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Abstract. This paper applies the Razumikhin idea to study the stabilisation

of hybrid stochastic systems by discrete-time state feedback control, which

works intermittently and is designed boundedly. Theoretically, the Razumikhin
method is generalised in view of time-varying functions, rather than constants,

where the time-inhomogeneous property of intermittent control could be fully
made use of. In practice, the control cost could be reduced significantly since

the controller is bounded, not observed continuously and having rest time.

Moreover, there will be a wider range of applications especially for models that
do not satisfy the linear growth condition (say highly nonlinear). An example

of the coupled Van der Pol–Duffing oscillator system is hence provided to show

the practicability of the developed theory.

1. Introduction. Mao in [1] initialed the study of using a state feedback control
control u(x(tτ ), t, r(t)), where tτ = [t/τ ]τ , which is based on the state observations
at discrete times, 0, τ, 2τ, · · · , to stabilise an unstable hybrid stochastic differential
equation (SDE)

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t),

where x(t) ∈ Rd is the system state, r(t) is a Markov chain taking values in a
finite space, W (t) is a Brownian motion, [t/τ ] is the integer part of t/τ . Compared
with the classical feedback control u(x(t), t, r(t)), for which we need to observe the
system states continuously, discrete-time state feedback control u(x(tτ ), t, r(t)) is
more practical and less costly. After several years’ development, there have been
many results on this stabilisation problem (see, e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10]).

Although the discrete-time state feedback control is more advanced than before,
there are still two issues deserved our attention that could help improve the control
design. Firstly, it should be pointed out that the control function u(x, t, i) in many
papers such as [1, 3, 6, 7] is usually designed on every observable discrete-time state,
such as the linear form µix with µ1 = −3 and µ2 = 0 in the first example of [7].
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But this sometimes would lead to some unnecessary control cost since the cost is in
general proportional to the system state value |x(tτ )|. In particular, if the initial
data is given large, the cost on the beginning stage will be relatively high. This
then begs a question: is it really necessary to impose control on every discrete-time
state? The answer at least in this paper is negative, and we will propose a scheme
where the control function is designed in a bounded state area.

The second one is intermittent control strategy. In fact, most of the discrete-
state-feedback stabilisation results (see, e.g. [2, 5, 6, 7, 8]) are based on the controller
imposed to the system for all the time without any rest. This undoubtedly will
shorten the life of our controller. Therefore, a more practical technique is to let
the controller working intermittently, where we divide the whole time periodically,
and each period is consisted of working time and rest time. Then, the controller
becomes u(x(tτ ), t, r(t))I(t) with I(t) =

∑∞
k=0 1[kT,kT+δT )(t), where T > 0 is the

control period, δT is the working width with strength δ ∈ (0, 1).
Due to its efficiency in reducing the control cost, intermittent control recently

has drawn abundant interest (see, e.g. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). But
unfortunately, due to the difficulty in dealing with two discrete strategies, x(tτ )
and I(t), at the same time, there are only a few results (e.g. [9, 10, 16, 17, 18])
considering them together. Until now, the comparison idea has been proven to
be the most helpful method to study the intermittent discrete-time state feedback
control. However, the observation duration τ obtained by using this method is
always awesome. Even worse, it only works well when the underlying hybrid SDEs
are globally Lipschitz continuous (see Appendix in [19]), which might exclude many
important practical systems such as stochastic volatility model [20, 21], biological
system [22, 23], and oscillator network [15]. It is hence necessary to develop new
techniques to deal with this stabilisation problem to improve the value of τ and
cover more general models.

Among others, in the classical discrete-state-feedback stabilisation theory, Razu-
mikhin technique has received much attention for these two purposes. For example,
by the Razumikhin technique, a better τ was obtained in [6] than that in [1] (using
the comparison idea). This method was first applied in [7] to the highly non-
linear hybrid SDEs, which did not satisfy the linear growth condition. Could we
then generalise the Razumikhin method to the stabilization problem of intermittent
discrete-state feedback control? We will give a positive answer to this question. But
it should be pointed out that most of the existing Razumikhin results (e.g. [7, 24])
might not be used to the intermittent control problem directly. This is because the
following fundamental assumption cannot be met

ELU(x(t), x(tτ ), t, r(t)) ≤ −λ1EU(x(t), t, r(t))

if for some t, sup−τ≤θ≤0 EU(x(t+θ), t+θ, r(t+θ)) ≤ qEU(x(t), t, r(t)). The detailed
explanation of this condition will be given later. On the one hand, I(t) is a piece-wise
constant function, which could not be considered into the construction of continuous
Lyapunov function U(x, t, i). On the other hand, λ1 is time-homogeneous, which
would let the time-varying property of I(t) be ignored. Therefore, it is wiser to es-
tablish the Razumikhin theory based on the function λ1(t) rather than the constant
λ1. This change will make our stability analysis more technical than before.

In conclusion, this paper will be devoted to the stabilisation problem of highly
nonlinear hybrid SDEs by discrete-time state feedback control, which is designed
intermittently and boundedly, based on [1, 7, 9]. The main method we will use is
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the Razumikhin technique developed in [7], but will be further generalised to take
advantage of the time-inhomogeneous property of the systems. We will also give an
application example to demonstrate the availability of our proposed results.

2. Model description.

2.1. Preliminary. We firstly list the notations widely used in this paper. Let Rd be
the d-dimensional Euclidean space with Euclidean norm |·|, and R+ be the collection
of all non-negative numbers. For any real constant a, b, denote by a∧ b = min{a, b}
and a ∨ b = max{a, b}. If A is a vector or matrix, AT is its transpose. If A is

a matrix, |A| =
√

trace(ATA) is its trace norm. If A is a symmetric real-valued
matrix, λmin(A) and λmax(A) its smallest and largest eigenvalue, respectively. Let
Id be the d-dimensioanl identity matrix. For a subset F1 included in some universal
set F , 1F1 denotes its indicator function, that is, 1F1(a) = 1 if a ∈ F1, otherwise, 0.
There are also some positive constants whose specific forms are useless, which for
simplicity are denoted by C, regardless of their values.

