 
𝐒(𝑢, 𝑣) and consists of the shortest-path geodesic curves 𝛾𝑖(𝑡), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 0, 1, ..., 𝑛 −1, connecting consecutively the interpolation 
points 𝐈𝑖, 𝑖 = 0, 1, ..., 𝑛. For this purpose, assuming that 𝐜(𝑡) is a regular and 𝐶2[𝑡0, 𝑡𝑛] curve, while the normal vector 𝐧(𝑡) of 𝐒(𝑢, 𝑣) is 
continuous in the neighbourhood of the interpolation points 𝐈𝑖, 𝑖 = 0, ..., 𝑛, we proceed to express the numerator in (1) at a knot 𝑡𝑖
with the aid of a limit process around its full neighbourhood 𝑈𝑖 = [𝑡𝑖 −Δ𝑡, 𝑡𝑖 +Δ𝑡]. At first, we use left-hand side approximations for 
𝐜̇(𝑡𝑖) and a first-order central divided-difference approximation of 𝐜̈(𝑡). Then we get:

(𝐜̇(𝑡𝑖), 𝐜̈(𝑡𝑖),𝐧(𝑡𝑖)) = lim
Δ𝑡→0

(
𝐜̇(𝑡𝑖 −Δ𝑡),

𝐜̇(𝑡𝑖 +Δ𝑡) − 𝐜̇(𝑡𝑖 −Δ𝑡)
2Δ𝑡

,𝐧(𝑡𝑖 ±Δ𝑡)
)
= lim

Δ𝑡→0
1

2Δ𝑡
(
𝐜̇(𝑡𝑖 −Δ𝑡), 𝐜̇(𝑡𝑖 +Δ𝑡),𝐧(𝑡𝑖 ±Δ𝑡)

)
.

One can readily see that the above limit process remains invariant with respect to the chosen side, left or right, for approximating 
𝐜̇(𝑡𝑖). Furthermore, if we assume that 𝐒(𝑢, 𝑣) is smooth and locally orientable in the neighbourhood of the curve 𝚪 we finally get:

(𝐜̇(𝑡𝑖), 𝐜̈(𝑡𝑖),𝐧(𝑡𝑖)) = lim
Δ𝑡→0

1
2Δ𝑡

(
𝐜̇(𝑡𝑖 −Δ𝑡), 𝐜̇(𝑡𝑖 +Δ𝑡),𝐧(𝑡𝑖)

)
. (4)

On the basis of (4), we can say that, for sufficiently small Δ𝑡, the sign of the geodesic curvature 𝜅𝑔(𝑡) of 𝐜(𝑡) at a knot 𝑡 = 𝑡𝑖 is 
governed by the sign of the quantity (𝐜̇(𝑡𝑖 −Δ𝑡), 𝐜̇(𝑡𝑖 +Δ𝑡), 𝐧(𝑡𝑖)). Note that this quantity is appropriate for curves that are piecewise 
smooth, which is exactly the case for the curve 𝚪.

Grounded on the above discussion, we introduce the sought-for notion of generalized convexity indicators c𝑖 at the vertices 𝐈𝑖 of 
the composite geodesic 𝚪 on 𝐒(𝑢, 𝑣) as follows:

c𝑖 =
(𝛾̇𝑖−1(𝑡𝑖), 𝛾̇𝑖(𝑡𝑖),𝐧(𝑡𝑖))‖𝛾̇𝑖−1(𝑡𝑖) × 𝛾̇𝑖(𝑡𝑖)‖ = ±1, (5)

under the assumption that the interpolation triplet 𝑖 = {𝐈𝑚, 𝑚 = 𝑖 − 1, 𝑖, 𝑖 + 1} does not belong on the same geodesic arc and 𝛾𝑖−1(𝑡), 
𝛾𝑖(𝑡) have a regular parametrization. If 𝐒(𝑢, 𝑣) is a planar surface then it is straightforward to show that (5) degenerates to (3).

Now, if the triplet 𝑖 does belong on the same geodesic arc, then so will the geodesic arcs 𝛾𝑖−1(𝑡) and 𝛾𝑖(𝑡), referred to as co-

geodesics, which implies that ‖𝛾̇𝑖−1(𝑡𝑖) × 𝛾̇𝑖(𝑡𝑖)‖ = 0 and

(𝛾̇𝑖−1(𝑡𝑖), 𝛾̇𝑖(𝑡𝑖),𝐧(𝑡𝑖)) =
(
𝛾̇𝑖−1(𝑡𝑖) × 𝛾̇𝑖(𝑡𝑖)

)
⋅ 𝐧(𝑡𝑖) = 0.

In that case, we extend (5) by setting c𝑖 = 0.

We are now ready to introduce the first criterion for shape-preserving interpolation surfaces:

Definition 1. Let be given a surface 𝐒(𝑢, 𝑣), (𝑢, 𝑣)∈Ω ⊆ℝ2, and a set of points  = {𝐈𝑖 = 𝐒(𝑢𝑖, 𝑣𝑖), (𝑢𝑖, 𝑣𝑖)∈Ω, 𝑖 = 0, 1, ..., 𝑛} lying on it. 
Furthermore, let 𝚪 be the composite curve consisting of the shortest-path geodesics 𝛾𝑖(𝑡), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 0, 1, ..., 𝑛 −1, connecting each 
pair of consecutive interpolation points, i.e., 𝛾𝑖(𝑡𝑖) = 𝐈𝑖, 𝛾𝑖(𝑡𝑖+1) = 𝐈𝑖+1, 𝑖 = 0, 1, ..., 𝑛 −1, where  = {𝑡𝑖, 𝑖 = 0, 1, ..., 𝑛} is a user-specified 
3

and strictly-increasing knot sequence. Under the assumption that 𝐒(𝑢, 𝑣) is smooth (at least 𝐺1-continuous) and locally orientable in 
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the neighbourhood of the curve 𝚪, a smooth (at least twice-differentiable) regular curve 𝐜(𝑡) lying on 𝐒(𝑢, 𝑣) and interpolating , i.e., 
𝐜(𝑡𝑖) = 𝐈𝑖, 𝑖 = 0, 1, ..., 𝑛, will be called shape-preserving interpolant provided that:

(i) Non-local-convexity criterion: if c𝑚c𝑚+1 > 0 then

𝜅𝑔(𝑡; 𝐜)c𝑛 > 0, 𝑡∈[𝑡𝑚, 𝑡𝑚+1], 𝑛 =𝑚 or 𝑚+ 1. (6)

(ii) Minimum-variation criterion: if c𝑚c𝑚+1 < 0 then

𝜅𝑔(𝑡; 𝐜)c𝑚≥0, 𝑡∈[𝑡𝑚, 𝜉𝑚], 𝜅𝑔(𝑡; 𝐜)c𝑚+1≥0, 𝑡∈[𝜉𝑚, 𝑡𝑚+1], (7)

for some 𝜉𝑚∈(𝑡𝑚, 𝑡𝑚+1).
(iii) Local-co-geodesity criterion: if c𝑚 = 0 and 𝛾̇𝑚−1(𝑡𝑚) ⋅ 𝛾̇𝑚(𝑡𝑚) > 0, then there exists a neighbourhood 𝜂𝑚 ⊂ (𝑡𝑚−1, 𝑡𝑚+1) of 𝑡𝑚, such 

that

‖𝐜̇(𝑡) × 𝛾̇𝑙(𝑡𝑚)‖ ≤ 𝛿 (8)

where 𝛿 is a user-specified small positive number in (0, 1] and 𝑙 =𝑚 − 1, 𝑚.

Part (i) of the above Definition 1 is the analogue of the criteria introduced in Kaklis and Sapidis (1995) (Def. 3.1.(i)) and Kaklis and 
Karavelas (1997) (Def. 2.1.(i)) for planar/spatial shape-preserving interpolation, respectively. In this work, the sign of the geodesic 
curvature is used in place of the sign of the curvature for the planar and the variation of the binormal for the 3D case. Via part 
(ii) of Definition 1, the proposed criterion aims to minimise the variation of the geodesic curvature when consecutive generalised 
convexity indicators are of opposite sign. Finally, Part (iii) of Definition 1 resembles the criteria in Kaklis and Sapidis (1995) (Def. 
3.1.(ii)) and Kaklis and Karavelas (1997) (Def. 2.1.(iv)) by enforcing the interpolant to be sufficiently close to the co-geodesic arcs in 
a user-specified neighbourhood of the intermediate interpolation point. Note that the case c𝑚 = 0 with 𝛾̇𝑚−1(𝑡𝑚) ⋅ 𝛾̇𝑚(𝑡𝑚) < 0, should 
not be associated with co-geodesic behaviour, since such triplets are more likely to imply cusp-like behaviour.

We end this section by stating the second criterion for shape-preserving interpolation surfaces, which is a weaker (local) version 
of the previous criterion:

Definition 2. Under the hypotheses of Definition 1, the curve 𝐜(𝑡) will be called locally shape-preserving interpolant provided that

(i) Local-convexity criterion: If c𝓁 ≠ 0, then there exists a neighbourhood 𝜃𝓁 ⊂ (𝑡𝓁−1, 𝑡𝓁+1) of 𝑡𝓁 , such that

𝜅𝑔(𝑡; 𝐜)c𝓁 > 0, 𝑡∈𝜃𝓁 . (9)

(ii) Local-co-geodesity criterion: As in (iii) in Definition 1.

3. A geodesic-based family of 𝑪𝟐-continuous interpolatory curves on surfaces

The members 𝐜(𝑡) of this family are defined by composing 𝐒(𝑢, 𝑣) with a family of planar curves, 𝐪(𝑡), which combine the shape-

preserving interpolation properties of the so-called polynomial splines of non-uniform degree, Kaklis and Sapidis (1995), Kaklis and 
Karavelas (1997), with the preimage

𝐠𝑖(𝑡) = 𝐒−1(𝛾𝑖(𝑡)) (10)

of the geodesic arcs 𝛾𝑖(𝑡), referred to in Definition 1. More accurately,

𝐜(𝑡) = (𝐒◦𝐪)(𝑡), (11)

where

𝐪(𝑡) = 𝐠𝑖(𝑡) + ℎ2
𝑖
(𝐪̈𝑖 − 𝐠̈𝑖(𝑡𝑖))𝐹𝑖(1 − 𝜏) + ℎ2

𝑖
(𝐪̈𝑖+1 − 𝐠̈𝑖(𝑡𝑖+1))𝐹𝑖(𝜏), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝐪̈𝑖 ∶= 𝑑2𝐪(𝑡𝑖)∕𝑑𝑡2, (12a)

𝐹𝑖(𝜏) =
𝜏𝑘𝑖 − 𝜏

𝑘𝑖(𝑘𝑖 − 1)
, 3≤𝑘𝑖 ∈ℕ, 𝜏 =

𝑡− 𝑡𝑖

ℎ𝑖

∈[0,1], ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, 𝑖 = 0, ..., 𝑛− 1, (12b)

with the dot superscript denoting differentiation with respect to the global parameter 𝑡. The above formula defines planar splines in 
the (𝑢, 𝑣)-plane that interpolate the preimages 𝐏𝑖 = 𝐒−1(𝐈𝑖) of the interpolation points 𝐈𝑖 on the surface 𝐒 and can inherit, as it will 
be shown in the forthcoming sections, shape-information from the preimage curves 𝐠𝑖(𝑡), 𝑖 = 0, 1, ..., 𝑛 − 1. Note that, per parametric 
interval [𝑡𝑖, 𝑡𝑖+1], 𝐪(𝑡) contains a polynomial part of non-uniform degree, 𝑘𝑖, 𝑖 = 0, 1, ..., 𝑛 − 1; see the 2𝑛𝑑 and 3𝑟𝑑 term in the right 
hand side of (12a). Finally, the on-surface curves 𝐜(𝑡) will be henceforth considered to be 𝐶2-continuously differentiable on [𝑡𝑖, 𝑡𝑖+1], 
as a result of the below assumptions:

Assumption 1. 𝐒(𝑢, 𝑣) is at least 𝐶2-continuously differentiable on Ω ∋ (𝑢, 𝑣) and locally bijective in the neighbourhood of the curve 
4

Γ.
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Assumption 2. The geodesic components 𝛾𝑖(𝑡) of the composite curve 𝚪 are 𝐶2-continuously differentiable on [𝑡𝑖, 𝑡𝑖+1] ∋ 𝑡.

Now, regarding the interpolation properties of 𝐪(𝑡) we readily have:

𝐪(𝑡𝑖) = 𝐠𝑖(𝑡𝑖) + ℎ2
𝑖
(𝐪̈𝑖 − 𝐠̈𝑖(𝑡𝑖))𝐹𝑖(1) + ℎ2

𝑖
(𝐪̈𝑖+1 − 𝐠̈𝑖(𝑡𝑖+1))𝐹𝑖(0) = 𝐠𝑖(𝑡𝑖) = 𝐏𝑖,

as a result of the fact that 𝐹𝑖(0) = 𝐹𝑖(1) = 0. Furthermore, since 𝐹 ′′(0) = 0 and 𝐹 ′′(1) = 1, with the prime superscript denoting 
differentiation with respect to the local variable 𝜏 , we readily confirm that

lim
Δ𝑡→0

𝐪̈(𝑡𝑖 +Δ𝑡) ≡ 𝐪̈(𝑡+
𝑖
) = 𝐪̈𝑖, lim

Δ𝑡→0
𝐪̈(𝑡𝑖+1 − Δ𝑡) ≡ 𝐪̈(𝑡−

𝑖+1) = 𝐪̈𝑖+1. (13)

Then, aiming to secure that 𝐪(𝑡) ∈ 𝐶2(𝐼), 𝐼 = [𝑡0, 𝑡𝑛], it only suffices to ensure that 𝐪̇(𝑡−
𝑖
) = 𝐪̇(𝑡+

𝑖
) for all interior nodes 𝑡𝑖, 𝑖 = 1, ..., 𝑛 −1. 

