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1  |  INTRODUC TION

It has long been recognized that diversity has multiple aspects such 
as “richness” or “variety” reflecting the number of species present, 
dominance or rarity relations among the constituent species (“even-
ness” or “balance”), and “similarity” (or “disparity”) among the species 
(measures of distance between species based on taxonomic, phyloge-
netic, or functional traits relationships) (Daly et al., 2018; Leinster & 
Cobbold, 2012; Purvis & Hector, 2000; Stirling, 2007). Stirling (2007) 
even claims that “there seems no other obvious candidate for a fourth 
important general property of diversity beyond these three.”

In ecology, claimed biogeographical patterns of diversity often 
depend on the particular aspect of diversity being investigated. 
For example, Stuart- Smith et al. (2013) show that biodiversity hot 
spots can shift from the tropics to higher latitudes if in addition to 

considering abundances, one takes account of functional traits sim-
ilarity of species.

Several promising diversity indexes have been defined in the 
literature (Chao et al., 2014; Leinster & Cobbold, 2012; Rao, 1982; 
Stirling, 2007). However, a priori it is not clear whether from any 
given index one can extract information about richness, evenness, 
and species similarity. There is no argument why such a decompo-
sition should exist and whether it has to be unique. In cases of non- 
uniqueness, one has to define what is the optimal way to perform 
such a decomposition. The situation here is similar to the decompo-
sition of γ diversity into α and β diversity indices either additively or 
multiplicatively (Anderson et al., 2011; Jost, 2007).

Being able to decompose a diversity index into biologically sig-
nificant components would help us understand which aspect of 
diversity contributes to the changes in the relationship between 
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diversity and environmental variables (e.g., latitude or productivity). 
Such a decomposition is also helpful in understanding how differ-
ent aspects of biodiversity influence the functioning of ecosystems 
(Hillebrand et al., 2018; Maureaud et al., 2019).

In an important study, van Dam (2019) proposed a straightforward 
decomposition of the Leinster–Cobbold (2012) diversity index that 
contains information about the richness, evenness, and similarity as-
pects of diversity. However, as will be detailed below, van Dam's ap-
proach fails to consider the fact that a homogenous community (i.e., 
in which all constituent species have equal relative abundances) may 
not maximize diversity if similarity among species is taken into ac-
count. Leinster and Meckes (2016) showed that in general, there exists 
a unique abundance vector p* that maximizes diversity that can dif-
fer from the equal abundance vector which we denote by ph. In other 
words, the maximal evenness of some communities is not achieved 
when all species have equal relative abundances. The criticism of van 
Dam's (2019) assumption that the component of evenness is maximal 
for an equal abundance vector can also be applied to the work of Daly 
et al. (2018) who stated that “the diversity measure is maximal for a 
fixed number of species S when all species' abundances are equal.”

In this study, we develop a decomposition approach that ad-
dresses the above problem. We focus on the Leinster–Cobbold (LC) 
index (Leinster & Cobbold, 2012) because it subsumes many other 
diversity indices that are widely used in ecology, such as the Hill num-
bers (Hill, 1973) and Rao's index (Rao, 1982; Ricotta & Moretti, 2011; 
Stirling, 2007), and has many other merits to be discussed later. For 
recent applications of this index, please see Mugabushaka et al. (2016) 
and Veresoglou et al. (2014). We take advantage of intrinsic properties 
of the LC index (e.g., the existence of the vector p*) to achieve an un-
biased (in a sense to be explained below) decomposition of the index.

The structure of this article is as follows. In Section 2, we discuss 
the notions of richness, evenness, and similarity using the material in 
Chao et al. (2014), Chiu et al. (2014), Daly et al. (2018), and Gregorius 
and Gillet (2022). Then, in Section 3, we comment biodiversity indices 
in general and present the required information about the LC index fol-
lowing Leinster and Cobbold (2012) and Leinster and Meckes (2016). 
In Section 4, we present first van Dam's, and then our decomposition 
and its consequences. Finally, in Section 5, we discuss the merits and 
limitations of our approach and suggest future work.