We will work on a complete probability space (Ω,F , P ) with a filtration {Ft}t≥0

satisfying the usual conditions (that is, it is increasing, right-continuous and F0

contains all P -null sets). Let W (t) = (W1(t), · · · ,Wm(t))
T

be an m-dimensional
Brownian motion, and r(t) a right-continuous Markov chain taking values in a finite
state space S = {1, · · · , S} with transition rate matrix Q = (qij)S×S given by

P (r(t+∆) = j|r(t) = i) =

{
1 + qij∆+ o(∆), if i = j,

qij∆+ o(∆), if i ̸= j,

as ∆ ↓ 0. Here qij ≥ 0 is the transition rate from i to j if i ̸= j, while qii =
−
∑

j ̸=i qij . Assume that the Brownian motion W (t) and the Markov chain r(t) are
independent under the probability measure P .

2.2. Standing hypotheses. Consider the hybrid SDE

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dW (t) (1)

on t ∈ R+ with initial data x(0) = x0 ∈ Rd and r(0) = r0 ∈ S. The drift coefficient
f : Rd ×R+ × S → Rd and the diffusion coefficient g : Rd ×R+ × S → Rd×m should
be locally Lipschitz continuous (see Theorem 3.15, [24]), and satisfty the following
polynomial growth condition.

Assumption 2.1. Assume that there are non-negative constants L1, L2, and p > 1
such that

|f(x, t, i)| ≤ L1|x|+ L2|x|p, ∀(x, t, i) ∈ Rd × R+ × S. (2)

Assumption 2 is clearly more advanced than the classical linear growth condition,
which is used to restrict the growth of f . But it cannot guarantee the hybrid SDE
(1) has a unique global solution. For this aim, the following Khasminskii-type
condition is always needed.

Assumption 2.2. Assume that there are a pair of constants α̂ > 0 and q ≥ 3p− 1
such that for any (x, t, i) ∈ Rd × R+ × S

xTf(x, t, i) +
q − 1

2
|g(x, t, i)|2 ≤ α̂|x|2. (3)
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Remark 2.3. Here the reader might wonder whether it is possible for g to go very
rapidly since we only impose growth condition on f . This worry in fact could be
denied if we combine Assumptions 2.1 with 2.2. It is easy to calculate for any
(x, t, i) ∈ Rd × R+ × S

|g(x, t, i)|2 ≤ 2

q − 1

(
α̂|x|2 + |x| (L1|x|+ L2|x|p)

)
≤ C

(
|x|2 + |x|p+1

)
. (4)

This observation means that g(x, t, i) is also controlled by a polynomial.

According to Theorem 3.19 in [24], we show that under Assumptions 2.1 and 2.2,
the hybrid SDE (1) with initial data x0 and r0 has a unique solution x(t), satisfying
the property that for any t ∈ R+

sup
0≤s≤t

E (|x(s)|q) < ∞. (5)

Before closing this part, we introduce an additional assumption on the underlying
SDE (1), which will play a vital role for our control design later.

Assumption 2.4. For each i ∈ S, assume that there are non-negative constants
αi, ᾱi, and positive constants βi, β̄i such that for any (x, t) ∈ Rd × R+

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ αi|x|2 − βi|x|p+1,

xTf(x, t, i) +
p

2
|g(x, t, i)|2 ≤ ᾱi|x|2 − β̄i|x|p+1.

(6)

The reader might find Assumptions 2.2 and 2.4 look very similar. Is it necessary
to give them at the same time? The following remark may be helpful.

Remark 2.5. It should be pointed out that Assumptions 2.2 and 2.4 are both
needed. At first, they play different roles. Assumption 2.2 is used to ensure the
existence of global solution with certain moment properties, while Assumption 2.4
is for stabilisation and control design. Secondly, these two conditions are quite
different, and any one cannot be deduced from the other. Let us use a scalar
example operating just in one mode to explain this.

Case 1: f(x, t, 1) = x−x3 sin2(x), g(x, t, 1) = x. Then Assumption 2.2 is satisfied
with p = 3, q = 8, α̂ = 3.5. But we could not find a β1 > 0 so that for all x ∈ R

xTf(x, t, 1) +
1

2
|g(x, t, 1)|2 = 1.5|x|2 − |x|4 sin2(x) ≤ 1.5|x|2 − β1|x|4.

Case 2: f(x, t, 1) = x− 2x3, g(x, t, 1) = x2. It is easy to verify that Assumption 2.4

holds with α1 = 1, β1 = 1.5, ᾱ = 1, β̂ = 0.5. But Assumption 2.2 is not satisfied
since

xTf(x, t, 1) +
q

2
|g(x, t, 1)|2 = |x|2 +

(
q − 1

2
− 2

)
|x|4,

where q−1
2 − 2 ≥ 1.5, as q ≥ 3p− 1 = 8.

2.3. Control design. But (5) does not indicate the underlying SDE (1) is stable.
If not, we would like to design a state feedback control based on discrete-time ob-
servations working intermittently, u(x(tτ ), t, r(t))I(t), to make the controlled SDE

dx(t) =
(
f(x(t), t, r(t)) + u(x(tτ ), t, r(t))I(t)

)
dt+ g(x(t), t, r(t))dW (t) (7)

become stable.
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Next, we will explain how to design the bounded control function u(x, t, i). For
convenience, we denote by Ba =

{
x ∈ Rd : |x| ≤ a

}
, Bc

a =
{
x ∈ Rd : |x| > a

}
, Bb −

Ba =
{
x ∈ Rd : a < |x| ≤ b

}
for any 0 < a < b.

Rule 2.6. Choose non-negative constants γi(i ∈ S) such that{
A := −2diag (α1 − γ1, · · · , αN − γS)−Q

Ā := −(p+ 1)diag (ᾱ1 − γ1, · · · , ᾱS − γS)−Q

are non-singular M -matrices. Then for each i ∈ S, set Ri =
(

2γi

βi∧β̄i

) 1
p−1

. The

control function can be designed as:

• when x ∈ BRi
, design u(x, t, i) such that we can find a non-negative constant

Ki to let for any (x, y, t) ∈ BRi ×BRi × R+

|u(x, t, i)− u(y, t, i)| ≤ Ki|x− y| (8)

and

xTu(x, t, i) ≤ −γi|x|2 (9)

hold, and moreover u(0, t, i) = 0 for all t ∈ R+;

• when x ∈ B2Ri
−BRi

, let u(x, t, i) = u
((

2Ri

|x| − 1
)
x, t, i

)
for all t ∈ R+;

• when x ∈ Bc
2Ri

, let u(x, t, i) = 0 for all t ∈ R+.