Formulae (12) then give:

𝐪̇(𝑡) = 𝐠̇𝑖(𝑡) − ℎ𝑖(𝐪̈𝑖 − 𝐠̈𝑖(𝑡𝑖))𝐹 ′
𝑖
(1 − 𝜏) + ℎ𝑖(𝐪̈𝑖+1 − 𝐠̈𝑖(𝑡𝑖+1))𝐹 ′

𝑖
(𝜏), 𝜏 =

𝑡− 𝑡𝑖

ℎ𝑖

, 𝑡∈[𝑡𝑖, 𝑡𝑖+1], (14a)

for the subinterval on the right of an internal node 𝑡𝑖 and analogously

𝐪̇(𝑡) = 𝐠̇𝑖−1(𝑡) − ℎ𝑖−1(𝐪̈𝑖−1 − 𝐠̈𝑖−1(𝑡𝑖−1))𝐹 ′
𝑖−1(1 − 𝜏) + ℎ𝑖−1(𝐪̈𝑖 − 𝐠̈𝑖−1(𝑡𝑖))𝐹 ′

𝑖−1(𝜏), 𝜏 =
𝑡− 𝑡𝑖−1
ℎ𝑖−1

, 𝑡∈[𝑡𝑖−1, 𝑡𝑖], (14b)

for the subinterval on the left of an internal node 𝑡𝑖. Then, setting 𝑡 = 𝑡𝑖 (𝜏 = 0) in (14a) we get:

𝐪̇(𝑡+
𝑖
) = 𝐠̇𝑖(𝑡𝑖) − ℎ𝑖(𝐪̈𝑖 − 𝐠̈𝑖(𝑡𝑖))𝐹 ′

𝑖
(1) + ℎ𝑖(𝐪̈𝑖+1 − 𝐠̈𝑖(𝑡𝑖+1))𝐹 ′

𝑖
(0), (15a)

while for 𝑡 = 𝑡𝑖 (𝜏 = 1), (14b) gives

𝐪̇(𝑡−
𝑖
) = 𝐠̇𝑖−1(𝑡𝑖) − ℎ𝑖−1(𝐪̈𝑖−1 − 𝐠̈𝑖−1(𝑡𝑖−1))𝐹 ′

𝑖−1(0) + ℎ𝑖−1(𝐪̈𝑖 − 𝐠̈𝑖−1(𝑡𝑖))𝐹 ′
𝑖−1(1). (15b)

Using formulae (15) the continuity constraints 𝐪̇(𝑡−
𝑖
) = 𝐪̇(𝑡+

𝑖
), 𝑖 = 1, ..., 𝑛 − 1, can be written as:

− ℎ𝑖−1𝐪̈𝑖−1𝐹 ′
𝑖−1(0) + ℎ𝑖−1𝐪̈𝑖𝐹 ′

𝑖−1(1) + ℎ𝑖𝐪̈𝑖𝐹 ′
𝑖
(1) − ℎ𝑖𝐪̈𝑖+1𝐹 ′

𝑖
(0) =

𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖) − ℎ𝑖−1𝐠̈𝑖−1(𝑡𝑖−1)𝐹 ′
𝑖−1(0) + ℎ𝑖−1𝐠̈𝑖−1(𝑡𝑖)𝐹 ′

𝑖−1(1) + ℎ𝑖𝐠̈𝑖(𝑡𝑖)𝐹 ′
𝑖
(1) − ℎ𝑖𝐠̈𝑖(𝑡𝑖+1)𝐹 ′

𝑖
(0), 𝑖 = 1, ..., 𝑛− 1,

which, in view of the fact that

𝐹 ′
𝑖
(0) = − 1

𝑘𝑖(𝑘𝑖 − 1)
, 𝐹 ′

𝑖
(1) = 1

𝑘𝑖
,

takes the following final form:

𝑒𝑖−1𝐪̈𝑖−1 + (𝑑𝑖 + 𝑑𝑖−1)𝐪̈𝑖 + 𝑒𝑖𝐪̈𝑖+1 = 𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖) + 𝑒𝑖−1𝐠̈𝑖−1(𝑡𝑖−1) + 𝑑𝑖−1𝐠̈𝑖−1(𝑡𝑖) + 𝑑𝑖𝐠̈𝑖(𝑡𝑖) + 𝑒𝑖𝐠̈𝑖(𝑡𝑖+1), 𝑖 = 1, ..., 𝑛− 1, (16a)

where

𝑒𝑖 = ℎ𝑖∕𝑘𝑖(𝑘𝑖 − 1), 𝑑𝑖 = ℎ𝑖∕𝑘𝑖. (16b)

In direct analogy with Kaklis and Sapidis (1995), equations (16) endowed with appropriate boundary conditions  at 𝑡 = 𝑡0 and 
𝑡 = 𝑡𝑛, lead to a linear system of 𝑛 + 1 equations for 𝑛 + 1 unknowns, namely the second-order nodal derivatives 𝐪̈𝑖, 𝑖 = 0, 1, ..., 𝑛. This 
symmetric system is uniquely solvable for the associated matrix is strictly diagonally dominant as a result of the fact that:

𝑑𝑖 > 𝑒𝑖, 𝑘𝑖≥3, 𝑖 = 0, ..., 𝑛− 1.

In summary we can state:

Theorem 1. Let be given a surface 𝐒(𝑢, 𝑣) (𝑢, 𝑣) ∈ Ω ⊆ ℝ2, along with a set  = {𝐈0, ..., 𝐈𝑛} of points on it, a user-specified knot sequence 
 = {𝑡𝑖 ∶ 𝑡𝑖 < 𝑡𝑖+1, 𝑖 = 0, 1, ..., 𝑛 − 1} and a set  = {𝑘0, ..., 𝑘𝑛−1}, 3≤𝑘𝑖 ∈ ℕ, 𝑖 = 0, ..., 𝑛 − 1. Furthermore, let 𝐒(𝑢, 𝑣) be locally orientable 
in the neighbourhood of the points of  and obey Assumption 1 while 𝚪, the composite curve consisting of the shortest-path geodesics 𝛾𝑖(𝑡), 
𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 0, 1, ..., 𝑛 − 1, connecting consecutively the points of , obeys Assumption 2. Then, under appropriate boundary conditions 
, there exists a unique curve 𝐜(𝑡) ∈ 𝐶2([𝑡0, 𝑡𝑛]) represented as in (11), which lies on 𝐒(𝑢, 𝑣) and interpolates  in conformity with the knot 
5

sequence  .
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3.1. Local asymptotic behaviour

Let us consider that the degrees, 𝑘𝑖−1 and 𝑘𝑖, in two neighbouring parametric intervals, [𝑡𝑖−1, 𝑡𝑖] and [𝑡𝑖, 𝑡𝑖+1], increase so that

lim
𝑘𝑖−1 ,𝑘𝑖→∞

𝑘𝑖−1
𝑘𝑖

= 𝜅𝑖, (17)

where 𝜅𝑖 are prefixed non-zero positive constants. Appealing to an asymptotic result that holds true in the case of planar curves of 
non-uniform degree (see Lemma 3.1 in Kaklis and Sapidis, 1995) and taking into account that, as 𝑘𝑖, 𝑘𝑖−1 →∞, the right-hand side 
in (16a) tends to 𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖), (16a) can take the form:

(𝑑𝑖−1 + 𝑑𝑖)𝐪̈𝑖 =𝐑𝑖 with lim
𝑘𝑖−1 ,𝑘𝑖→∞

𝐑𝑖 = 𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖). (18)

We shall now exploit (18) for extracting an analogous asymptotic estimate for the one-sided tangent vectors 𝐪̇(𝑡𝑖±), defined by 
formulae (15). Since (16a) secures the continuity of 𝐪̇(𝑡) in the neighbourhood of the nodes 𝑡𝑖, it suffices to perform the asymptotics 
for 𝐪̇(𝑡+

𝑖
). To proceed, we rewrite (15a) in the following way:

𝐪̇(𝑡+
𝑖
) = 𝐠̇𝑖(𝑡𝑖) − ℎ𝑖𝐑𝑖

1
𝑑𝑖−1 + 𝑑𝑖

⋅
1
𝑘𝑖

+ ℎ𝑖𝐠̈𝑖(𝑡𝑖)
1
𝑘𝑖

− ℎ𝑖𝐑𝑖+1
1

𝑑𝑖 + 𝑑𝑖+1
⋅

1
𝑘𝑖(𝑘𝑖 − 1)

+ ℎ𝑖𝐠̈𝑖(𝑡𝑖+1)
1

𝑘𝑖(𝑘𝑖 − 1)
. (19)

Obviously, the 3𝑟𝑑 and 5𝑡ℎ terms in the right-hand side of the above formula tend to zero as 𝑘𝑗 →∞, 𝑗 = 𝑖 − 1, 𝑖. For the 4𝑡ℎ term, 
appealing again to Lemma 3.1 (Kaklis and Sapidis, 1995), we can state:

‖𝐑𝑖+1‖ ≤𝑀, (20a)

where 𝑀 is a constant depending on the point set , the parametrization  , and the boundary conditions . As for the multiplier 𝑓𝑖
of 𝐑𝑖+1 in the right-hand side of (19) we easily get the following bound:

‖𝑓𝑖‖ = ℎ𝑖
1

𝑑𝑖 + 𝑑𝑖+1
⋅

1
𝑘𝑖(𝑘𝑖 − 1)

≤ℎ𝑖
1
𝑑𝑖

⋅
1

𝑘𝑖(𝑘𝑖 − 1)
= 1

𝑘𝑖 − 1
. (20b)

On the basis of (20) we conclude that the 4𝑡ℎ term in the right-hand side of (19) tends also to zero as 𝑘𝑗 →∞, 𝑗 = 𝑖 − 1, 𝑖. Collecting 
the results obtained so far, we have

lim
𝑘𝑖,𝑘𝑖−1→∞

𝐪̇(𝑡+
𝑖
) = 𝐠̇𝑖(𝑡𝑖) − lim

𝑘𝑖,𝑘𝑖−1→∞

[
ℎ𝑖𝐑𝑖

1
𝑑𝑖−1 + 𝑑𝑖

⋅
1
𝑘𝑖

]
= 𝐠̇𝑖(𝑡𝑖) − (𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖)) ⋅

1
1 + ℎ𝑖−1

ℎ𝑖
⋅ 1
𝜅𝑖

.

In more compact form, the above asymptotic limit can be written as

lim
𝑘𝑖,𝑘𝑖−1→∞

𝐪̇(𝑡+
𝑖
) = (1 − 𝜆𝑖)𝐠̇𝑖(𝑡𝑖) + 𝜆𝑖𝐠̇𝑖−1(𝑡𝑖), (21a)

where

𝜆𝑖 =
1

1 + ℎ𝑖−1
ℎ𝑖

⋅ 1
𝜅𝑖

< 1. (21b)

Summarising, under the assumption that the degrees 𝑘𝑖−1 and 𝑘𝑖 increase in alignment with the bound (17), the limit of 𝐪̇(𝑡+
𝑖
) is 

expressed as a convex combination of the first-order derivatives at 𝑡 = 𝑡𝑖 of the preimages 𝐠𝑖−1(𝑡), 𝐠𝑖(𝑡) of the neighbouring geodesics 
𝛾𝑖−1(𝑡) and 𝛾𝑖(𝑡), respectively. Formulae (21) hold true for 𝐪̇(𝑡−

𝑖
) as well, as a result of the 𝐶1-continuity secured in the neighbourhood

of the nodes 𝑡𝑖.
We shall now exploit the asymptotic relations (18) and (21) for investigating the corresponding asymptotic behaviour of the 

geodesic curvature of the curve 𝐜(𝑡) in the neighbourhood of the interpolation point 𝐈𝑖 = 𝐜(𝑡𝑖). For this purpose we first set 𝐪(𝑡) =
(𝑢(𝑡), 𝑣(𝑡))𝑇 and then, appealing to (11), we get the following standard formulae for the first two derivatives of 𝐜(𝑡):

𝐜̇(𝑡) = 𝐒𝑢𝑢̇+ 𝐒𝑣𝑣̇, (22)

𝐜̈(𝑡) = 𝐒𝑢𝑢̈+ 𝐒𝑣𝑣̈+ 𝐫(𝑢, 𝑣), where 𝐫(𝑢, 𝑣) = 𝐒𝑢𝑢(𝑢̇)2 + 2𝐒𝑢𝑣𝑢̇𝑣̇+ 𝐒𝑣𝑣(𝑣̇)2, (23)

and, in more compact form:

(𝐜̇(𝑡), 𝐜̈(𝑡),𝐧) = (𝑢̇𝑣̈− 𝑣̇𝑢̈)(𝐒𝑢,𝐒𝑣,𝐧) + (𝐒𝑢𝑢̇+ 𝐒𝑣𝑣̇, 𝐫,𝐧) ∶= 𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡)(𝐒𝑢,𝐒𝑣,𝐧) + (𝐒𝑢𝑢̇+ 𝐒𝑣𝑣̇, 𝐫,𝐧). (24)

Now, using the expression of 𝐫(𝑢, 𝑣), given in (23), for rewriting the second term in the right-hand side of (24), we obtain:

(𝐒𝑢𝑢̇+ 𝐒𝑣𝑣̇, 𝐫,𝐧) = (𝐒𝑢𝑢̇+ 𝐒𝑣𝑣̇,𝐒𝑢𝑢(𝑢̇)2 + 2𝐒𝑢𝑣𝑢̇𝑣̇+ 𝐒𝑣𝑣(𝑣̇)2,𝐧) = (𝑢̇)3(𝐒𝑢,𝐒𝑢𝑢,𝐧) + 2(𝑢̇)2𝑣̇(𝐒𝑢,𝐒𝑢𝑣,𝐧) + 𝑢̇(𝑣̇)2(𝐒𝑢,𝐒𝑣𝑣,𝐧) +
6

+ (𝑢̇)2𝑣̇(𝐒𝑣,𝐒𝑢𝑢,𝐧) + 2𝑢̇(𝑣̇)2(𝐒𝑣,𝐒𝑢𝑣,𝐧) + (𝑣̇)3(𝐒𝑣,𝐒𝑣𝑣,𝐧). (25)
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Let us now multiply both sides of (24) by (𝑑𝑖−1 + 𝑑𝑖) and study its behaviour as 𝑘𝑖−1, 𝑘𝑖 →∞ at 𝑡 = 𝑡𝑖, equivalently at the surface 
point 𝐈𝑖 = 𝐒(𝑢(𝑡𝑖), 𝑣(𝑡𝑖)). We then can write:

lim
𝑘𝑖−1 ,𝑘𝑖→∞

((𝑑𝑖−1 + 𝑑𝑖))(𝐜̇(𝑡𝑖), 𝐜̈(𝑡𝑖),𝐧(𝐈𝐢)) = lim
𝑘𝑖−1 ,𝑘𝑖→∞

[
𝐪̇(𝑡𝑖) ×2𝐷 ((𝑑𝑖−1 + 𝑑𝑖)𝐪̈(𝑡𝑖))

]
(𝐒𝑢(𝐈𝑖),𝐒𝑣(𝐈𝑖),𝐧(𝐈𝑖)) +

lim
𝑘𝑖−1 ,𝑘𝑖→∞

[
(𝑑𝑖−1 + 𝑑𝑖)(𝐒𝑢(𝐈𝑖)𝑢̇(𝑡𝑖) + 𝐒𝑣(𝐈𝑖)𝑣̇(𝑡𝑖), 𝐫(𝐈𝑖),𝐧(𝐈𝑖)

]
. (26)

Then, combining (25) with (21) and (18), we can get the following asymptotic estimate for the right-hand side of (26):

lim
𝑘𝑖−1 ,𝑘𝑖→∞

((𝑑𝑖−1 + 𝑑𝑖))(𝐜̇(𝑡𝑖), 𝐜̈(𝑡𝑖),𝐧(𝐈𝐢)) = [(1 − 𝜆𝑖)𝐠̇𝑖(𝑡𝑖) + 𝜆𝑖𝐠̇𝑖−1(𝑡𝑖)] ×2𝐷 [𝐠̇𝑖(𝑡𝑖) − 𝐠̇𝑖−1(𝑡𝑖)](𝐒𝑢(𝐈𝑖),𝐒𝑣(𝐈𝑖),𝐧(𝐈𝑖)) +𝑂(𝑘−1
𝑖−1, 𝑘

−1
𝑖
) =

= [𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖)](𝐒𝑢(𝐈𝑖),𝐒𝑣(𝐈𝑖),𝐧(𝐈𝑖)) +𝑂(𝑘−1
𝑖−1, 𝑘

−1
𝑖
). (27)

On the basis of the orientability assumption in Theorem 1, it is legitimate to say that a consistent concept of clockwise rotation can 
be defined on the surface in a continuous manner so that the scalar triple product retains constant sign, say positive, along 𝚪, i.e.,

(𝐒𝑢(𝐈𝑖),𝐒𝑣(𝐈𝑖),𝐧(𝐈𝑖)) = ‖𝐒𝑢(𝐈𝑖)×𝐒𝑣(𝐈𝑖)‖. (28)

Consequently, on the basis of (27) and (28), we are led to

Lemma 1. If 𝑘𝑖−1, 𝑘𝑖 increase in compatibility with (17), then the geodesic curvature of 𝐜(𝑡) at 𝑡 = 𝑡𝑖 and the quantity 𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖) will 
share the same sign for sufficiently large degrees.

The question then naturally arises about the liaison between the quantity 𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖) and the generalised convexity indicator 
c𝑖 defined by (5) and used in part (i) of the shape preserving interpolation criteria for data on surfaces introduced in Definitions 1

and 2. Since 𝛾𝑗 (𝑡) = 𝐒(𝐠𝑗 (𝑡)), 𝐠𝑗 = (𝑔𝑢
𝑗
(𝑡), 𝑔𝑣

𝑗
(𝑡))𝑇 , and recalling the standard relation (see also (22))

𝛾̇𝑗 (𝑡) = 𝐒𝑢𝑔̇𝑢𝑗 (𝑡) + 𝐒𝑣𝑔̇𝑣𝑗 (𝑡),

we have:

𝛾̇𝑖−1(𝑡𝑖) × 𝛾̇𝑖(𝑡𝑖) = (𝐒𝑢(𝐈𝑖)𝑔̇𝑢𝑖−1(𝑡𝑖) + 𝐒𝑣(𝐈𝑖)𝑔̇𝑣𝑖−1(𝑡𝑖)) × (𝐒𝑢(𝐈𝑖)𝑔̇𝑢𝑖 (𝑡𝑖) + 𝐒𝑣(𝐈𝑖)𝑔̇𝑣𝑖 (𝑡𝑖)) = [𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖)]𝐒𝑢(𝐈𝑖) × 𝐒𝑣(𝐈𝑖)⇒ (29)

(𝛾̇𝑖−1(𝑡𝑖), 𝛾̇𝑖(𝑡𝑖),𝐧(𝑡𝑖)) = [𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖)](𝐒𝑢(𝐈𝑖),𝐒𝑣(𝐈𝑖),𝐧(𝑡𝑖)), (30)

which, in view of (28), gives

sign(𝛾̇𝑖−1(𝑡𝑖), 𝛾̇𝑖(𝑡𝑖),𝐧(𝑡𝑖)) = sign[𝐠̇𝑖−1(𝑡𝑖) ×2𝐷 𝐠̇𝑖(𝑡𝑖)]. (31)

Combining (31) with (5), Lemma 1 and taking into account that the geodesic curvature 𝜅𝑔(𝑡; 𝐜) is continuous, we can state:

Theorem 2. If 𝑘𝑖−1, 𝑘𝑖 increase in compatibility with (17), then the geodesic curvature of 𝐜(𝑡) at 𝑡 = 𝑡𝑖 and the generalised convexity indicator 
c𝑖 will share the same sign for sufficiently large degrees and thus the local-convexity criterion (i) in Definition 2 is satisfied.

Example 1. A demonstration of Theorem 2 is documented in Table 1 and Figs. 1, 2, 3 and 4. For this example as well as Examples 2

and 3, the shortest-path geodesic preimages 𝐠𝑖, 𝑖 = 0, ..., 𝑛 − 1, have been calculated by numerically solving their defining equations, 
also called geodesic-equations (35), in MAPLE®. It is easily verifiable that the geodesics produced by MAPLE® are indeed the shorter 
segment of the great-arcs connecting consecutive points thus securing the shortest-length property. Next, the on-surface renders for 
all examples have been generated in Rhino®. Fig. 1 shows two on-sphere members of the curve family (11). Specifically, the interval 
degrees of the spline in Fig. 1a are uniformly equal to 3, while for that of Fig. 1b they have all been increased to 6. As one can 
readily notice from Fig. 3, where the geodesic curvature of the two splines is plotted, the initial spline (all degrees equal to 3) 
fails the local-convexity criterion in Definition 2 at 𝑡 = 0, 2, 4, 6. However, as predicted by Theorem 2, when increasing the interval 
degrees (all degrees equal to 6) the sign of the geodesic curvature at the interpolation points matches that of the respective convexity 
indicator. Furthermore, it also happens that the minimum-variation criterion in Definition 1 is satisfied.

3.2. Non-local asymptotic behaviour

3.2.1. Preamble

In the ensuing subsection (§3.2.2) we investigate and prove that the family of splines 𝐜(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑛], introduced in §3 (see 
equation (11)), is capable to satisfy all criteria of Definition 1 for shape-preserving interpolation on developable surfaces. For general 
surfaces it is straightforward to prove (see Theorem 3 below) that, as degrees increase, 𝐜(𝑡) tends uniformly to the curve 𝚪, that lies on 
𝐒(𝑢, 𝑣) and consists of the shortest-path geodesic curves 𝛾𝑖(𝑡), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 0, 1, ..., 𝑛 −1, connecting consecutively the interpolation 
7

points 𝐈𝑖, 𝑖 = 0, 1, ..., 𝑛.
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Fig. 1. On surface renders of the example in Table 1. Interpolation points are represented as glass spheres coloured green/red according as the generalised convexity 
indicators are positive/negative, respectively. Geodesic arcs between pairs of consecutive interpolation points are depicted as bronze curves. The blue curves are the 
on-sphere interpolating splines (11) while their geodesic curvature is represented through the ruled surface, formed by the interpolant and its tangential curvature 
vector distribution (see Struik, 1961, Chapter 4), coloured green/red according to the sign of the geodesic curvature. (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)
8



Computer Aided Geometric Design 109 (2024) 102276P.D. Kaklis, S. Stamatelopoulos and A.-A.I. Ginnis

Table 1

Example 1.

supporting surface sphere

surface parametrization
(
cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣)

)
number of interpolation points 𝐈𝑖 7

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
3.141
2.32

]
,

[
3.216
1.635

]
,

[
3.891
0.921

]
,

[
3.141
1.495

]
,

[
2.391
0.921

]
,

[
3.066
1.635

]
,

[
3.141
2.32

]
generalised convexity indicators c𝑖 −1, +1, −1, +1, −1, +1, −1
spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...6} = {0, 1, 2, 3, 4, 5, 6}
boundary conditions periodic

initial degrees  for the spline in Fig. 1a {3, 3, 3, 3, 3, 3}
final  for the shape-preserving spline in Fig. 1b {6, 6, 6, 6, 6, 6}

Fig. 2. On surface render of a neighbourhood of the near antarctic interpolation point 𝐈0 = 𝐒(3.141,2.32) of the example depicted in Fig. 1b.

Fig. 3. Logarithmic plot of geodesic curvature of splines depicted in Fig. 1. Specifically, the dashed and solid lines correspond to the splines in Figs. 1a and 
1b respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 (5) while their red-coloured, downward-facing counterparts to 
negative c𝑖 .
9

Theorem 3. lim
𝑘𝑖→∞

𝐜(𝑡) = 𝛾𝑖(𝑡) uniformly with respect to 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 ∈ {0, 1, ..., 𝑛 − 1}.
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Fig. 4. Preimage of Fig. 1. Specifically, the orange lines are the preimage of the geodesic arcs, while 𝐪0 and 𝐪1 are the preimage of blue splines in Figs. 1a and 1b

respectively.

Proof. Substituting 𝐑𝑖, 𝐑𝑖+1 (18) into (12),

𝐪(𝑡) = 𝐠𝑖(𝑡) +𝐑𝑖

ℎ2
𝑖
𝐹𝑖(1 − 𝜏)

(𝑑𝑖−1 + 𝑑𝑖)
+𝐑𝑖+1

ℎ2
𝑖
𝐹𝑖(𝜏)

(𝑑𝑖 + 𝑑𝑖+1)
− 𝐠̈𝑖(𝑡𝑖)𝐹𝑖(1 − 𝜏) − 𝐠̈𝑖(𝑡𝑖+1)𝐹𝑖(𝜏). (32)

Looking at the definition of 𝐹𝑖(𝜏) it is evident that the 4𝑡ℎ and 5𝑡ℎ terms of (32) are of order 𝑂(𝑘−2
𝑖
) uniformly with respect to 𝑡. Now, 

appealing to (20),

‖𝐑𝑖ℎ
2
𝑖
𝐹𝑖(1 − 𝜏)(𝑑𝑖−1 + 𝑑𝑖)−1‖ ≤𝑀|ℎ2

𝑖
𝐹𝑖(1 − 𝜏)(𝑑𝑖−1 + 𝑑𝑖)−1| =𝑀ℎ2

𝑖
|(1 − 𝜏)𝑘𝑖 − (1 − 𝜏)|((

ℎ𝑖−1
𝑘𝑖

𝑘𝑖−1
+ ℎ𝑖

)
(𝑘𝑖−1)

)−1

.