We also note that even if the quotation from Stirling (2007) re-
flects a deep property of biodiversity indices, it is not clear that a de-
composition of a biodiversity index cannot contain additional terms. 
In fact, one interpretation of the decomposition we suggest contains 
an additional term, related to Hill's numbers and to the maximal di-
versity of a biocommunity (defined below). That is, the additional 
term does not carry any new information but is needed “to balance 
the books.” The quotation from Stirling also does not prescribe how 
richness, evenness, and similarity should be defined.

2  |  DIVERSIT Y COMPONENTS

2.1  |  Notation

For clarity, we first establish notation. Everywhere below we assume 
that the number of species (i.e., richness) in a community is fixed at 
n > 1.

We use p =
(
p1, … , pn

)
 to denote the unit vector of relative 

abundances, that is,

We use the vector

where the subscript h stands for “homogeneous” to represent the 
equal relative abundance of species in a community. Below 1 will stand 
for an n- vector with all components equal to 1.

Next, we need to discuss n × n matrices to record the information 
of species similarity. We denote the n × n identity matrix by In which 
indicates that all species in the community are totally dissimilar with 
each other. We also use the notation Jn for the n × n matrix of ones 
which represents an extreme case that all species are the same in the 
community (i.e., effectively we have only one species).

In this article, for simplicity, we will work with ultrametric ma-
trices; this choice is motivated by the fact that similarity matrices 
(see Section 3.2) constructed using taxonomic trees are necessar-
ily ultrametric and using ultrametric matrices simplifies the theory 
of Leinster and Mecke (2016). For more information on ultrametric 
matrices, please see Dellacheria et al. (2014), Leinster (2013), and 
Leinster and Meckes (2016).

2.2  |  Evenness

Classically, the “most even” population of n species is one for 
which the vector of relative abundances is the homogeneous 
vector ph, that is, one where every species is equally represented 
(Daly et al., 2018). For thorough discussions of evenness see, for 
example, Chao et al. (2014), Chao and Ricotta (2019), Gregorius 
and Gillet (2022), and references therein. As the case of richness 
discussed below, the term “evenness” itself seems to be preclud-
ing discussion. As rightly pointed in Gregorius and Gillet (2022), a 
definition of maximal evenness in terms of ph leaves open the dis-
cussion of what would constitute “maximum unevenness.” Instead 
of “evenness,” van Dam (2019) uses “balance,” which seems to us 
a better term; this is the concept which, after defining it properly 
(see (12)) we will use below.

pi > 0 for all i = 1, … n and

n∑
i=1

pi = 1.

(1)ph =

(
1

n
, … ,

1

n

)
,

 20457758, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10952 by U

niversity O
f Strathclyde, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 7CHEN and GRINFELD

2.3  |  Richness

Richness is usually defined as the number of species (Daly 
et al., 2018). Such a definition is open to the same criticism as the 
notion of maximal evenness defined by ph discussed above. It is 
“species- centric” without considering species similarity, and takes 
into account only the last level of taxonomic classification. We pre-
fer to call the number of species n “species richness.”

2.4  |  Similarity

In this section, we discuss the construction of taxonomic similarity 
matrices Z for a community with n species.

The usual way of constructing similarity matrices Z (which are 
automatically ultrametric) is to assign distances between differ-
ent levels of a taxonomic tree. Then the taxonomic distance d(i, j) 
between two species is the sum of distances from the nodes cor-
responding to these species to the first common node. Once the 
distance between nodes is defined, we could put Zij = e−d(i,j) or, if the 
maximal distance in the tree has been normalized to 1, we could put 
Zij = 1 − d(i, j). As an example, consider the tree in Figure 1 and set 
the species–genus and the genus–family distance to be 0.3. If we 
use the additive recipe for defining Z, that is, put Zij = 1 − d(i, j), we 
obtain the similarity matrix

3  |  THE LEINSTER–COBBOLD DIVERSIT Y 
INDE X

The Leinster and Cobbold (LC) diversity index was introduced in 
Leinster and Cobbold (2012). The LC index is a far- reaching generali-
zation of Hill numbers, for discussions of which, see Chiu et al. (2014). 
For details on its properties, see Leinster and Cobbold (2012) and 
Leinster and Meckes (2016); here, we just collect the bare minimum 
in the framework of taxonomic (ultrametric) similarity matrices; 

ultrametricity is the blanket assumption on similarity matrices we 
make from now on.