Remark 2.7. From Rule 2.6, we see that the control is only imposed in a bounded
state area B2Ri . Such a control is much smaller since Ri was set to infinity before
(e.g., [1, 7]), so that the control cost could be reduced significantly, especially for
large system states. In fact, we could let u(x, t, i) = 0 for x ∈ Bc

Ri
. But the

additional connect area B2Ri
− BRi

is required for the purpose of continuity of
u(x, t, i) in x to guarantee the existence of unique global solution of the controlled
system (1), which is stated as the following lemma.

Lemma 2.8. Let Rule 2.6 hold. Let KM = maxi∈S Ki. Then for all (x, y, t, i) ∈
Rd × Rd × R+ × S,

|u(x, t, i)− u(y, t, i)| ≤ KM |x− y|. (10)

Furthermore, u(0, t, i) = 0 for all (t, i) ∈ R+ × S.

The proof of Lemma 2.8 can be found in the Appendix. It also yields the following
linear growth condition

|u(x, t, i)| ≤ KM |x|, ∀(x, t, i) ∈ Rd × R+ × S. (11)

In addition, (2) and (4) tells us that f(0, t, i) ≡ 0 and g(0, t, i) ≡ 0. As a result, we
could see that the controlled SDE (7) admits a zero solution.

Theorem 2.9. Let Assumptions 2.1, 2.2, 2.4 hold. Design the control function to
meet Rule 2.6. Then for any initial data x0 and r0, there exists a unique global
solution x(t) of the controlled SDE (7). Moreover it satisfies that for any t ∈ R+

sup
0≤s≤t

E (|x(s)|q) < ∞ (12)

and

E

(
sup

0≤s≤t
|x(s)|2p

)
< ∞. (13)
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The existence and uniqueness of x(t) as well as property (12) can be shown in
the similar way of proofing Theorem 7.13 in [24]. Property (13) can be proved using
the same procedure of proofing Lemma 3.1 in [7]. So we omit them.

Before closing this section, we give some comments on the availability of our
control scheme.

Remark 2.10. According to Rule 2.6, the control design for x ∈ Bc
Ri

is very clear.
The remaining question is whether we could find appropriate γi and control function
u(x, t, i) in BRi . There are actually many choices. For example, it is easy to find
a positive constant γ large enough such that −2diag (α1 − γ, · · · , αS − γ)−Q and
−(p+1)diag (ᾱ1 − γ, · · · , ᾱS − γ)−Q are non-singular M -matrices. Therefore, we
can let γi = γ for each i ∈ S. Next, use control function in the linear form u(x, t, i) =
−Bix with Bi being symmetric and positive-definite such that λmin(Bi) ≥ γ. Then
we see that conditions (8) and (9) are satisfied.

3. Stabilisation results.

3.1. Lyapunov function. Define the Lyapunov function U : Rd × S → R+ by

U(x, i) = ηi|x|2 + η̄i|x|p+1,

where (η1, · · · , ηS)T = A−1(1, · · · , 1)T and (η̄1, · · · , η̄S)T = Ā−1(1, · · · , 1)T. Since
A, Ā are non-singular M -matrices, all ηi, η̄i are positive. Then define the operator
LU(x, y, t, i) : Rd × Rd × R+ × S → R with respect to the controlled SDE (7) by

LU(x, y, t, i) = LU(x, t, i) + Ū(x, y, t, i)

where

LU(x, t, i) =Ux(x, i)(f(x, t, i) + u(x, t, i)I(t))

+
1

2
trace

(
gT(x, t, i)Uxx(x, i)g(x, t, i)

)
+

S∑
j=1

qijU(x, j)

and

Ū(x, y, t, i) = Ux(x, i)(u(y, t, i)− u(x, t, i))I(t)

with

Ux(x, i) =2ηix
T + (p+ 1)η̄i|x|p−1xT,

Uxx(x, i) =2ηiId + (p+ 1)η̄i
(
|x|p−1Id + (p− 1)|x|p−3xxT

)
.

In Lyapunov stability analysis, we always want the operator LU to be negative.
This is hence very significant to estimate LU . The first estimation is about LU .

Lemma 3.1. Let all the conditions in Theorem 2.9 hold. Then

LU(x, t, i) ≤ (−µ1I(t) + µ2(1− I(t)))U(x, i)− p+ 1

2
η̄iβ̄i|x|2p (14)

holds for any (x, t, i) ∈ Rd × R+ × S. Here µ1, µ2 are positive constants given by

µ1 =
1

ηM
∧min

i∈S

(
1 + ηiβi

η̄i

)
, ηM = max

i∈S
ηi,

µ2 =max
i∈S

 1

ηi

2ηiαi +
S∑

j=1

qijηj

 ∨ 1

η̄i

−ηiβi + (p+ 1)η̄iᾱi +
S∑

j=1

qij η̄j

 .
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Next, we state the estimation of Ū . For convenience, we extend x(t), r(t) to
[−τ, 0) by defining x(θ) = x0, r(θ) = r0 for θ ∈ [−τ, 0).

Lemma 3.2. Let all the conditions in Theorem 2.9 hold. Then the solution of the
controlled SDE (7) satisfies that for any t ∈ R+

EŪ(x(t), x(tτ ), t, r(t))

≤
(
KMEU(x(t), r(t)) +H1(τ) sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ))

)√
τI(t)

+
p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
, (15)

where

H1(τ) =

(
2αM + 4KM + 2L1

ηm
+

2L2

η̄m

)(
KMηM +

(p+ 1)K2
M η̄M

2β̄m

√
τ

)
.

The detailed proof of Lemmas 3.1 and 3.2 can be found in the Appendix. The
main technique to study stability in this paper is Razumikhin method, which re-
quires the continuity of U and LU strongly. Thus we need to prepare a useful
lemma.

Lemma 3.3. Let all the conditions in Theorem 2.9 hold. Then as functions of t,
EU(x(t), r(t)) is continuous, and ELU(x(t), x(tτ ), t, r(t)) is right-continuous.

Proof. For any t ∈ R+, applying the generalized Itô formula to U(x, i), we see that

U(x(t), r(t)) =U(x0, r0) +

∫ t

0

LU(x(s), x(sτ ), s, r(s))ds

+

∫ t

0

Ux(x(s), r(s))g(x(s), s, r(s))dW (s) +M(t), (16)

where

M(t) =

∫ t

0

∫
R

(
U(x(s), r0 + ĥ(r(s), l))− U(x(s), r(s))

)
µ̂(ds,dl).