Noting that for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], |(1 − 𝜏)𝑘𝑖 − (1 − 𝜏)| ≤ 1,

‖𝐑𝑖ℎ
2
𝑖
𝐹𝑖(1 − 𝜏)(𝑑𝑖−1 + 𝑑𝑖)−1‖ =𝑂(𝑘−1

𝑖
)

uniformly with respect to 𝑡. Proceeding analogously for the third term of (32), we can then write 𝐪(𝑡) = 𝐠𝑖(𝑡) +𝑂(𝑘−1
𝑖
). Since 𝐒(𝑢, 𝑣)

is continuous, it immediately follows that 𝐜(𝑡) = 𝐒◦𝐪(𝑡) = 𝛾𝑖(𝑡) + 𝑜(1), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]. □

For the non-local-convexity criterion (i) of Definition 1, however, one can provide different point sets  on the same, non-

developable, surface 𝐒(𝑢, 𝑣), for which 𝐜(𝑡) succeeds (see Example 2) or fails (see Example 3) to satisfy the aforementioned criterion.

Example 2. Fig. 5 shows two on-sphere members of the curve family (11), which interpolate the periodic data specified in Table 2. 
Fig. 6 is a graph of the splines’ geodesic curvature, while Fig. 7 depicts their preimages. Notice that in Fig. 6, for degrees equal to 
[12, 12, 3, 6, 6, 3], sign(𝜅𝑔(𝑡; 𝐜)) = −1 for all 𝑡 so that 𝐜 is a shape-preserving interpolant in accordance with Definition 1

Example 3. Fig. 8 shows two on-sphere members of the curve family (11), which interpolate the periodic data specified in Table 3. 
Fig. 9 is a graph of the splines’ geodesic curvature, while Fig. 10 depicts their preimages. Notice in Fig. 9, that even for degrees as 
high as 100, the spline’s geodesic curvature in [1, 2] and [2, 3] does not share sign with the neighbouring convexity indicators as is 
required for the satisfaction of the non-local convexity criterion of Definition 1

3.2.2. Global asymptotic behaviour: developable surfaces

We start by recalling the first (I) and the second II fundamental forms of a smooth parametric surface 𝐒(𝑢, 𝑣), defined as:

𝐼 =𝐸(𝑑𝑢)2 + 2𝐹𝑑𝑢𝑑𝑣+𝐺(𝑑𝑣)2, 𝐸 = 𝐒𝑢 ⋅ 𝐒𝑢, 𝐹 = 𝐒𝑢 ⋅ 𝐒𝑣, 𝐺 = 𝐒𝑣 ⋅ 𝐒𝑣,

and
10

𝐼𝐼 =𝐿(𝑑𝑢)2 + 2𝑀𝑑𝑢𝑑𝑣+𝑁(𝑑𝑣)2, 𝐿 = 𝐒𝑢𝑢 ⋅ 𝐧, 𝑀 = 𝐒𝑢𝑣 ⋅ 𝐧, 𝑁 = 𝐒𝑣𝑣 ⋅ 𝐧;



Computer Aided Geometric Design 109 (2024) 102276P.D. Kaklis, S. Stamatelopoulos and A.-A.I. Ginnis

Fig. 5. On surface renders of the example in Table 2. For the interpretation of the illustrated items refer to Fig. 1.
11
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Table 2

Example 2.

supporting surface sphere

surface parametrization
(
cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣)

)
number of interpolation points 𝐈𝑖 7

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
1.571
1.266

]
,

[
1.964
1.266

]
,

[
2.356
1.266

]
,

[
2.356
0.554

]
,

[
1.964
0.451

]
,

[
1.571
0.554

]
,

[
1.571
1.266

]
generalised convexity indicators c𝑖 −1, −1, −1, −1, −1, −1, −1
spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...6} = {0, 1, 2, 3, 4, 5, 6}
boundary conditions periodic

initial degrees  for the spline in Fig. 5a {3, 3, 3, 3, 3, 3}
final  for the shape-preserving spline in Fig. 5b {12, 12, 3, 6, 6, 3}

Fig. 6. Logarithmic plot of geodesic curvature of splines depicted in Fig. 5. Specifically, the dashed and solid lines correspond to the splines in Figs. 5a and 5b

respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 while their red-coloured, downward-facing counterparts to negative 
c𝑖 .

Fig. 7. Preimage of Fig. 5. Specifically, the orange lines are the preimage of the geodesic arcs, while 𝐪0 and 𝐪1 are the preimage of blue splines in Figs. 5a and 5b

respectively.

see, e.g., §27 and §38 in Kreyszig (1991). These forms are used to calculate properties of surfaces or entities on them, which remain 
invariant with respect to parameter transformations, possibly under the additional constraint of constant orientation (i.e., positive 
Jacobian), such as the curve length, the area, the mean curvature 𝐻 and the Gaussian curvature 𝐾 . The latter can be defined as

𝐾 = 𝐿𝑁 −𝑀2

𝐸𝐺 − 𝐹 2 ;
12

see, e.g., Ch. IV, §14 in Stoker (1989). For developable surfaces, the following result holds true (Th. 59.2 in Kreyszig, 1991):
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Fig. 8. On surface renders of the example in Table 3. For the interpretation of the illustrated items refer to Fig. 1.
13
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Table 3

Example 3.

supporting surface sphere

surface parametrization
(
cos(𝑢) sin(𝑣), sin(𝑢) sin(𝑣), cos(𝑣)

)
number of interpolation points 𝐈𝑖 5

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
1.571
1.047

]
,

[
0.785
1.047

]
,

[
1.571
0.451

]
,

[
2.356
0.451

]
,

[
1.571
1.047

]
generalised convexity indicators c𝑖 +1, +1, +1, +1, +1
spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...4} = {0, 1, 2, 3, 4}
boundary conditions periodic

degrees  for the spline in Fig. 8a {3, 3, 3, 3}
degrees  for the spline in Fig. 8b {9, 9, 9, 9}

Fig. 9. Logarithmic plot of geodesic curvature of splines depicted in Fig. 8. Specifically, the solid and semi-dashed lines correspond to the splines in Figs. 8a and 8b

respectively. The dotted lines correspond to the spline of all degrees equal to 100. The upwards facing green triangles correspond to positive convexity indicators c𝑖
while their red-coloured, downward-facing counterparts to negative c𝑖 .

Fig. 10. Preimage of Fig. 8. Specifically, the orange lines are the preimage of the geodesic arcs, while 𝐪0 and 𝐪1 are the preimage of blue splines in Figs. 8a and 8b

respectively.

Theorem 4. A portion 𝐒 of a surface which is of class 𝑟≥2, i.e., it is parametrizable as a function with continuous (partial) derivatives to the 
order 𝑟, inclusively, is a portion of a developable surface if and only if its Gaussian curvature 𝐾 is zero everywhere.

The property which is of interest to us is the fact that developables are the only surfaces, which can be isometrically mapped to 
14

the plane (Th. 59.3 in Kreyszig, 1991):
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Theorem 5. A (sufficiently small) portion of a surface of class 𝑟 ≥ 3 can be mapped isometrically into a plane if and only if it is a portion of 
a developable surface

Therefore, if 𝐒 is a developable surface, it can be parametrized by 𝐒(𝑢, 𝑣) such that it’s first fundamental form is

I = (𝑑𝑢)2 + (𝑑𝑣)2 (33)

for a sufficiently small portion of it. We will show that if 𝐜(𝑡) is contained in such a portion and the surface is parametrized in 
accordance to (33), then for high enough interval degrees it will become a shape-preserving interpolant as in Definition 1. Before 
proceeding with the asymptotic analysis of sign(𝜅𝑔(𝑡; 𝐜)), we state two properties of such a parametrization in the form of two 
lemmata:

Lemma 2. Let 𝐒 be a developable surface parametrized by 𝐒(𝑢, 𝑣) as in (33). Then, the second-order partial derivatives 𝐒𝑢𝑢, 𝐒𝑢𝑣 and 𝐒𝑣𝑣 of 
𝐒(𝑢, 𝑣) are in the direction of the normal vector 𝐧(𝑢, 𝑣).

Proof. First consider the local coordinate system of 𝐒(𝑢, 𝑣) defined by 𝐒𝑢, 𝐒𝑣 and 𝐧. The relations which express the second deriva-

tives of the surface in terms of this coordinate system are the so-called formulae of Gauss (§45 in Kreyszig, 1991) collected in:

Theorem 6. Let 𝐒(𝑢, 𝑣) be a parametric surface of class 𝑟 ≥ 2. Then,

𝐒𝑢𝑢 = Γ111𝐒𝑢 + Γ211𝐒𝑣 +𝐿𝐧, 𝐒𝑢𝑣 = Γ112𝐒𝑢 + Γ212𝐒𝑣 +𝑀𝐧, 𝐒𝑣𝑣 = Γ122𝐒𝑢 + Γ222𝐒𝑣 +𝑁𝐧,

where Γ𝑘
𝑖𝑗

are the Christoffel symbols of the second kind and 𝐿, 𝑀 and 𝑁 are the coefficients of the second fundamental form of 𝐒(𝑢, 𝑣).

Now, Γ𝑘
𝑖𝑗

can be expressed in terms on the coefficients of I and their derivatives (§47 in Kreyszig, 1991). Then, due to (33), 
𝐸 =𝐺 = 1 and 𝐹 = 0 which results in

Γ𝑘
𝑖𝑗
= 0, 𝑖, 𝑗, 𝑘 = {1,2} (34)

In view of (34), Lemma (2) holds by direct application of Theorem 6. □

Lemma 3. Let 𝐒 be a developable surface parametrized by 𝐒(𝑢, 𝑣) as in (33). Then the geodesic preimages 𝐠𝑖 (see in (10)) are linear 
segments.

Proof. The map 𝛾 = 𝐒(𝐠) of a preimage curve 𝐠 is a geodesic curve on 𝐒 if and only if its geodesic curvature vanishes identically 
(Th. 50.1 in Kreyszig, 1991). Then, if 𝐠(𝐬) = (𝑢(𝑠), 𝑣(𝑠))𝑇 is parametrized with respect to the arc-length 𝑠, the following differential 
equation should hold true (§49 in Kreyszig, 1991):

Γ211
(
𝑑𝑢

𝑑𝑠

)3
+ (2Γ212 − Γ111)

(
𝑑𝑢

𝑑𝑠

)2
⋅
𝑑𝑣

𝑑𝑠
− (2Γ112 − Γ222)

𝑑𝑢

𝑑𝑠
⋅
(
𝑑𝑣

𝑑𝑠

)2
− Γ122

(
𝑑𝑣

𝑑𝑠

)3
+ 𝑑𝑢

𝑑𝑠
⋅
𝑑2𝑣

𝑑𝑠2
− 𝑑2𝑢

𝑑𝑠2
⋅
𝑑𝑣

𝑑𝑠
= 0, (35)

which, due to (34), degenerates to:

𝑑𝑢

𝑑𝑠
⋅
𝑑2𝑣

𝑑𝑠2
− 𝑑2𝑢

𝑑𝑠2
⋅
𝑑𝑣

𝑑𝑠
= 0 ⟺

𝑑𝐠
𝑑𝑠

×2𝐷
𝑑2𝐠
𝑑𝑠2

= 0,

i.e., the curvature of 𝐠 vanishes and therefore the preimage 𝐠 is a linear segment. □

We can now proceed with the asymptotic analysis of the geodesic curvature of the interpolant 𝐜(𝑡), defined via (11), on a 
developable surface 𝐒, parametrized as in (33) for a portion 𝐒0 ⊆ 𝐒 which contains in 𝐜(𝑡). According to Lemma 2, the second partial 
derivatives of 𝐒(𝑢, 𝑣) will be parallel to the surface normal 𝐧(𝑢, 𝑣), which translates to:

(𝐒𝑖,𝐒𝑗𝑘,𝐧) = 0, 𝑖, 𝑗, 𝑘 = {𝑢, 𝑣}.

Then the right hand side of (25) vanishes and the numerator of 𝜅𝑔(𝑡; 𝐜) (24) can be written as:

(𝐜̇(𝑡), 𝐜̈(𝑡),𝐧) = 𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡)(𝐒𝑢,𝐒𝑣,𝐧), 𝑡 ∈ [𝑡0, 𝑡𝑛].

As in (28), due to the orientability assumption for 𝐒, a consistent clockwise rotation can be defined on the surface in a continuous 
manner so that the scalar triple product (𝐒𝑢, 𝐒𝑣, 𝐧) retains a constant sign, say positive, throughout the domain of 𝐒, so that

sign((𝐜̇(𝑡), 𝐜̈(𝑡),𝐧)) = sign(𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡)), 𝑡 ∈ [𝑡0, 𝑡𝑛]. (36)

Therefore the geodesic curvature of 𝐜 will share sign with the planar curvature of 𝐪. Next, Lemma 3 implies that, if we employ a 
15

constant-speed parameterization for 𝐠𝑖(𝑡), then 𝐠̈𝑖(𝑡) = 𝟎 and thus:
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𝐠̇𝑖(𝑡) = const ∶= 𝐠̇𝑖.