Note that compared to the diversity indices proposed by Chao 
et al. (2014), the LC index has the flexibility to take into account 
taxonomic, phylogenetic, and functional diversity simultaneously, 
although the resulting similarity matrices will in general not be ultra-
metric. We leave this as a more general case for future study.

Before we start discussing the LC index, let us review the re-
quirements that have to be satisfied by any diversity index.

3.1  |  Requirements for an diversity index

Leinster and Cobbold (2012, pp. 482–483) formulate conditions 
that any biodiversity index should satisfy; they number nine such 
conditions. The LC index satisfies all of them, that is, in brief, the 
LC index provides effective numbers, is modular, has the property 
of replication, is symmetric, is not changed if a species identical to 
one of those already present is added or by adding a new species of 
zero abundance, decreases if similarity between species increases, is 
larger if similarities between species are ignored, and always takes a 
value between 1 and the number of species n. Hence, the LC index is 
a legitimate starting point for the decomposition work we are inter-
ested in. We also note that while Leinster and Cobbold (2012) write 
that any index with sensitivity parameter q should be a monotone 
decreasing function of q, they do not add this criterion to the re-
quirements on an index, as we do below.

3.2  |  Definition of the LC index

As in the definition of Hill numbers, below q ∈
[
0, ∞) is the sensitiv-

ity parameter, measuring the (un)importance given to rare species. 
Then for a community of n species with relative abundance vector p 
and similarity matrix Z, we have

Definition 1. The	LC	diversity	of	order	q is

 

Leinster and Cobbold (2012) show that the LC index indeed 
satisfies all the requirements imposed on a diversity index in 
Section 3.1.

Note that Leinster and Cobbold (2012) use a different notation, 
similar to the Hill number notation in the literature; they denote the 
right- hand side of (3) byqDZ (p). We prefer the notation used here as 
it clearly shows functional dependencies and allows easy generaliza-
tion, which we discuss briefly in Section 5. We collected the required 
properties of the LC index below and in Section 3.3.

(2)Z1 =

⎛
⎜⎜⎜⎜⎝

1 0.7 0.4

0.7 1 0.4

0.4 0.4 1

⎞
⎟⎟⎟⎟⎠
.

(3)F(Z, p, q) ≔

(
n∑
i=1

pi
(
ZpT

)q−1
i

)1∕(1−q)

.

F I G U R E  1 An	example	taxonomic	tree	with	the	root	at	the	
family level.
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The LC index has the following properties:

a. F(p,Z, q) is a monotone decreasing function of q;
b. F(p,Z, q) < F

(
p, In, q

)
 for all q if Z ≠ In;

c. F
(
ph, In, q

)
= n for all q;

d. F
(
p, Jn, q

)
= 1 for all q.

For proofs of (a) and (b), see Leinster and Cobbold (2012); the other 
statements are immediate.

Following Leinster and Meckes (2016), we now discuss the con-
cept of a maximally balanced abundance vector for a community of n 
species with an ultrametric similarity matrix Z which is the key start-
ing point of our decomposition approach.

3.3  |  p*: A crucial property of the LC index

Leinster and Meckes (2016) prove that for each similarity matrix Z, 
there exists a unique abundance vector p* that maximizes the di-
versity index F(Z, p, q) for every value of q ∈

[
0, ∞). We call p* the 

maximally balanced abundance vector (which replaces ph if taxo-
nomic similarity is taken into account) and call F(Z, p*, q) (which is 
independent of q) the maximal diversity of a biocommunity with 
similarity matrix Z.