The detailed explanation of the function ĥ and martingale measure µ̂ is given in
Theorem 1.45 in [24], but is of no use in this paper so we omit it here. It is easy to
see thatM(t) is a continuous martingale vanishing at t = 0. Letting η̄M = maxi∈S η̄i
and using (2), (4), (11), we obtain that for any (x, y, t, i) ∈ Rd × Rd × R+ × S

|LU(x, y, t, i)| ≤ (2ηM |x|+ (p+ 1)η̄M |x|p) (L1|x|+ L2|x|p +KM |y|)

+

(
ηM +

p(p+ 1)

2
η̄M |x|p−1

)
C
(
|x|2 + |x|p+1

)
+ S max

1≤i,j≤S
|qij |

(
ηM |x|2 + η̄M |x|p+1

)
≤C

(
|x|2 + |x|p+1 + |x|2p + |y|2 + |y|p+1

)
≤C

(
1 + |x|2p + |y|2p

)
(17)

and

|Ux(x, i)g(x, t, i)| ≤ (2ηM |x|+ (p+ 1)η̄M |x|p)
√
C (|x|2 + |x|p+1) ≤ C(1 + |x|2p).

Recalling (12), we know that for s ∈ [0, t], E|x(s)|2p < ∞, which implies that

E|LU(x(s), x(sτ ), s, r(s))| ≤ C
(
1 + E|x(s)|2p + E|x(sτ )|2p

)
< ∞
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and
E|Ux(x(s), r(s))g(x(s), s, r(s))| ≤ C

(
1 + E|x(s)|2p

)
< ∞.

Let k0 be a sufficiently large integer for k > |x0|. For each interger k ≥ k0, define
the stopping time σk = inf{t ∈ R+ | |x(t)| ≥ k}. Clearly, σk ↑ ∞ a.s. It then
follows from (16) that

EU(x(t ∧ σk), r(t ∧ σk)) = U(x0, r0) + E

∫ t∧σk

0

LU(x(s), x(sτ ), s, r(s))ds. (18)

For each k ≥ k0, we have∣∣∣∣∫ t∧σk

0

LU(x(s), x(sτ ), s, r(s))ds

∣∣∣∣ ≤ ∫ t

0

|LU(x(s), x(sτ ), s, r(s))|ds

and

E

∫ t

0

|LU(x(s), x(sτ ), s, r(s))|ds =
∫ t

0

E |LU(x(s), x(sτ ), s, r(s))|ds < ∞.

On the other hand,

U(x(t∧σk), r(t∧σk)) ≤ ηM |x(t∧σk)|2+η̄M |x(t∧σk)|p+1 ≤ C

(
1 + sup

0≤s≤t
|x(s)|p+1

)
.

By (13), we know that E
(
sup0≤s≤t |x(s)|p+1

)
< ∞. Thus, we can let k → ∞ on

both sides of (18) and use the dominated convergence theorem to get that

EU(x(t), r(t)) = U(x0, r0) +

∫ t

0

ELU(x(s), x(sτ ), s, r(s))ds. (19)

Clearly, EU(x(t), r(t)) is continuous at time t.
Next, let ∆ > 0 be a sufficiently small number. Observing from (17) again gives

that for any s ∈ [0, t+∆],

|LU(x(s), x(sτ ), s, r(s))| ≤ C

(
1 + sup

0≤s≤t+∆
|x(s)|2p

)
.

Therefore,

sup
0≤s≤t+∆

|LU(x(s), x(sτ ), s, r(s))| ≤ C

(
1 + sup

0≤s≤t+∆
|x(s)|2p

)
.

From (13), we see that the expectation of the right-hand side exists. By the right-
continuity of LU(x(t), x(tτ ), t, r(t)), we derive from the dominated convergence the-
orem that

lim
s→t+

ELU(x(s), x(sτ ), s, r(s)) =E

(
lim
s→t+

LU(x(s), x(sτ ), s, r(s))

)
=ELU(x(t), x(sτ ), t, r(t)),

which implies the right-continuity of ELU(x(t), x(tτ ), t, r(t)). The proof is com-
plete.

Remark 3.4. From the proof of the continuity of EU(x(t), r(t)), we find that only

sup
0≤s≤t

E|x(s)|2p < ∞, E

(
sup

0≤s≤t
|x(s)|p+1

)
< ∞, ∀t ≥ 0

are used. In other words, we might relax q ≥ 3p − 1 in Assumption 2.2 to q ≥ 2p.
Moreover, to obtain (19), there is no need to require the boundedness of E|LU | or
more specifically, the boundedness of E|x(t)|2p, such as [5] (Theorem 3.1) and [8]
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(Theorem 3.3). In this case, why do we impose q ≥ 3p − 1? It is actually given
to guarantee (13), by which the dominated convergence theorem could be used to
prove the right-continuity of ELU .

3.2. Exponential stability. We will mainly focus on the exponential stabilisation
in the sense of Lp+1 and almost surely. Before giving the stability results, we list
the notations that will be used later. Let KM = maxi∈S Ki, ηm = mini∈S ηi, η̄m =
mini∈S η̄i, ηM = maxi∈S ηi, η̄M = maxi∈S η̄i, αM = maxi∈S αi, β̄m = mini∈S β̄i.

Theorem 3.5. Let all the conditions in Theorem 2.9 hold. Choose δ ∈
(

µ2

µ1+µ2
, 1
)

and let τ∗ be the unique root of φ(τ) = 0 on (0, τ̂ ], where

φ(τ) := exp
((µ2

δ
− µ2

)
τ
)
− 1

H1(τ)

(
µ1 + µ2 − µ2

δ√
τ

−KM

)
,

and τ̂ =
(

µ1+µ2−µ2
δ

KM

)2
. Then given τ < τ∗, the solution of the controlled SDE (7)

satisfies that

lim sup
t→∞

1

t
log
(
E|x(t)|p+1

)
< 0 (20)

and

lim sup
t→∞

1

t
log (|x(t)|) < 0 a.s. (21)

Proof. We divide the proof into four steps.

Step 1. Let δ ∈
(

µ2

µ1+µ2
, 1
)
be chosen. It is easy to see that φ(·) is an increasing

continuous function on (0, τ̂ ]. Moreover, limτ→0+ φ(τ) = −∞, and φ(τ̂) > 0. There-
fore, there is a unique zero solution of φ, and so the definition of τ∗ is clear. For
fixed τ < τ∗, write H1 = H1(τ) for simplicity. Since φ is increasing, we naturally
have

exp
((µ2

δ
− µ2

)
τ
)
<

1

H1

(
µ1 + µ2 − µ2

δ√
τ

−KM

)
.