Then,

𝐪̇(𝑡) = 𝐠̇𝑖 − ℎ𝑖𝐪̈𝑖𝐹 ′
𝑖
(1 − 𝜏) + ℎ𝑖𝐪̈𝑖+1𝐹 ′

𝑖
(𝜏) (37a)

𝐪̈(𝑡) = 𝐪̈𝑖𝐹 ′′
𝑖
(1 − 𝜏) + 𝐪̈𝑖+1𝐹 ′′

𝑖
(𝜏), 𝜏 =

𝑡− 𝑡𝑖

ℎ𝑖

, 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], (37b)

which in its turn gives:

𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡) = 𝐠̇𝑖 ×2𝐷 𝐪̈𝑖𝐹 ′′
𝑖
(1 − 𝜏) + 𝐠̇𝑖 ×2𝐷 𝐪̈𝑖+1𝐹 ′′

𝑖
(𝜏) + 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖ℎ𝑖(𝐹 ′′

𝑖
(𝜏)𝐹 ′

𝑖
(1 − 𝜏) + 𝐹 ′

𝑖
(𝜏)𝐹 ′′

𝑖
(1 − 𝜏)) (38)

Letting 𝜆(𝑡) = 𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡) and defining

𝜆𝑖 ∶= 𝜆(𝑡𝑖) = 𝐠̇𝑖 ×2𝐷 𝐪̈𝑖 − 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖ℎ𝑖(𝑘𝑖(𝑘𝑖 − 1))−1, (39)

(38) becomes

𝜆(𝑡) = 𝜆𝑖𝐹
′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1𝐹

′′
𝑖
(𝜏) + 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖ℎ𝑖

[
𝐹 ′′
𝑖
(𝜏)

(
𝐹 ′
𝑖
(1 − 𝜏) + 1

𝑘𝑖(𝑘𝑖 − 1)
)
+
(
𝐹 ′
𝑖
(𝜏) + 1

𝑘𝑖(𝑘𝑖 − 1)
)
𝐹 ′′
𝑖
(1 − 𝜏)

]
,

which can be written in more compact form as:

𝜆(𝑡) = 𝜆𝑖𝐹
′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1𝐹

′′
𝑖
(𝜏) + 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖ℎ𝑖𝜙(𝜏), 𝜙(𝜏) = 𝜏𝑘𝑖−2(1 − 𝜏)𝑘𝑖−2

𝑘𝑖 − 1

Now, consider that the degrees, 𝑘𝑖−1, 𝑘𝑖 and 𝑘𝑖+1 in three consecutive intervals, [𝑡𝑖−2, 𝑡𝑖−1], [𝑡𝑖−1, 𝑡𝑖] and [𝑡𝑖, 𝑡𝑖+1] increase in 
accordance to

lim
𝑘𝑗−1 ,𝑘𝑗→∞

𝑘𝑗−1

𝑘𝑗
= 𝜅𝑗 , 𝑗 = {𝑖, 𝑖+ 1} (40)

where 𝜅𝑗 are non-zero positive constants. Recalling Theorem 2 and (36), 𝜆𝑗c𝑗 > 0 for 𝑗 = {𝑖, 𝑖 + 1} for large enough interval degrees. 
Then, if c𝑖c𝑖+1 > 0, in order to ensure that 𝜆(𝑡) shares sign with c𝑖, c𝑖+1 in [𝑡𝑖, 𝑡𝑖+1] it is sufficient to have:

min
𝜏∈[0,1]

(|𝜆𝑖𝐹 ′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1𝐹

′′
𝑖
(𝜏)|) > max

𝜏∈[0,1]
(|𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖ℎ𝑖𝜙(𝜏)|). (41)

For the right hand side of (41), the maximum is obtained at 𝜏 = 0.5. For the left hand side, the assumption 𝜆𝑖𝜆𝑖+1 > 0 allows:

|𝜆𝑖𝐹 ′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1𝐹

′′
𝑖
(𝜏)| = |𝜆𝑖|𝐹 ′′

𝑖
(1 − 𝜏) + |𝜆𝑖+1|𝐹 ′′

𝑖
(𝜏) ≥min(|𝜆𝑖|, |𝜆𝑖+1|)(𝐹 ′′

𝑖
(1 − 𝜏) + 𝐹 ′′(𝜏)). (42)

Now, the minimum over 𝜏 ∈ [0, 1] of the right hand side of (42) occurs also at 𝜏 = 0.5. Therefore, for (41) to be satisfied it is enough 
that

min(|𝜆𝑖|, |𝜆𝑖+1|)2𝐹 ′′
𝑖
(0.5) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|ℎ𝑖𝜙(0.5)⇔min(|𝜆𝑖|, |𝜆𝑖+1|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|ℎ𝑖21−𝑘𝑖 (𝑘𝑖 − 1)−1,

which together with 𝜆𝑖𝜆𝑖+1 > 0 is a sufficient condition for 𝜆(𝑡) to share sign with c𝑗 , 𝑗 = {𝑖, 𝑖 + 1} for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], appealing to 
(36), we then easily arrive at

Lemma 4. Let c𝑖c𝑖+1 > 0 with 𝜆𝑖c𝑖 > 0, 𝜆𝑖+1c𝑖+1 > 0 and min(|𝜆𝑖|, |𝜆𝑖+1|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|ℎ𝑖21−𝑘𝑖 (𝑘𝑖 − 1)−1. Then the non-local-convexity 
criterion is satisfied, i.e., the geodesic curvature 𝜅𝑔(𝑡; 𝐜) of 𝐜(𝑡) will satisfy 𝜅𝑔(𝑡; 𝐜)c𝑗 > 0, 𝑗 = {𝑖, 𝑖 + 1} for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1].

The above lemma provides a sufficient condition for 𝐜(𝑡) to satisfy the non-local-convexity Criterion of Definition 1.

To proceed analogously for the minimum-variation criterion of Definition 1, we differentiate 𝜆(𝑡) with respect to 𝑡:

𝜆̇(𝑡) = 𝑑

𝑑𝑡
(𝐪̇(𝑡) ×2𝐷 𝐪̈(𝑡)) = 𝐪̇(𝑡) ×2𝐷 𝐪(3)(𝑡). (43)

Differentiating (37b), we get:

𝐪(3)(𝑡) = −ℎ−1
𝑖
𝐪̈𝑖𝐹 ′′′

𝑖
(1 − 𝜏) + ℎ−1

𝑖
𝐪̈𝑖+1𝐹 ′′′

𝑖
(𝜏), where 𝐹 ′′′

𝑖
(𝜏) = (𝑘𝑖 − 2)𝜏𝑘𝑖−3 (44)

Substituting (37a) and (44) in (43) yields:

𝜆̇(𝑡) = −𝐠̇𝑖 ×2𝐷 𝐪̈𝑖ℎ−1𝑖 𝐹 ′′′
𝑖
(1 − 𝜏) + 𝐠̇𝑖 ×2𝐷 𝐪̈𝑖+1ℎ−1𝑖 𝐹 ′′′

𝑖
(𝜏)

+ 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖
(
𝐹 ′′′
𝑖
(𝜏)𝐹 ′

𝑖
(1 − 𝜏) − 𝐹 ′

𝑖
(𝜏)𝐹 ′′′

𝑖
(1 − 𝜏)

)

16

Recalling (39), the above relation can be written as:
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𝜆̇(𝑡) = −𝜆𝑖ℎ−1𝑖 𝐹 ′′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1ℎ

−1
𝑖
𝐹 ′′′
𝑖
(𝜏) + 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖

[
𝐹 ′′′
𝑖
(𝜏)

(
𝐹 ′
𝑖
(1 − 𝜏) + 1

𝑘𝑖(𝑘1 − 1)
)
−
(
𝐹 ′
𝑖
(𝜏) + 1

𝑘𝑖(𝑘1 − 1)
)
𝐹 ′′′
𝑖
(1 − 𝜏)

]
(45)

Expanding the factor of the third term in the right hand side of (45) gives:

𝐹 ′′′
𝑖
(𝜏)

(
𝐹 ′
𝑖
(1 − 𝜏) + 1

𝑘𝑖(𝑘1 − 1)
)
−
(
𝐹 ′
𝑖
(𝜏) + 1

𝑘𝑖(𝑘1 − 1)
)
𝐹 ′′′
𝑖
(1 − 𝜏) =

𝑘𝑖 − 2
𝑘𝑖 − 1

𝜏𝑘𝑖−3(1 − 𝜏)𝑘𝑖−3(1 − 2𝜏),

which can be written in more compact form as:

𝜆̇(𝑡) = −𝜆𝑖ℎ−1𝑖 𝐹 ′′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1ℎ

−1
𝑖
𝐹 ′′′
𝑖
(𝜏) + 𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖𝜒(𝜏), 𝜒(𝜏) =

𝑘𝑖 − 2
𝑘𝑖 − 1

𝜏𝑘𝑖−3(1 − 𝜏)𝑘𝑖−3(1 − 2𝜏). (46)

Now, suppose that c𝑖c𝑖+1 < 0 with c𝑖 > 0 (resp. c𝑖 < 0). If 𝜆̇(𝑡) < 0 (resp. 𝜆̇(𝑡) > 0) for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝐜(𝑡) will fulfil the minimum-variation 
criterion in [𝑡𝑖, 𝑡𝑖+1]. We first recall that, on the basis of Theorem 2, 𝜆𝑖c𝑖 > 0 and 𝜆𝑖+1c𝑖+1 > 0 for large enough 𝑘𝑖−1, 𝑘𝑖, 𝑘𝑖+1. Then, 
since the first two terms in the right hand side of (46) will both be negative (resp. positive), the following sufficient condition for 
𝜆̇(𝑡) < 0 (resp. 𝜆̇(𝑡) > 0), 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] holds true:

min
𝜏∈[0,1]

(|− 𝜆𝑖ℎ
−1
𝑖
𝐹 ′′′
𝑖
(1 − 𝜏) + 𝜆𝑖+1ℎ

−1
𝑖
𝐹 ′′′
𝑖
(𝜏)|) > max

𝜏∈[0,1]
(|𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖𝜒(𝜏)|).

Furthermore, by an argument similar to that used in (42), it is enough to have:

ℎ−1
𝑖

min(|𝜆𝑖|, |𝜆𝑖+1|) min
𝜏∈[0,1]

(|𝐹 ′′′
𝑖
(𝜏) + 𝐹 ′′′

𝑖
(1 − 𝜏)|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖| max

𝜏∈[0,1]
(|𝜒(𝜏)|). (47)

The left hand side of (47) attains its minimum (𝑘𝑖 − 2)24−𝑘𝑖 for 𝜏 = 0.5. For the right hand side, we investigate the extrema of |𝜒(𝜏)|:
𝜒̇(𝜏) =

𝑘𝑖 − 2
𝑘𝑖 − 1

𝜏𝑘𝑖−4(1 − 𝜏)𝑘𝑖−4
(
(𝑘𝑖 − 3)(1 − 𝜏)(1 − 2𝜏) − (𝑘𝑖 − 3)𝜏(1 − 2𝜏) − 2𝜏(1 − 𝜏)

)
For 𝑘𝑖 = 3, 𝜒(𝜏) is a linear segment with |𝜒(𝜏)| ≤ |𝜒(0)| = |𝜒(1)| = 1

2 . For 𝑘𝑖 > 4, the extrema of 𝜒(𝜏) occur at:

𝜏1 =
1
2
+

√
1

2(4𝑘𝑖 − 10)
, 𝜏2 =

1
2
−

√
1

2(4𝑘𝑖 − 10)
, 𝜏3 = 0, 𝜏4 = 1

For 𝑘𝑖 = 4 the extrema of 𝜒(𝜏) occur at 𝜏1 and 𝜏2 only. Furthermore, can easily see that:

|𝜒(𝜏1)| = |𝜒(𝜏2)| = 2
𝑘𝑖 − 2
𝑘𝑖 − 1

( 𝑘𝑖 − 3
4𝑘𝑖 − 10

)𝑘𝑖−3√
2(4𝑘𝑖 − 10)

−1
.

Then, since for 𝑘𝑖 > 3, |𝜒(𝜏3)| = |𝜒(𝜏4)| = 0 < |𝜒(𝜏1)| = |𝜒(𝜏2)|, we can write:

𝜒𝑖 ∶= max
𝜏∈[0,1]

(|𝜒(𝜏)|) =
⎧⎪⎪⎨⎪⎪⎩

𝑘𝑖 − 2
𝑘𝑖 − 1

, 𝑘𝑖 = 3

𝑘𝑖 − 2
𝑘𝑖 − 1

( 𝑘𝑖 − 3
4𝑘𝑖 − 10

)𝑘𝑖−3 2√
2(4𝑘𝑖 − 10)

, 𝑘𝑖 > 3
(48)

Substituting (48) into (47), the latter becomes:

ℎ−1
𝑖

min(|𝜆𝑖|, |𝜆𝑖+1|)(𝑘𝑖 − 2)24−𝑘𝑖 > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|𝜒𝑖 ⇔min(|𝜆𝑖|, |𝜆𝑖+1|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|2𝑘𝑖−4ℎ𝑖(𝑘𝑖 − 2)−1𝜒𝑖. (49)

Combining now Theorem 2, (36) and (49), we arrive at the following

Lemma 5. Let c𝑖c𝑖+1 < 0 with 𝜆𝑖c𝑖 > 0, 𝜆𝑖+1c𝑖+1 > 0 and min(|𝜆𝑖|, |𝜆𝑖+1|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|2𝑘𝑖−4ℎ𝑖(𝑘𝑖 − 2)−1𝜒𝑖, where 𝜒𝑖 is defined as in 
(48). Then the minimum-variation criterion is satisfied, i.e., there ∃ 𝜉𝑖 ∈ (𝑡𝑖, 𝑡𝑖+1) such that the geodesic curvature 𝜅𝑔(𝑡; 𝐜) of 𝐜(𝑡) will satisfy 
𝜅𝑔(𝑡; 𝐜)c𝑖 ≥ 0, 𝑡 ∈ [𝑡𝑖, 𝜉𝑖] and 𝜅𝑔(𝑡; 𝐜)c𝑖+1 ≥ 0, 𝑡 ∈ [𝜉𝑖, 𝑡𝑖+1]

Concluding with the local-co-geodesity criterion, we note that, since both 𝐜̇(𝑡) and 𝛾̇𝑙(𝑡), 𝑙 = {𝑖 − 1, 𝑖}, are continuous in the neigh-

bourhood of the knot 𝑡 = 𝑡𝑖, we can readily provide the following sufficient condition for its satisfaction.