If Z is ultrametric, computing p* is a simple matter of solving a 
system of linear equations and normalizing:

where w solves the system of equations Zw = 1, with 1 is a column 
vector of ones.

For the similarity matrix Z1 in (2), we have

which differs from ph = (0.333,0.333,0.333). We can check that when 
q = 0, F(Z, p∗, q) = 1.522 which is greater than F

(
Z, ph, q

)
= 1.508. For 

q = 1, 2, F(Z, p∗, q) remains unchanged, but F
(
Z, ph, 1

)
= 1.504 and 

F
(
Z, ph, 2

)
= 1.500.

Note that an alternative way of computing p* is provided in 
Leinster and Meckes (2016, lemma 6).

There are similarity matrices Z ≠ In for which p∗ = ph. However, it 
is beyond the scope of this study to characterize exhaustively the set 
of such matrices. For now, we simply define a taxonomic tree to be 
taxonomically equilibrated if p∗ = ph. Of course if at each level of the 
tree all the nodes have the same degree, the taxonomic tree is equil-
ibrated. However, the converse statement is not true. An example is 
provided by the tree in Figure 2.

It is not hard to show that assigning of species–genus, genus–
family, and family–order distances to be 0.25, and using the addi-
tive recipe to compute Zij, results in a similarity matrix for which 
p∗ = ph. Thus, there is a trichotomy of taxonomic trees: those 
for which p∗ = ph holds for every assignment of distances; those 
where such assignments can be chosen, as in Figure 2, and such 

that no assignment of distances results in a homogeneous max-
imally balanced abundance vector; an example of such a tree is 
shown in Figure 3.

4  |  AN UNBIA SED DECOMPOSITION 
SCHEME

We are now ready to propose a decomposition scheme for the LC 
index. It is best to start with the decomposition scheme suggested 
by van Dam (2019) and see why it has to be modified. van Dam writes

The second fraction in the right- hand side of (5),

is clearly a measure of dissimilarity, while the first fraction should 
therefore be measure of balance,

F
(
ph, In, q

)
= n, so the last term on the right- hand side is the standard 

measure of richness. Note that, as it should be, the two fractions al-
ways lie in the interval (1∕n, 1

]
 (property (b) of the LC index ensures 

that the value 1∕n cannot be reached).
The difficulty with (5) is in accepting (7) as a measure of balance. 

First of all, it does not use the information contained in the taxo-
nomic similarity matrix Z. Secondly, it introduces ph which a priori has 
no meaning in theories that take similarity into account. BvD(p, q) will 

(4)p∗
i
=

wi∑n

j=1
wj

p∗ ≈ (0.286,0.286,0.429). (5)F(p,Z, q) =
F
(
p, In, q

)

F
(
ph, In, q

) ⋅

F(p,Z, q)

F
(
p, In, q

) ⋅ F
(
ph, In, q

)
.

(6)DvD(p,Z, q) ≔
F(p,Z, q)

F
(
p, In, q

) ,

(7)BvD(p, q) ≔
F
(
p, In, q

)

F
(
ph, In, q

) ;

F I G U R E  2 A	taxonomic	tree	that	does	not	have	the	same	degree	
at all nodes but allows p∗ = ph.

F I G U R E  3 A	taxonomic	tree	for	which	p∗ ≠ ph is guaranteed.
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take the maximal value 1 when p = ph for all values of q, while in the 
framework of the LC index, the measure of balance should be maxi-
mal when p = p∗. This argument makes the van Dam decomposition 
unusable in the framework of the LC index for which it is intended.

The dissimilarity measure F(p,Z,q)
F(p,In ,q)

 does use information from both 
p and Z. Hence, the decomposition (5) can be said to be asymmetri-
cally biased.