Therefore, we could choose a constant q such that

exp
((µ2

δ
− µ2

)
τ
)
< q <

1

H1

(
µ1 + µ2 − µ2

δ√
τ

−KM

)
. (22)

Step 2. If x0 = 0, the result is obvious. Thus we always assume that |x0| > 0.
If for some t, the solution satisfying that

sup
−τ≤θ≤0

EU(x(t+ θ), r(t+ θ)) ≤ qEU(x(t), r(t)), (23)

we then derive from (14) and Lemma 3.2 that

ELU(x(t), x(tτ ), t, r(t))

≤(−µ1I(t) + µ2(1− I(t)))EU(x(t), r(t))− p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
+

(
KMEU(x(t), r(t)) +H1 sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ))

)√
τI(t)

+
p+ 1

2
E
(
η̄r(t)β̄r(t)|x(t)|2p

)
≤−

(
(µ1 − (KM +H1q)

√
τ)I(t)− µ2(1− I(t))

)
EU(x(t), r(t)).
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Letting H2 = µ1 − (KM +H1q)
√
τ and λ1(t) = H2I(t)− µ2(1− I(t)), we have

ELU(x(t), x(tτ ), t, r(t)) ≤ −λ1(t)EU(x(t), r(t)). (24)

Step 3. For t ≥ 0, define λ2(t) = λ1(t) ∧ log(q)
τ , and

V (t) = exp

(∫ t

0

λ2(s)ds

)
EU(x(t), r(t)).

It is easy to see that V (t) is well-defined, and further is a continuous function. Next,
we claim that

V (t) ≤ V (0), ∀t ≥ 0, (25)

where V (0) = U(x0, r0) is a positive constant. If (25) is true, it then follows that

E|x(t)|p+1 ≤ 1

η̄M
EU(x(t), r(t)) ≤ V (0)

η̄M
exp

(
−
∫ t

0

λ2(s)ds

)
.

Since δ < 1, we can easily observe that

q <
1

H1

(
µ1 + µ2 − µ2

δ√
τ

−KM

)
<

1

H1

(
µ1√
τ
−KM

)
,

which implies that H2 > 0. As a consequence,∫ t

0

λ2(s)ds =

(
H2 ∧

log(q)

τ

)∫ t

0

I(s)ds− µ2

∫ t

0

(1− I(s))ds

=− µ2t+

(
µ2 +H2 ∧

log(q)

τ

)∫ t

0

I(s)ds.

For any fixed t ≥ 0, we can find a non-negative integer k such that kT ≤ t < (k+1)T .
If t ∈ [kT, kT + δT ), we obtain that∫ t

0

λ2(s)ds =− µ2t+

(
µ2 +H2 ∧

log(q)

τ

)
(δkT + t− kT )

=

(
−µ2 + µ2δ +H2δ ∧

log(q)

τ
δ

)
kT

+

(
−µ2 + µ2 +H2 ∧

log(q)

τ

)
(t− kT )

≥
(
−µ2 + µ2δ +H2δ ∧

log(q)

τ
δ

)
kT.

From the first inequality of (22), we derive that log(q)
τ > µ2

δ − µ2. The other side of

(22) implies that H2 > µ2

δ − µ2. In other words, λ̄ := −µ2 + µ2δ +H2δ ∧ log(q)
τ δ is

positive, and so ∫ t

0

λ2(s)ds ≥ λ̄(t− T ).

If t ∈ [kT + δT, (k + 1)T ), we have∫ t

0

λ2(s)ds =− µ2t+

(
µ2 +H2 ∧

log(q)

τ

)
δ(k + 1)T

≥− µ2t+

(
µ2 +H2 ∧

log(q)

τ

)
δt ≥ λ̄(t− T ).
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In conclusion, we have shown that for any t ≥ 0

E|x(t)|p+1 ≤ V (0)

η̄M
exp

(
−
∫ t

0

λ2(s)ds

)
≤ V (0)

η̄M
exp

(
λ̄T
)
exp

(
−λ̄t

)
,

which yields that

1

t
log
(
E|x(t)|p+1

)
≤ 1

t
log

(
V (0)

η̄M
exp

(
λ̄T
))

− λ̄.

Letting t → ∞ gives the assertion (20). After achieving the moment exponential
stability, we can use the same analysis as in the proof of Theorem 5.4 in [5] to prove
the assertion (21).

Step 4. The remaining work is to prove claim (25). Supposing not, there will
be some t > 0 such that V (t) > V (0). We can set t̂ = inf{t > 0|V (t) > V (0)}.
Because of the continuity of V (t), we see that for 0 ≤ t < t̂, V (t) ≤ V (0); for
t = t̂, V (t̂) = V (0); and there is a sequence {tn}n≥1 such that tn > t̂, tn ↓ t̂, and
V (tn) > V (0).

On the other hand, for any θ ∈ [−τ, 0], if t̂+ θ > 0, we obtain that

EU(x(t̂+ θ), r(t̂+ θ)) ≤ exp

(∫ t̂

t̂+θ

λ2(s)ds

)
EU(x(t̂), r(t̂)) ≤ qEU(x(t̂), r(t̂))

since V (t̂ + θ) ≤ V (0) = V (t̂) and
∫ t̂

t̂+θ
λ2(s)ds ≤ log(q)

τ (−θ) ≤ log(q). Otherwise,

as t̂ ≤ τ , we have

EU(x(t̂+ θ), r(t̂+ θ)) =U(x0, r0) = V (t̂) = exp

(∫ t̂

0

λ2(s)ds

)
EU(x(t̂), r(t̂))

≤qEU(x(t̂), r(t̂)).