Lemma 6. Let c𝑖 = 0 and 𝛿 > 0. Then, if ‖𝐜̇(𝑡𝑖) × 𝛾̇𝑙(𝑡𝑖)‖ < 𝛿, 𝑙 = {𝑖 −1, 𝑖}, then there exists a neighbourhood 𝜂𝑖 ⊆ (𝑡𝑖−1, 𝑡𝑖+1) of 𝑡𝑖, such that 
17

‖𝐜̇(𝑡) × 𝛾̇𝑙(𝑡𝑖)‖ < 𝛿 for all 𝑡 ∈ 𝜂𝑖.
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4. An algorithm for shape-preserving interpolation on developable surfaces

In this section we first prove that, for a set ∗ = {𝑘∗0 , ..., 𝑘
∗
𝑛−1} of adequately large degrees, the assumptions of Lemmata 4, 5 and 6

will be satisfied for all intervals and therefore 𝐜(𝑡) will be a shape preserving interpolant according to Definition 1. We then conclude 
with an algorithm capable to identify such a set ∗ after a finite number of iterations.

In view of Definition 1, we start by introducing the following index sets: let 0 = {0, ..., 𝑛}, 1 = {𝑚 ∈ 0 ∶ c𝑚c𝑚+𝑛 > 0, 𝑛 =
1 or − 1}, and 2 = {𝑚 ∈ 0 ∶ c𝑚c𝑚+𝑛 < 0, 𝑛 = 1 or − 1}. For each 𝑖 ∈ 1 such that 𝑖 + 1 is also in 1, let 𝑘𝑖−1, 𝑘𝑖 and 𝑘𝑖+1 increase as 
in (40). On the basis of Theorem 2, we know that there exist 𝑘(0)

𝑖−1, 𝑘(0)
𝑖

and 𝑘(0)
𝑖+1 such that for all 𝑘𝑗 > 𝑘

(0)
𝑗

with 𝑗 = {𝑖 − 1, 𝑖, 𝑖 + 1}, we 
have 𝜆𝑖c𝑖 > 0 and 𝜆𝑖+1c𝑖+1 > 0. Since c𝑖c𝑖+1 > 0, we have c𝑗 ≠ 0, 𝑗 = {𝑖, 𝑖 + 1} which, looking at (18) and (29), implies that

lim
𝑘𝑖−1 ,𝑘𝑖,𝑘𝑖+1→∞

(𝑑𝑗 + 𝑑𝑗−1)𝐪̈𝑗 = 𝐠̇𝑗 − 𝐠̇𝑗−1 ≠ 𝟎, 𝑗 = {𝑖, 𝑖+ 1} (50)

From (38) and (39) we can write:

𝜆𝑗 = 𝐠̇𝑗 ×2𝐷 𝐪̈𝑗 − 𝐪̈𝑗+1 ×2𝐷 𝐪̈𝑗ℎ𝑗 (𝑘𝑗 (𝑘𝑗 − 1))−1 = 𝐠̇𝑗 ×2𝐷 𝐪̈𝑗 +𝑂(𝑘2
𝑗−1, 𝑘

2
𝑗
, 𝑘2

𝑗+1)(𝑘𝑗 (𝑘𝑗 − 1))−1 = 𝐠̇𝑗 ×2𝐷 𝐪̈𝑗 +𝑂(1), 𝑗 = {𝑖, 𝑖+ 1},

where the last equality holds in view of (40). Now, multiplying (50) by 𝐠̇𝑗 , yields:

lim
𝑘𝑖−1 ,𝑘𝑖,𝑘𝑖+1→∞

(𝑑𝑗 + 𝑑𝑗−1)𝐠̇𝑗 ×2𝐷 𝐪̈𝑗 = 𝐠̇𝑗−1 ×2𝐷 𝐠̇𝑗 ≠ 𝟎⇒ 𝐠̇𝑗 ×2𝐷 𝐪̈𝑗 =Θ(𝑘𝑗 , 𝑘𝑗−1), 𝑗 = {𝑖, 𝑖+ 1}.

Then, we can write:

|𝜆𝑗 | =Θ(𝑘𝑗 , 𝑘𝑗−1) +𝑂(1) = Θ(𝑘𝑗 , 𝑘𝑗−1), 𝑗 = {𝑖, 𝑖+ 1}. (51)

Now, since 21−𝑘𝑖 =𝑂(2−𝑘𝑖 ) = 𝑜(𝑘−1
𝑖
),

|𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|ℎ𝑖21−𝑘𝑖 (𝑘𝑖 − 1)−1 =𝑂(𝑘2
𝑖−1, 𝑘

2
𝑖
, 𝑘2

𝑖+1)𝑂(𝑘−1
𝑖
)𝑜(𝑘−1

𝑖
) = 𝑜(1). (52)

Therefore, for large enough 𝑘𝑖−1, 𝑘𝑖 and 𝑘𝑖+1, the asymptotic estimates (51) and (52) secure that the inequality assumption of 
Lemma 4 will always be satisfied since the left hand side dominates the right hand side asymptotically and thus the non-local-

convexity criterion in Definition 1 will hold true.

We now analogously proceed for the minimum-variation criterion, investigating the asymptotic validity of the sufficient condition 
given in Lemma 5:

min(|𝜆𝑖|, |𝜆𝑖+1|) > |𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|2𝑘𝑖−4ℎ𝑖(𝑘𝑖 − 2)−1𝜒𝑖. (53)

From (48) we have:

𝜒𝑖 =
𝑘𝑖 − 2
𝑘𝑖 − 1

( 𝑘𝑖 − 3
4𝑘𝑖 − 10

)𝑘𝑖−3 2√
2(4𝑘𝑖 − 10)

=
( 𝑘𝑖 − 3
2𝑘𝑖 − 5

)𝑘𝑖−3
𝑂(2−𝑘𝑖𝑘−1∕2

𝑖
).

Then, since

lim
𝑘𝑖→∞

( 𝑘𝑖 − 3
2𝑘𝑖 − 5

)𝑘𝑖−3
= lim

𝑘𝑖→∞
exp

(
(𝑘𝑖 − 3) ln

(1 − 3∕𝑘𝑖
2 − 5∕𝑘𝑖

))
= 0⇒

( 𝑘𝑖 − 3
2𝑘𝑖 − 5

)𝑘𝑖−3
= 𝑜(1),

we can write:

|𝐪̈𝑖+1 ×2𝐷 𝐪̈𝑖|2𝑘𝑖−4ℎ𝑖(𝑘𝑖 − 2)−1𝜒𝑖 =𝑂(𝑘2
𝑖−1, 𝑘

2
𝑖
, 𝑘2

𝑖+1)𝑜(2
𝑘𝑖𝑘−1

𝑖
2−𝑘𝑖𝑘−1∕2

𝑖
) = 𝑜(𝑘1∕2

𝑖
). (54)

Then, with an identical argument to the convexity criterion, we can secure that (53) is satisfied for large enough degrees and 
equivalently that the minimum-variation criterion holds true.

Continuing to the local-co-geodesity criterion and guided by Lemma 6, we need only show that if for some 𝑖 = {1, ..., 𝑛 −1}, c𝑖 = 0
and 𝛾̇𝑖−1(𝑡𝑖) ⋅ 𝛾̇𝑖(𝑡𝑖) > 0, then

lim
𝑘𝑖−1 ,𝑘𝑖→∞

‖𝐜̇(𝑡𝑖) × 𝛾̇𝑙(𝑡𝑖)‖ = 0, (55)

where the degrees increase in accordance to (17) and 𝑙 = 𝑖 −1, 𝑖. Introducing the preimages 𝐪 = (𝑢, 𝑣)𝑇 and 𝐠𝑙 = (𝑔𝑢
𝑙
, 𝑔𝑣

𝑙
)𝑇 of 𝐜 and 𝛾𝑙 , 

we can expand ‖𝐜̇(𝑡𝑖) × 𝛾̇𝑙(𝑡𝑖)‖ as,

‖𝐜̇(𝑡𝑖) × 𝛾̇𝑙(𝑡𝑖)‖ = ‖‖‖(𝑢̇(𝑡𝑖)𝐒𝑢(𝐏𝑖) + 𝑣̇(𝑡𝑖)𝐒𝑣(𝐏𝑖)
)
×
(
𝑔̇𝑢
𝑙
𝐒𝑢(𝐏𝑖) + 𝑔̇𝑣

𝑙
𝐒𝑣(𝐏𝑖)

)‖‖‖ = |𝐪̇(𝑡𝑖) ×2𝐷 𝐠̇𝑙| ‖𝐒𝑢(𝐏𝑖) × 𝐒𝑣(𝐏𝑖)‖ 𝑙 = 𝑖− 1, 𝑖. (56)

Now, since 𝐪̇(𝑡) is continuous at 𝑡 = 𝑡𝑖, we can substitute either (15a) or (15b) into (56). Choosing the latter, which is expressed on 
developable surfaces via (37a) for 𝜏 = 0, we write

′ ′
18

𝐪̇(𝑡𝑖) ×2𝐷 𝐠̇𝑙(𝑡𝑖) = 𝐠̇𝑖 ×2𝐷 𝐠̇𝑙 − ℎ𝑖𝐹𝑖
(1)𝐪̈𝑖 ×2𝐷 𝐠̇𝑙 + ℎ𝑖𝐹𝑖

(0)𝐪̈𝑖+1 ×2𝐷 𝐠̇𝑙 𝑙 = 𝑖− 1, 𝑖 (57)
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Next, consider that by definition c𝑖 = 0 implies (𝛾̇𝑖−1(𝑡𝑖), 𝛾̇𝑖(𝑡𝑖), 𝐧(𝑡𝑖)) = 0. The first two vectors in this triple product both lie on the 
tangent plane of 𝐒(𝑢, 𝑣) at (𝑢, 𝑣) = 𝐏𝑖 and thus they are linearly independent to the third one. It must then be true that ‖𝛾̇𝑖−1(𝑡𝑖) ×
𝛾̇𝑖(𝑡𝑖)‖ = 0, which gives:‖‖‖(𝑔̇𝑢𝑖−1𝐒𝑢(𝐏𝑖) + 𝑔̇𝑣

𝑖−1𝐒𝑢(𝐏𝑖)
)
×
(
𝑔̇𝑢
𝑖
𝐒𝑢(𝐏𝑖) + 𝑔̇𝑣

𝑖
𝐒𝑢(𝐏𝑖)

)‖‖‖ = |𝐠̇𝑖−1 ×2𝐷 𝐠̇𝑖| ‖𝐒𝑢(𝐏𝑖) × 𝐒𝑣(𝐏𝑖)‖ = 0. (58)

Furthermore, if 𝐒 is regular in the neighbourhood of 𝐒(𝐏𝑖) then 𝐒𝑢 and 𝐒𝑣 are linearly independent which, based on (58), implies 
that

𝐠̇𝑖−1 ×2𝐷 𝐠̇𝑖 = 0. (59)

Substituting (59) into (57) and expanding the second and third terms in the right hand side of the latter, we get

𝐪̇(𝑡𝑖) ×2𝐷 𝐠̇𝑙(𝑡𝑖) = −
ℎ𝑖

𝑘𝑖
𝐪̈𝑖 ×2𝐷 𝐠̇𝑙 −

ℎ𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝐪̈𝑖+1 ×2𝐷 𝐠̇𝑙. (60)

Recalling (18) it is easy to see that 𝐪̈𝑖+1 = 𝑂(𝑘𝑖, 𝑘𝑖+1) and therefore the second term in the right hand side of (60) vanishes as 
𝑘𝑖−1, 𝑘𝑖 →∞. For the first term, appealing again to (18), we have:

𝐪̇(𝑡𝑖) ×2𝐷 𝐠̇𝑙(𝑡𝑖) = −
ℎ𝑖

𝑘𝑖
𝐪̈𝑖 ×2𝐷 𝐠̇𝑙 +𝑂(𝑘−1

𝑖
) = −

ℎ𝑖

𝑘𝑖
(𝑑𝑖−1 + 𝑑𝑖)−1

(
𝐠̇𝑖 − 𝐠̇𝑖−1 + 𝑜(1)

)
×2𝐷 𝐠̇𝑙 +𝑂(𝑘−1

𝑖
) = 𝑜(𝑘−1

𝑖
) +𝑂(𝑘−1

𝑖
), (61)

where the last equality holds due to (59). Finally, substituting (56) and (61) into (55), we get

lim
𝑘𝑖−1 ,𝑘𝑖→∞

‖𝐜̇(𝑡𝑖) × 𝛾̇𝑙(𝑡𝑖)‖ = lim
𝑘𝑖−1 ,𝑘𝑖→∞

𝑂(𝑘−1
𝑖
)‖𝐒𝑢(𝐏𝑖) × 𝐒𝑣(𝐏𝑖)‖ = 0, (62)

Summarising, (52), (54) and (62) yield:

Theorem 7. Let be given a data set  with parametrization  and boundary conditions  on a developable surface parametrized so that 
(33) holds true. Then a set of finite degrees ∗ = {𝑘∗0 , ..., 𝑘

∗
𝑛
} exists such that 𝐜(𝑡), defined as in (11), is a 𝐶2 shape-preserving interpolant in 

the sense of Definition 1.