Note that an alternative decomposition

in addition to having the drawbacks of (5) of using the often irrelevant 
abundance vector ph and having an asymmetrically biased dissimilarity 
measure, also has the problem that its measure of balance, the first 
term in the right- hand side, can take values larger than 1 if Z is not a 
similarity matrix of an taxonomically equilibrated tree and p = p∗.

To ensure normalization and to be consistent with Leinster and 
Meckes (2016), consider the following decomposition:

It is asymmetrically biased as the second factor, a dissimilarity mea-
sure, does not use the information from the actual abundance vector 
p. We will discuss the interpretation of F

(
p∗, In, q

)
 later.

To obtain an unbiased decomposition, we multiply (5) and (9) and 
take a square root. The result is

since F
(
ph, In, q

)
= n.

Note that the last term in the right- hand side of (10) can be re-
written as

which is appropriate notation as E(Z, q) is determined by Z. The term 
E(Z, q) expresses the lack of equilibration in the taxonomic tree and 
always lies in the interval (0, 1

]
. In the case of similarity matrices of 

taxonomically equilibrated trees, for which we have p∗ = ph and hence 
F
(
p∗, In, q

)
= n, we have that E(Z, q) = 1. If Z does not correspond to 

a taxonomically equilibrated taxonomic tree, F
(
p∗, In, q

)
 is dependent 

on q; E(Z, q) is monotone decreasing in q; the limit of E(Z, q) as q → ∞ 
exists and may reflect properties of Z; we leave analysis of E(Z, q) to 
future work.

The difficulty with the decomposition (10) as written is in 
interpreting

as a measure of balance as it is not necessarily maximized by p = p∗ for 
all values of q different from zero.

However, note that (10) can also be written as

In both (13), we have an unbiased measure of balance,

which correctly takes its maximal value 1 at p = p∗, and an unbiased 
measure of dissimilarity

which for any given p is maximized by choosing In.
We suggest to define

the harmonic mean of Hill's number of order q, F
(
p, In, q

)
, and F(p∗,Z, q) ,	

the maximal diversity for all q for a given similarity matrix Z (see 
Section 3.3), to be our notion of effective richness of order q. Note that it 
arises naturally in the process of unique unbiased decomposition of the 
LC index. This is not an inconsistent definition: if Z = In and p = ph = p∗ ,	
that is, for a maximally balanced population of totally unrelated spe-
cies, we have that R

(
ph, In, q

)
= n, the species richness, for all q ≥ 0. So 

our notion of richness truly generalizes species richness and takes into 
account similarity among species, the abundance vector p and the sen-
sitivity parameter q.

Hence, with this definition of richness, (13) becomes

An advantage of our non- “species- centric” definition of richness 
is that it allows to compare two communities with different number 
of species.

5  |  DISCUSSION

We have proposed a decomposition of the LC index into compo-
nents that include well- defined measures of balance (evenness) and 
(dis)similarity. Compared to a previous version of decomposition 
(van Dam, 2019), our approach delivers measures of balance and of 
dissimilarity of the community that employ all the available informa-
tion and do not use the homogeneous abundance vector ph that does 
not have any biological significance in realistic communities.

The price for having three components in the decomposition was 
having to redefine richness as in (16). We could alternatively write 
(13) as

(8)F(p,Z, q) =
F(p,Z, q)

F
(
ph,Z, q

) ⋅

F
(
ph,Z, q

)

F
(
ph, In, q

) ⋅ F
(
ph, In, q

)
,

(9)F(p,Z, q) =
F(p,Z, q)

F(p∗,Z, q)
⋅

F(p∗,Z, q)

F
(
p∗, In, q

) ⋅ F
(
p∗, In, q

)
.

(10)

F(p,Z, q) =

√√√√ F(p,Z, q)

F(p∗,Z, q)

F
(
p, In, q

)

F
(
ph, In, q

) ⋅

√
F(p,Z, q)

F
(
p, In, q

) F(p∗,Z, q)

F
(
p∗, In, q

) ⋅

√
nF

(
p∗, In, q

)
,

(11)
√
nF

(
p∗, In, q

)
=

√
F
(
p∗, In, q

)
n

n ≔ E(Z, q)n,

(12)
B0(p,Z, q) =

√√√√ F(p,Z, q)

F(p∗,Z, q)

F
(
p, In, q

)

F
(
ph, In, q

) .