In other words, we have shown that for any −τ ≤ θ ≤ 0,

EU(x(t̂+ θ), r(t̂+ θ)) ≤ qEU(x(t̂), r(t̂)),

which is exactly condition (23). Using the results in Step 2, we have

ELU(x(t̂), x(t̂τ ), t̂, r(t̂)) ≤− λ1(t̂)EU(x(t̂), r(t̂))

≤− λ2(t̂)EU(x(t̂), r(t̂)) < −λ2(t̂)EU(x(t̂), r(t̂)) + ε,

where ε is an arbitrary positive constant. We can also find a non-negative integer
K such that KT ≤ t̂ < (K + 1)T . Let ∆ > 0 be small enough so that ∆ <
(KT + δT − t̂)1{KT+δT>t̂} + ((K + 1)T − t̂)1{KT+δT≤t̂} and ∆ < τ . We then see
from the right-continuity of ELU that

ELU(x(t), x(tτ ), t, r(t)) < −λ2(t)EU(x(t), r(t)) + ε, ∀t ∈ [t̂, t̂+∆].

It is easy to see that the interval [t̂, t̂+∆] is either in [KT,KT+δT ) or [KT+δT, (K+

1)T ). Thus applying the generalised Itô formula to exp
(∫ t

0
λ2(s)ds

)
U(x(t), r(t))

gives that

V (t̂+∆)− V (t̂)

= exp

(∫ t̂+∆

0

λ2(s)ds

)
EU(x(t̂+∆), r(t̂+∆))− exp

(∫ t̂

0

λ2(s)ds

)
EU(x(t̂), r(t̂))

=

∫ t̂+∆

t̂

exp

(∫ s

0

λ2(v)dv

)(
ELU(x(s), x(sτ ), s, r(s)) + λ2(s)EU(x(s), r(s))

)
ds
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<ε

∫ t̂+∆

t̂

exp

(∫ s

0

λ2(v)dv

)
ds ≤ ε

∫ t̂+τ

t̂

exp

(
log(q)

τ
s

)
ds.

Since
∫ t̂+τ

t̂
exp

(
log(q)

τ s
)
ds is a positive constant and ε is chosen arbitrarily, V (t̂+

∆)− V (t̂) ≤ 0. For sufficiently large n with tn − t̂ ≤ ∆, we obtain that

V (tn) ≤ V (t̂) = V (0),

which is a contradiction with the fact that V (tn) > V (0) derived before. Therefore
claim (25) must be true. The proof is therefore complete.

4. Application.

4.1. Coupled oscillators. Consider the coupled Van der Pol–Duffing oscillator
system investigated in [15], which is consisted of N oscillators and the n-th oscillator
is described as

dxn(t) =
(
−
(
an(r(t)) + bn(r(t))

)
xn(t) +Bn(r(t))(yn(t)− xn(t))

3

+ bn(r(t))yn(t)−An(r(t))x
3
n(t)

)
dt+ νn(r(t))xn(t)dw

(1)
n (t),

dyn(t) =
(
bn(r(t))xn(t)− zn(t)−Bn(r(t))(yn(t)− xn(t))

3

− (bn(r(t)) + 1)yn(t)− Cn(r(t))y
3
n(t))

)
dt+ νn(r(t))yn(t)dw

(2)
n (t),

dzn(t) =

yn(t) +

S∑
j=1

enj(r(t))Πnj(zn(t), zj(t), r(t)) + Pn(zn(t), r(t))

dt

+ νn(r(t))zn(t)dw
(3)
n (t),

(26)
where xn, yn, zn ∈ R, an(i), bn(i), An(i), Bn(i), Cn(i), νn(i) are positive constants,
enj(i) stands for connection weight from oscillator j to oscillator n, Πnj(zn, zj , i)
and Pn(zn, i) are locally Lipscitz continuous functions in the i-th mode. Here, we
need to impose the following conditions on these functions.

Assumption 4.1. For every i ∈ S and n, j = 1, · · · , N , assume that there are

positive constants Λnj(i), J
(1)
n (i), J

(2)
n (i), D

(1)
n (i), D

(2)
n (i) so that for all x, y ∈ R

|Πn,j(x, y, i)| ≤ Λnj(i)(|x|+ |y|) (27)

and

|Pn(x, i)| ≤ J (1)
n (i)|x|+ J (2)

n (i)|x|3, xPn(x, i) ≤ D(1)
n (i)|x|2 −D(2)

n (i)|x|4. (28)

Let Xn = (xn, yn, zn)
T, X =

(
XT

1 , · · · , XT
N

)T
, Wn =

(
w

(1)
n , w

(2)
n , w

(3)
n

)T
, W =(

WT
1 , · · · ,WT

N

)T
. Then the oscillator system can be written as

dX(t) = F (X(t), r(t))dt+G(X(t), r(t))dW (t), (29)

where

F (X, i) =
(
FT
1 (X1, i), · · · , FT

N (XN , i)
)T

,

G(X, i) =

 G1(X1, i)
. . .

GN (XN , i)

 ,
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with Gn(Xn, i) = νn(i)diag(xn, yn, zn) and

Fn(Xn, i) =

 −(an(i) + bn(i))xn +Bn(i)(yn − xn)
3 + bn(i)yn −An(i)x

3
n

bn(i)xn − zn −Bn(i)(yn − xn)
3 − (bn(i) + 1)yn − Cn(i)y

3
n

yn +
∑S

j=1 enj(i)Πnj(zn, zj , i) + Pn(zn, i)

 .

With the detailed calculation, we derive that for each i ∈ S, |F (X, i)|2 ≤ L1i|X|2 +
L2i|X|6, where

L1i = max
1≤n≤N

(
4(an(i) + bn(i))

2 + 5b2n(i)
)
∨ max

1≤n≤N

(
4b2n(i) + 5(bn(i) + 1)2 + 3

)
∨

(
max

1≤n≤N

(
5 + 3(J (1)

n )2 + 6N
S∑

j=1

(|enj(i)|Λnj(i))
2

)

+ 6N max
1≤n,j≤N

(|enj(i)|Λnj(i))
2

)
and

L2i = max
1≤n≤N

(
4A2

n(i) + 288B2
n(i)

)
∨ max

1≤n≤N

(
5C2

n(i) + 288B2
n(i)

)
∨ max

1≤n≤N
3(J (2)

n )2.

Therefore, Assumption 2.1 is satisfied with p = 3, L1 = maxi∈S
√
L1i, L2 =

maxi∈S
√
L2i. Next, compute

XTF (X, i) ≤
N∑

n=1

(
− an(i)x

2
n − y2n +

S∑
j=1

|enj(i)Πnj(zn, zj , i)zn| −An(i)x
4
n

− Cn(i)y
4
n + znPn(zn, i)

)

≤
N∑

n=1

(
S∑

j=1

|enj(i)Λnj(i)(z
2
n + |znzj |)|+D(1)

n (i)z2n −An(i)x
4
n

− Cn(i)y
4
n −D(2)

n (i)z4n

)
.