Guided by Lemmata 4, 5, 6 and Theorem 7, we propose Algorithm 1 for shape-preserving interpolation on developables.

Algorithm 1 aims to identify a set  = {𝑘𝑖 ≥ 3} of interval degrees, such that 𝐜() is a shape preserving interpolant, in the sense 
of Definition 1, with the degrees 𝑘𝑖 remaining reasonably low. Steps 1 through 3 identify which intervals are relevant to Definition 1

and initialize (0) with the minimum possible values for 𝑘𝑖. Then, input to each iteration is a set of degrees (𝑗) which define 𝐜((𝑗)). 
Steps 5 through 7 identify in which intervals 𝐜((𝑗)) does not satisfy the relevant sufficient conditions developed in §3.2. If these 
intervals are non-empty, in Step 9, the degrees are increased in accordance to (17) by the minimum possible amount. Notice that 
for consecutive intervals belonging to the same geodesic arc, their degrees are kept the same in order to achieve visually pleasing 
results. If more than two intervals are collinear, Algorithm 1 above should be adjusted to ensure all relevant 𝑘𝑖 remain identical.

5. Numerical results

Algorithm 1 has been implemented in C++1 using the Eigen linear algebra library and the graphic utilities of the Gnuplot software 
package. The so far numerical experience is in alignment with Kaklis and Sapidis (1995): if the data set does not contain consecutive 
points along the same geodesic arc, then the algorithm converges after a few iterations to small enough interval degrees. In the case 
where there are consecutive points along the same geodesic arc, a careful choice of 𝛿 in Definition 1 is fundamental to achieving 
visual pleasantness while keeping the degrees reasonably small. Finally, no data set was identified such that the spline family (11)

fails the minimum-variation criterion for uniform degree 3, hinting at the resilience of the spline family to oscillatory behaviour in 
each interval [𝑡𝑖, 𝑡𝑖+1] when c𝑖c𝑖+1 < 0.

In the rest of the section we shall present and discuss the numerical results obtained when applying Algorithm 1 to two data sets 
on a cone and two data sets on a cylinder with isometric parametrizations given below:

𝐒𝑐𝑜𝑛𝑒(𝑢, 𝑣) =
1
2

√
𝑢2 + 𝑣2

(
cos

(
2arctan

(
𝑣

𝑢

))
, sin

(
2arctan

(
𝑣

𝑢

))
,
√
3
)

(66a)

𝐒𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟(𝑢, 𝑣) =
( cos(𝑢)

4
,
sin(𝑢)
4

, 𝑣

)
(66b)

respectively. In order to secure that the selected geodesics are the one’s of minimum length for Examples 4 through 7, the on-surface 
data sets have been selected such that the shortest linear segment (geodesic-arc preimage) connecting consecutive pre-images of the 
data is contained continuously in the surface’s domain. Further, in these four data sets, two types of boundary conditions (bcs) have 
been applied: periodic and type-II’-surf bcs, where the latter can be thought as the analogue of the so-called natural (type-II’) bcs. 
19

1 https://github .com /Stamatis8 /spin -on -developables.

https://github.com/Stamatis8/spin-on-developables
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Algorithm 1
1: Given that 0 = {0, ..., 𝑛}, construct the following three sets

1 = {𝑖 ∈ 0 ∶ c𝑖c𝑖+𝑚 > 0,𝑚 = 1 or − 1}

2 = {𝑖 ∈ 0 ∶ c𝑖c𝑖+𝑚 < 0,𝑚 = 1 or − 1}

3 = {𝑖 ∈ 0 ∶ c𝑖 = 0 and 𝐠̇𝑖−1(𝑡𝑖) ⋅ 𝐠̇𝑖(𝑡𝑖) > 0}

2: Fix 𝛿 so that 0 < 𝛿 ≪ 1
3: Set 𝑗 = 0 and initialize (𝑗) = {𝑘(𝑗)

𝑖
, 𝑖 = {0, ..., 𝑛 − 1}} to:

𝑘
(0)
𝑖

= 3, 𝑖 = {0, ..., 𝑛− 1}

4: loop

5: Compute 𝐪̈𝑖((𝑗)) by solving the linear system (16a) with appropriate boundary conditions 
6: Compute the following quantities:

𝜆𝑖((𝑗)) by equation (39) for 𝑖 ∈ 1 ∪ 2

𝜇𝑖,𝑖+1 = 𝐪̈𝑖+1((𝑗)) ×2𝐷 𝐪̈𝑖((𝑗)) for 𝑖, 𝑖+ 1 ∈ 1 ∪ 2

𝜏𝑚,𝑖 = ‖𝐜̇(𝑡𝑖;(𝑗)) × 𝛾̇𝑚(𝑡𝑖)‖,𝑚 = 𝑖− 1, 𝑖 for 𝑖 ∈ 3

7: Construct the following four index sets:

′
1(

(𝑗)) = {𝑖 ∈ 1 ∶ (𝑖+ 1) ∈ 1, 𝜇𝑖,𝑖+1((𝑗))c𝑖 < 0 and

𝜇𝑖,𝑖+1((𝑗)) ≥ ℎ−1
𝑖
2𝑘𝑖−1(𝑘𝑖 − 1)min(|𝜆𝑖((𝑗))|, |𝜆𝑖+1((𝑗))|)}

′
2(

(𝑗)) = {𝑖 ∈ 2 ∶ (𝑖+ 1) ∈ 2, 𝜇𝑖,𝑖+1((𝑗))c𝑖 > 0 and

𝜇𝑖,𝑖+1((𝑗)) ≥ ℎ−1
𝑖
24−𝑘𝑖 (𝑘𝑖 − 2)𝜒−1

𝑖
min(|𝜆𝑖((𝑗))|, |𝜆𝑖+1((𝑗))|)}

′
3(

(𝑗)) = {𝑖 ∈ 3 ∶ 𝜏𝑚,𝑖 > 𝛿,𝑚 = {𝑖− 1, 𝑖}}

4((𝑗)) = {𝑖 ∈ 1 ∪ 2 ∶ 𝜆𝑖((𝑗))c𝑖 < 0}

where 𝜒𝑖 is computed via (48).

8: if ′
1(

(𝑗)) ∪ ′
2(

(𝑗)) ∪ ′
3(

(𝑗)) ∪ 4((𝑗)) = ∅ then stop

9: else

Set (𝑗+1) =(𝑗)

Set 𝑘
(𝑗+1)
𝑚 = 𝑘

(𝑗)
𝑚 + 1, 𝑚 = {𝑖 − 1, 𝑖, 𝑖 + 1}, 𝑖 ∈ ′

1 ∪ ′
2

Set 𝑘
(𝑗+1)
𝑚 =max(𝑘(𝑗)

𝑖−1, 𝑘
(𝑗)
𝑖
) + 1, 𝑚 = {𝑖 − 1, 𝑖}, 𝑖 ∈ ′

3
Set 𝑘

(𝑗+1)
𝑚 = 𝑘

(𝑗)
𝑚 + 1, 𝑚 = {𝑖 − 1, 𝑖}, 𝑖 ∈ 4

10: end if

11: end loop

Specifically, periodic bcs are applied to data sets  = {𝐈𝑖, 𝑖 = 0, ..., 𝑛} where 𝐈0 = 𝐈𝑛 so that

𝐜̇(𝑡0) = 𝐜̇(𝑡𝑛), 𝐜̈(𝑡0) = 𝐜̈(𝑡𝑛). (67)

It can be readily verified that augmenting system (16a) by 𝐪̈0 = 𝐪̈𝑛 and setting 𝐪̈𝑛+1 ∶= 𝐪̈1 ensures the validity of (67). Next, in the 
planar case, natural bcs are expressed as zero second derivatives,

𝐜̈(𝑡0) = 𝐜̈(𝑡𝑛) = 𝟎

The straightforward generalization to on-surface curves is that the projections of 𝐜̈(𝑡0) and 𝐜̈(𝑡𝑛) on the surface’s tangent plane are 
zero. Equivalently,

𝐧(𝑡0) × 𝐜̈(𝑡0) = 𝐧(𝑡𝑛) × 𝐜̈(𝑡𝑛) = 𝟎 (68)

which is set as the defining condition of type-II’-surf bcs, when 𝐜 lies on a surface 𝐒 with normal vector 𝐧. Further, it should be noted 
that type-II’-surf bcs imply vanishing geodesic-curvature in analogy to natural bcs implying vanishing planar curvature. In the case 
of developable surfaces parametrized in accordance with (33), equation (68) is identically translated to the preimage 𝐪 of 𝐜. More 
specifically, substituting (23) into (68) and looking at Lemma 2 it follows immediately that,

𝐧 ×
(
𝐒𝑢𝑢̈(𝑡𝑖) + 𝐒𝑣𝑣̈(𝑡𝑖)

)
= 𝟎 ⟺ 𝐒𝑢𝑢̈(𝑡𝑖) + 𝐒𝑣𝑣̈(𝑡𝑖) = 𝟎 ⟺ 𝐪̈𝑖 = 𝟎, 𝑖 = 0, 𝑛 (69)
20

In the following examples on developable surfaces, type-II’-surf bcs have been secured by augmenting system (16a) with (69).
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Table 4

Example 4.

supporting surface cone

number of interpolation points 𝐈𝑖 5

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
0.218
0.421

]
,

[
0.388
0.541

]
,

[
0.558
0.511

]
,

[
0.660
0.466

]
,

[
0.711
0.285

]
generalized convexity indicators c𝑖 N/A, +1, +1, +1, N/A

spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...4} = {0, 0.25, 0.5, 0.75, 1}
boundary conditions type-II’-surf

final degrees  (𝛿) = {3, 5, 5, 3}

Each example is presented as a pair of data and figures. The data consists of the following items:

1. Type of the supporting surface: cone or cylinder;

2. Number of interpolation (data) points: 𝑛;

3. Preimage of the data set on ℝ2 ∋ 𝐏𝑖 = (𝑢𝑖, 𝑣𝑖)𝑇 = 𝐒−1(𝐈𝑖), 𝑖 = {0, ..., 𝑛};

4. Spline’s knot sequence:  = {𝑡𝑖}, 𝑖 = 0, ..., 𝑛;

5. Boundary conditions:  = {type-II’-surf , periodic};

6. Interval degrees: (𝛿) = {𝑘𝑖}, 𝑖 = 0, ..., 𝑛 − 1, provided at the final step of Algorithm 1.

In the figures, both the on-surface curves as well as their preimages in the parametric domain are presented. More specifically, on 
each figure, depicting the supporting surface, the reader can identify:

1. The data set  = {𝐈𝑖}, 𝑖 = 0, ..., 𝑛, as tinted glass spheres. Green/red/clear tint indicates positive/negative/zero generalized 
convexity indicators c𝑖 (5), respectively;

2. The spline 𝐜(𝑡), as a thin blue-metallic cylindrical tube;

3. The shortest-path geodesic arcs 𝛾𝑖(𝑡), 𝑖 = 0, ..., 𝑛 − 1, as thin bronze cylindrical tubes;

4. The ruled surface, formed by the interpolant and its tangential curvature vector distribution (see Struik, 1961, Chapter 4), 
represents the geodesic curvature of 𝐜(𝑡) and is coloured green/red according to the sign of 𝜅𝑔(𝑡; 𝐜).

Each preimage figure provides the preimages of the data set 𝐏𝑖, the shortest-path geodesic arcs 𝐠𝑖 and all relevant on-surface 
splines 𝐪.

In what follows, four test cases on developable surfaces are documented in Examples 4 through 7. Specifically, Examples 4 and 5
deal with open data-sets on the conical surface (66a), while Examples 6 and 7 deal with open and periodic data-sets respectively on 
the cylindrical surface (66b). Further, in Examples 4 and 6, the relevant splines initially fail the non-local convexity criterion, while 
in Examples 5 and 7 they fail the local-co-geodesity criterion.

Example 4. Fig. 11 shows two on-surface members of the curve family (11), which interpolate the data specified in Table 4. Fig. 12

is a graph of the splines’ geodesic curvature, while Fig. 13 depicts their preimages. Notice that in Figs. 11a and 12, the geodesic 
curvature 𝜅𝑔 changes sign in a neighbourhood of the third interpolation point at 𝑡 ∈ [0.5 −𝜖, 0.5 +𝜖], violating the non-local convexity-

preserving criterion of Definition 1. Applying Algorithm 1, the interval degrees are locally increased to 5, preserving the convexity 
of the data-set as is evident in Figs. 11b and 12.