(13)F(p,Z, q) =

√
F(p,Z, q)

F(p∗,Z, q)
⋅

√
F(p,Z, q)

F
(
p, In, q

) ⋅

√
F(p∗,Z, q)F

(
p, In, q

)
,

(14)B(p,Z, q) ≔

√
F(p,Z, q)

F(p∗,Z, q)
,

(15)D(p,Z, q) ≔

√
F(p,Z, q)

F
(
p, In, q

) ,

(16)R(p,Z, q) ≔

√
F(p∗,Z, q)F

(
p, In, q

)
,

(17)F(p,Z, q) = B(p,Z, q)D(p,Z, q)R(p,Z, q).
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6 of 7  |     CHEN and GRINFELD

in which case we must retain in our decomposition an in general q- 
dependent fourth term.

However, if the choice is between (17) and (18), a decomposition 
into four terms, we argue that (17) is preferable: the last term in the 
right- hand side of (18) can only be interpreted as the ratio between 
a measure of “effective richness” and the species richness and hence 
provides the same information as (17).

One could ask whether one could not start with the components 
(14), (15), n, and define an index I(p,Z, q) by

However, this “index” is not decreasing in q, so does not define a 
bona fide diversity index.

5.1  |  Incorporating more information streams

Although Stirling (2007) argues that there are only three aspects 
(i.e., richness, balance, and disparity) that should be considered in 
diversity and though LC index also uses only three “information 
streams”: the number of species n, the relative abundance vector p ,	
and the similarity matrix Z, we could in theory consider a diversity 
index F

(
c1, … , cm; q

)
 with m > 3, where c1, … , cm are various in-

formation streams. For example, one may wish to consider both the 
phylogenetic and functional diversity in the diversity index and we 
can have more than one Z. We could then follow the decomposition 
process of Section 4: find m ! biased decompositions, multiply them 
together, take the m !- th root, and simplify. However, this is already 
unwieldy in the case of m = 3.

One approach to circumvent this problem is to take advantage 
of the flexibility of the LC index by incorporating different infor-
mation streams into one unified similarity matrix. As explained in 
Section 2.4, one can define a similarity matrix by setting Zij = e−d(i,j), 
where d(i, j) is some suitably defined distance between species i  and 
j. Hence, incorporating more information streams can be thought 
about as changing the distance function d( ⋅ , ⋅ ). In the process of in-
corporating such information, such as functional similarity, the ultra-
metricity of the similarity matrix may be lost; it is possible that the 
resulting function d( ⋅ , ⋅ ) will no longer be a metric, becoming more 
generally a divergence measure. The point is that p and (a suitably 
redefined) Z dependence of a diversity index is sufficient to incorpo-
rate all relevant information.

5.2  |  Limitations and future work

Our approach relies on the computation of p* which is not always 
possible if the similarity matrix Z is not ultrametric. Leinster and 
Meckes (2016) also note that if the number of species becomes high 
enough, the computation of p* in the non- ultrametric case can be 
quite demanding. Extension of our work to the non- ultrametric case 

relevant to phylogenetic trees and physiological traits similarity, and 
exploration of the ensuing computational issues is therefore a priority.

Sensitivity of similarity matrices, and hence the LC index and our 
decomposition, to the abundance of a species that is significantly 
distinct from other species in a community, is an area that needs to 
be explored.

Another good (linear algebra) research question is an exhaustive 
characterization of the trichotomy in taxonomic trees with respect 
to taxonomic tree equilibration, that is, understanding for which 
taxonomic trees any choice of similarity matrix leads to p∗ = ph, as 
opposed to ones only possible for particular choices of a similarity 
matrix, or impossible for any similarity matrix.
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