Since |X|4 ≤ 3N
∑N

n=1(x
4
n + y4n + z4n), we further have

XTF (X, i) ≤ hi|X|2 − 1

3N
min

1≤n≤N

(
An(i) ∧ Cn(i) ∧D(2)

n (i)
)
|X|4,

where

hi = max
1≤n≤N

3

2

S∑
j=1

|enj(i)|Λnj(i) +D(1)
n (i)

+
1

2
max

1≤n,j≤N
(|enj(i)|Λnj(i)).

It is easy to see that

|G(X, i)|2 ≤
N∑

n=1

ν2n(i)(x
2
n + y2n + z2n) ≤ max

1≤n≤N
ν2n(i)|X|2.

As a result, Assumption 2.2 holds with any number q ≥ 8 and

α̂ = max
i∈S

(
hi +

q − 1

2
max

1≤n≤N
ν2n(i)

)
.
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Assumption 2.4 is also satisfied with

αi =hi +
1

2
max

1≤n≤N
ν2n(i), ᾱi = hi + max

1≤n≤N
ν2n(i),

βi =β̄i =
1

3N
min

1≤n≤N

(
An(i) ∧ Cn(i) ∧D(2)

n (i)
)
.

But the oscillator system (29) might not be stable (e.g., see the simulation in
Fig. 2). It is hence necessary to design controller according to the results above
to achieve stabilisation. At first, the control function U(X, i) can be designed as
follows.

Rule 4.2. Choose non-negative constants γi(i ∈ S) such that A and Ā are non-

singular M -matrices. Then for each i ∈ S, letting Ri =
√

2γi

βi
, we can design the

control function as follows

U(X, i) =


− γiX, X ∈ BRi

,

− γi

(
2Ri

|X|
− 1

)
X, X ∈ B2Ri

−BRi
,

0, X ∈ Bc
Ri
.

(30)

It is easy to verify that U(X, i) designed in Rule 4.2 meets with Rule 2.6 with
Ki = γi. Next, we let the feedback control U(X(t), r(t)) working imminently with
strength δ and being observed at discrete times 0, τ, 2τ, · · · In other words, the
controlled oscillator system is given as

dX(t) = (F (X(t), r(t)) + U(X(tτ ), r(t))I(t))dt+G(X(t), r(t))dW (t), (31)

where tτ = [t/τ ]τ and I(t) =
∑∞

k=0 1[kT,kT+δT )(t) are the same as before. By
Theorem 3.5, we can make the following assertion.

Theorem 4.3. Let Assumption 4.1 hold and the control function U(X, i) be given in

Rule 4.2. Then choosing δ ∈
(

µ2

µ1+µ2
, 1
)
and letting τ < τ∗, the controlled oscillator

system (31) is exponential stable in the sense of L4 and almost surely. Here, τ∗ can
be determined by using the method in Theorem 3.5, where the required values of L1,
L2, αi, ᾱi, βi, β̄i, Ki are all given above.

4.2. Numerical simulations. For the sake of showing the viability of our results,
a numerical example is provided in this part. We let the Markov chain r(t) taking

values in S = {1, 2} with Q =
(

−10 10
10 −10

)
. We consider the oscillator system (29)

with 25 oscillators. The parameters are given as

an(1) =0.2, bn(1) =0.3, An(1) =1.6, Bn(1) =0.05, Cn(1) =1.7, νn(1) =0.5,

an(2) =0.5, bn(2) =0.4, An(2) =2, Bn(2) =0.03, Cn(2) =1.9, νn(2) =0.8,

and the functions are given as Πn,j(x, y, 1) = 0.01(x−y), Πn,j(x, y, 2) = 0.005(x−y),
Pn(x, 1) = 0.5x − 1.5x3, Pn(x, 2) = 0.3x − 1.8x3 for all n, j = 1, · · · , 25. The
connection weight (en,j(i))20×20 can be obtained from the connection graphs in
Fig. 1. Here for both two modes, node n stands for the n-th oscillator, directed
edge (n, j) means the output of the j-th oscillator is connected with the input of
the n-th oscillator, the number on the edge (n, j) is the value of en,j(i). It is then
easy to verify that Assumption 4.1 is satisfied with Γn,j(1) = 0.01, Γn,j(2) = 0.005,

J
(1)
n (1) = D

(1)
n (1) = 0.5, J

(2)
n (1) = D

(2)
n (1) = 1.5, J

(1)
n (2) = D

(1)
n (2) = 0.3, J

(2)
n (2) =

D
(2)
n (2) = 1.8.
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Figure 1. The oscillator connection graphs at mode 1 (left) and
mode 2 (right).

Through computer simulations (see Fig. 2), we find the oscillator system (29)
is indeed unstable. Therefore, we want to use the controller U(X(tτ ), r(t))I(t) to
realise stabilisation. Before that, we can easily get L1(1) = 11.81, L1(2) = 13.44,
L2(1) = 15.17, L2(2) = 18.3092, h(1) = 0.5045, h(2) = 0.3012, α(1) = 0.6295,
α(2) = 0.6212, ᾱ(1) = 0.7545, ᾱ(2) = 0.9412, β(1) = β̄(1) = 0.02, β(2) = β̄(2) =

0.024. We choose γ1 = 6 and γ2 = 5, as a result of which A =
(

20.7411 −10
−10 18.7566

)
and Ā =

(
30.9821 −10
−10 26.2351

)
are non-singular M -matrices. The bounds of control

area are given as R1 = 24.4949 and R2 = 20.4124. Then Rule 4.2 is fulfilled. With
detailed calculation, we derive that µ1 = 1.0391, µ2 = 4.2888. Thus we can take
the control rate δ = 0.9 to get the value of τ∗ as 2.17 × 10−6. By Theorem 4.3,
we can conclude that the controlled oscillator system (31) is exponential stable in
the sense of L4 and almost surely if δ = 0.9 and τ < 2.17 × 10−6. The simulation
results support our theory clearly (see Fig. 2).

5. Conclusion. In this paper, we have designed the discrete-time state intermit-
tent feedback control in a bounded state area to stabilise a kind of hybrid SDEs, in
the sense of moment and almost surely exponential stability. Not only more gen-
eral stochastic systems could be covered especially for those who are not globally
Lipschitz continuous, but also the control cost could be saved significantly. The
Razumikhin theory has been further developed, that is, condition (24) was given in
a function λ1(t) rather than a constant as before. But the structure of the function
we considered was quite simple, which was piece-wise continuous with only two
values. In the future, we will generalise the Razumikhin theory in terms of more
general functions.