Example 5. Fig. 14 shows three on-surface members of the curve family (11), which interpolate the data specified in Table 5. Fig. 15

is a graph of the splines’ geodesic curvature, while Fig. 16 depicts their preimages. This example is meant to demonstrate the effect 
of the user-defined 𝛿 parameter on the degree-set resulting from the application of Algorithm 1. The 3𝑟𝑑(𝑡 = 0.25), 4𝑡ℎ(𝑡 = 0.5) and 
5𝑡ℎ(𝑡 = 0.75) data points lie on the same geodesic arc. In view of Fig. 14a, where the spline of uniform degree 3 is rendered, it is 
evident that, given the choices made: 𝛿1 = 0.1 and 𝛿2 = 0.01, the local-co-geodesity criterion is violated for ‖𝐜̇(𝑡2) × 𝛾̇1(𝑡2)‖ = 0.32 > 𝛿1. 
Next, setting 𝛿1 = 0.1 and 𝛿2 = 0.01 and executing Algorithm 1 results in Figs. 14b and 14c, respectively. Notice that in the former 
case the degrees need only increase from 3 to 6 in order to achieve ‖𝐜̇(𝑡2) × 𝛾̇1(𝑡2)‖ = 0.082 < 𝛿1, while in the latter case they rise 
considerably to 19 for securing ‖𝐜̇(𝑡2) × 𝛾̇1(𝑡2)‖ = 0.0096 < 𝛿2.

Example 6. Fig. 17 shows two on-surface members of the curve family (11), which interpolate the data specified in Table 6. Fig. 18 is 
a graph of the splines’ geodesic curvature, while Fig. 19 depicts their preimages. Notice that in Fig. 18 the geodesic curvature changes 
sign in the 3𝑟𝑑 parametric interval (𝑡 ∈ [0.4, 0.6]) for uniform degree equal to 3, whereas this is not the case when the neighbouring 
21

degrees are increased to 4.
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Fig. 11. On surface renders of the example in Table 4. Fig. 11a corresponds to the respective spline of uniform degree 3 while Fig. 11b to that spline with the degrees 
listed in Table 4.
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Fig. 12. Logarithmic plot of geodesic curvature of splines depicted in Fig. 11. Specifically, the solid and semi-dashed lines correspond to the splines in Figs. 11b 
and 11a respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 while their red-coloured, downward-facing counterparts to 
negative c𝑖 .

Fig. 13. Preimage of Fig. 11. Specifically, 𝐪0(𝑡) and 𝐪1(𝑡) are the preimage of the blue curves in Figs. 11a and 11b respectively.

Table 5

Example 5.

supporting surface cone

number of interpolation points 𝐈𝑖 5

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
0.1
0.9

]
,

[
0.1
0.5

]
,

[
0.3
0.5

]
,

[
0.5
0.5

]
,

[
0.5
0.1

]
generalized convexity indicators c𝑖 N/A, −1, 0, +1, N/A

spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...4} = {0, 0.25, 0.5, 0.75, 1}
boundary conditions type-II’-surf

final degrees 
(𝛿1 = 0.1) = {3, 6, 6, 3}

(𝛿2 = 0.01) = {3, 19, 19, 3}

Example 7. Fig. 20 shows two on-surface members of the curve family (11), which interpolate the data specified in Table 7. Fig. 21

is a graph of the splines’ geodesic curvature, while Fig. 22 depicts their preimages. The 2𝑛𝑑 through 4𝑡ℎ interpolation points lie on 
the same geodesic arc, as do the 6𝑡ℎ through 8𝑡ℎ. Notice that for this data-set, the degrees need to be locally increased to 19 such that 
23

the local co-geodesity criterion is satisfied at 𝛿 = 0.1, which resulted in degrees of only 6 for Example 5.
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Fig. 14. On surface renders of the example in Table 5. Fig. 14a corresponds to the respective spline of uniform degree 3 while Figs. 14b and 14c to the splines with 
degrees (0.1), (0.01) respectively.

Table 6

Example 6.

supporting surface cylinder

number of interpolation points 𝐈𝑖 6

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
1.25
1.0

]
,

[
1.75
0.171

]
,

[
2.25
0.05

]
,

[
2.75
0.05

]
,

[
3.25
0.171

]
,

[
3.75
1.0

]
generalized convexity indicators c𝑖 N/A, +1, +1, +1, +1, N/A

spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...5} = {0, 0.2, 0.4, 0.6, 0.8, 1}
boundary conditions type-II’-surf

final degrees  (𝛿) = {3, 4, 4, 4, 3}

Table 7

Example 7.

supporting surface cylinder

number of interpolation points 𝐈𝑖 9

preimages (𝑢𝑖, 𝑣𝑖)𝑇 of 𝐈𝑖

[
0.0
0.0

]
,

[
1.176
0.25

]
,

[
0.0
0.5

]
,

[
−1.176
0.75

]
,

[
0.0
1.0

]
,

[
1.176
0.75

]
,

[
0.0
0.5

]
,

[
−1.176
0.25

]
,

[
0.0
0.0

]
generalized convexity indicators c𝑖 −1, −1, 0, +1, +1, +1, 0, −1, −1
spline’s knot sequence uniform: {𝑡𝑖, 𝑖 = 0...8} = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}
boundary conditions periodic

final degrees  (0.1) = {3, 19, 19, 3, 3, 19, 19, 3}
24
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Fig. 14. (continued)

5.1. Geodesic-length parametrization

In this section, the effect of the curve parametrization (12) on the output of Algorithm 1 is investigated via reproducing Ex-

amples 4 and 5, parametrized according to the geodesic arc-lengths connecting consecutive data points. Specifically if 𝐿𝑖 is the 
arc-length of 𝛾𝑖(𝑡), define ℎ𝑖 =𝐿𝑖∕ 

∑𝑛−1
𝑖=0 𝐿𝑖. Due to the isometric parametrization of the developable surfaces in Examples 4 through 

7, this geodesic-based parametrization is equivalent to the standard chord-length parametrization, based on the data point preimages 
𝐒−1(𝐈𝑖).

In the special case where 𝐒(𝑢, 𝑣) is a plane, and thus geodesic arcs degenerate to linear segments, the output of the analogous 
algorithm was improved Kaklis and Sapidis (1995), identifying degree sequences with smaller degrees compared to the uniform case. 
Reproducing Examples 4 and 5, parametrized according to geodesic-arc length, it is evident that this trend persists in the current 
context. Specifically,  reduces from {3, 5, 5, 3} to {3, 4, 4, 3} in Example 4 (see Fig. 23) and from (𝛿1 = 0.1) = {3, 6, 6, 3}, (𝛿2 =
0.01) = {3, 19, 19, 3} to {3, 5, 5, 3}, {3, 15, 15, 3} respectively for Example 5 (see Fig. 24). Notice that due to the smaller degrees 
necessary for shape preserving interpolation, the geodesic curvature of curves identified through Algorithm 1 is also smaller.

Finally, to further investigate the effect of parametrization on (𝛿) in Example 5, Algorithm 1 was run for 3 ⋅ 104 𝛿 values in 
[0.00005, 0.35], exploiting the fact that for this example (𝛿) will be of the form {3, 𝑓 (𝛿), 𝑓 (𝛿), 3}. Figs. 25 and 26 are plots of 𝑓 (𝛿), 
for 𝛿 ∈ [0.022, 0.35] and 𝛿 ∈ [0.00005, 0.35] respectively. Notice that the degrees generated with the geodesic-based parametrization 
are always less or equal to the degrees of the uniform case. Further, as 𝛿 decreases, they are strictly less, with the difference increasing 
as is evident from Fig. 26.

6. Conclusions and future work

In this work two criteria for shape-preserving interpolation on smooth surfaces are introduced in §2, both based on the sign 
of geodesic curvature. The first criterion is of non-local nature (Definition 1), while the second criterion (Definition 2) is a local 
(weaker) version of the first one. These criteria are tested against a family of on-surface 𝐶2 splines obtained by composing the 
parametric representation of the supporting surface with the so-called variable-degree (≥ 3) splines amended with the preimages of 
25

the shortest-path geodesic arcs connecting each pair of consecutive interpolation points; see in §3.
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Fig. 14. (continued)

Fig. 15. Logarithmic plot of geodesic curvature of splines depicted in Fig. 14. Specifically, the solid, semi-dashed and dotted lines correspond to the splines in Figs. 14a, 
14b and 14c respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 while their red-coloured, downward-facing counterparts 
to negative c𝑖 .

After securing that the interpolation problem is well posed (Theorem 1), we proceed to investigate the asymptotic behaviour of 
the proposed on-surface splines as degrees increase. Firstly, it is shown that the local-convexity criterion of Definition 2 is satisfied 
(Theorem 2). Next, moving to non-local asymptotics, we prove that, as degrees increase, the interpolant tends uniformly to the 
spline curve consisting of the shortest-path geodesic arcs (Theorem 3). Finally, focusing on isometrically parametrized developable 
26

surfaces, sufficient conditions are derived (Lemmata 4, 5 and 6), which secure that all criteria of Definition 1 for shape-preserving 
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Fig. 16. Preimage of Fig. 14. Specifically, 𝐪0(𝑡) and 𝐪1(𝑡) are the preimage of the blue curves in Figs. 14a and 14b respectively.

interpolation on this class of surfaces are satisfied. In §4 it is proved that, for adequately large degrees, the sufficient conditions in 
the aforementioned lemmata are satisfied (Theorem 7). This yields, in its turn, Algorithm 1 that, after a finite number of iterations, 
provides a 𝐶2 shape-preserving interpolant for a given data set on a developable surface (§4). Our so far numerical experience 
indicates that, except from the case of co-geodesic data, the algorithm converges quickly, keeping low the interval degrees (§5).

Future extensions of this work potentially include:

• In analogy with Lemmata 4, 5 and 6, derivation of sufficient conditions for shape-preserving interpolation over classes of non-

developable surfaces;

• Amend the spline family introduced in 3 towards improving their capacity to handle the influence of surface properties on the 
sign of geodesic curvature;

• Embed Algorithm 1 in optimisation setting for computing interval degrees against curve fairness criteria;

• Impact cases that investigate the usefulness of the developed method in industrial applications, e.g., CAD/CAM;

• As rotations in 𝑆𝑂(3) can be described via quaternions on the unit sphere 𝑆3 (see, e.g., Shoemake, 1985), our approach for SP 
interpolation on 𝑆3 in the sense of Definition 2, could be useful for SP interpolation in 𝑆𝑂(3);

• Embed Algorithm 1 in optimisation setting, e.g., minmax{𝑘𝑖, ∀ 𝑖 ∶ 𝑐𝑖 ≠ 0} subject to the constraint: all four index sets 
in Algorithm 1 are empty.

• Expand the work for handling shape-preserving approximation on surfaces.
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Fig. 17. On surface renders of the example in Table 6. Fig. 17a corresponds to the respective spline of uniform degree 3 while Fig. 17b to that spline with the degrees 
listed in Table 6.

Fig. 18. Logarithmic plot of geodesic curvature of splines depicted in Fig. 17. Specifically, the solid and semi-dashed lines correspond to the splines in Figs. 17b 
and 17a respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 while their red-coloured, downward-facing counterparts to 
28

negative c𝑖 .
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Fig. 19. Preimage of Fig. 17. Specifically, 𝐪0(𝑡) and 𝐪1(𝑡) are the preimage of the blue curves in Figs. 17a and 17b respectively.

Fig. 20. On surface renders of the example in Table 7. Fig. 20a corresponds to the respective spline of uniform degree 3 while Fig. 20b to that spline with the degrees 
listed in Table 7.

Fig. 21. Logarithmic plot of geodesic curvature of splines depicted in Fig. 20. Specifically, the solid and semi-dashed lines correspond to the splines in Figs. 20b 
and 20a respectively. The upwards facing green triangles correspond to positive convexity indicators c𝑖 while their red-coloured, downward-facing counterparts to 
29

negative c𝑖 .
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Fig. 22. Preimage of Fig. 20. Specifically, 𝐪0(𝑡) and 𝐪1(𝑡) are the preimage of the blue curves in Figs. 20a and 20b respectively.

Fig. 23. Reproduction of Fig. 12, this time with the curve 𝐜(𝑡) parametrized relative to geodesic arc-lengths as opposed to uniformly.
30

Fig. 24. Reproduction of Fig. 15, this time with the curve 𝐜(𝑡) parametrized relative to geodesic arc-lengths as opposed to uniformly.
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Fig. 25. The resultant degrees (𝛿) of Example 5 from Algorithm 1 will be of the form {3, 𝑓 (𝛿), 𝑓 (𝛿), 3}. In this figure, 𝑓 (𝛿) is plotted for 𝛿 ∈ [0.022, 0.35] for uniform 
and geodesic-based parametrizations of 𝐜(𝑡).

Fig. 26. The resultant degrees (𝛿) of Example 5 from Algorithm 1 will be of the form {3, 𝑓 (𝛿), 𝑓 (𝛿), 3}. In this figure, 𝑓 (𝛿) is plotted for 𝛿 ∈ [0.00005, 0.35] for 
uniform and geodesic-based parametrizations of 𝐜(𝑡).
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