Appendix. In this Appendix, we will give the proofs of several results in the
previous parts.
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Figure 2. Ten sample paths of oscillator system (29) (top), con-
trolled oscillator system (31) with δ = 0.9 and τ = 1× 10−6 (bot-
tom). Here the initial data is fiexed as xn(0) = 0.2, yn(0) = 0.1,
zn(0) = 0 for each n = 1, · · · , 25.

Proof of Lemma 2.8. For any (x, y, t, i) ∈ Rd×Rd×R+×S, we always assume that
|x| ≤ |y| without loss of generality. To show the desired assertion, let us consider the
following five possible cases. For convenience, denote by uxy = |u(x, t, i)−u(y, t, i)|.

• For x, y ∈ BRi
or x, y ∈ Bc

2Ri
, the results are clear.

• For x, y ∈ B2Ri − BRi , we see that
(

2Ri

|x| − 1
)
x and

(
2Ri

|y| − 1
)
y are both in

BRi . Thus by condition (8), we have uxy ≤ KM

∣∣∣( 2Ri

|x| − 1
)
x−

(
2Ri

|y| − 1
)
y
∣∣∣.

Then compute∣∣∣∣(2Ri

|x|
− 1

)
x−

(
2Ri

|y|
− 1

)
y

∣∣∣∣2 ≤ 4Ri

|x||y|
(2Ri − |x| − |y|)(|x||y| − xTy)

+ |x− y|2,

which yields that |uxy| ≤ KM |x− y|, since |x|, |y| > Ri.

• For x ∈ BRi , y ∈ B2Ri −BRi , we have uxy ≤ KM

∣∣∣x−
(

2Ri

|y| − 1
)
y
∣∣∣. Then the

required assertion follows since∣∣∣∣x−
(
2Ri

|y|
− 1

)
y

∣∣∣∣2 − |x− y|2 = 4(|y| −Ri)

(
xTy

|y|
−Ri

)
≤ 0.

• For x ∈ BRi , y ∈ Bc
2Ri

, it is easy to derive that

uxy = |u(x, t, i)| ≤ KM |x| ≤ KMRi ≤ KM

∣∣|y| − |x|
∣∣ ≤ KM |x− y|.

• For x ∈ B2Ri
−BRi

, y ∈ Bc
2Ri

, we derive that

uxy =

∣∣∣∣u(x, t, i)− u

(
2Ri

|y|
y, t, i

)∣∣∣∣ ≤ KM

∣∣∣∣x− 2Ri

|y|
y

∣∣∣∣ .
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Here we use the fact that u(y, t, i) = u
(

2Ri

|y| y, t, i
)
= 0 and the result in the

second case. Next compute∣∣∣∣x− 2Ri

|y|
y

∣∣∣∣2 − |x− y|2 = (|y| − 2Ri)

(
2xTy

|y|
− (2Ri + |y|)

)
≤ 0.

The required assertion then follows.

The proof is therefore complete. □

Proof of Lemma 3.1. At first, we show that for any (x, t, i) ∈ Rd × R+ × S
xT(f(x, t, i) + u(x, t, i)I(t)) +

1

2
|g(x, t, i)|2 ≤ (αi − γiI(t))|x|2 −

βi

2
|x|p+1,

xT(f(x, t, i) + u(x, t, i)I(t)) +
p

2
|g(x, t, i)|2 ≤ (ᾱi − γiI(t))|x|2 −

β̄i

2
|x|p+1.

(32)

Fix (t, i) ∈ R+ × S arbitrarily. For x ∈ BRi
, by (6) and (11), it is easy to see that

xT(f(x, t, i) + u(x, t, i)I(t)) +
1

2
|g(x, t, i)|2 ≤(αi − γiI(t))|x|2 − βi|x|p+1

≤(αi − γiI(t))|x|2 −
βi

2
|x|p+1.

On the other hand, we have that for x ∈ B2Ri
−BRi

, xTu(x, t, i) =
(

2Ri

|x| − 1
)
|x|2 ≤

0, and for x ∈ Bc
2Ri

, xTu(x, t, i) = 0. Therefore, for x ∈ Bc
Ri
,

xT(f(x, t, i) + u(x, t, i)I(t)) +
1

2
|g(x, t, i)|2

≤αi|x|2 − βi|x|p+1

=(αi − γiI(t))|x|2 −
βi

2
|x|p+1 +

(
γiI(t)|x|2 −

βi

2
|x|p+1

)
≤(αi − γiI(t))|x|2 −

βi

2
|x|p+1

since γiI(t)|x|2 − βi

2 |x|
p+1 ≤ γi|x|2 − βi

2 |x|
p+1 ≤ 0 when |x| > Ri. The second

inequality of (32) can be proven in the similar way.
Next, making use of (32), compute

LU(x, t, i)

≤2ηi

(
(αi − γiI(t))|x|2 −

βi

2
|x|p+1

)
+

S∑
j=1

qijηj |x|2

+ (p+ 1)η̄i|x|p−1

(
(ᾱi − γiI(t))|x|2 −

β̄i

2
|x|p+1

)
+

S∑
j=1

qij η̄j |x|p+1

=

2ηi(αi − γi) +

S∑
j=1

qijηj

 I(t)|x|2 +

2ηiαi +

S∑
j=1

qijηj

 (1− I(t))|x|2

+

−ηiβi + (p+ 1)η̄i(ᾱi − γi) +
S∑

j=1

qij η̄j

 I(t)|x|p+1
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+

−ηiβi + (p+ 1)η̄iᾱi +
S∑

j=1

qij η̄j

 (1− I(t))|x|p+1 − p+ 1

2
η̄iβ̄i|x|2p

=− I(t)|x|2 − (ηiβi + 1)I(t)|x|p+1 +

2ηiαi +
S∑

j=1

qijηj

 (1− I(t))|x|2

+

−ηiβi + (p+ 1)η̄iᾱi +
S∑

j=1

qij η̄j

 (1− I(t))|x|p+1 − p+ 1

2
η̄iβ̄i|x|2p.

This completes the proof. □

Proof of Lemma 3.2. Let t be fixed. It is easy to derive from (8) that

EŪ(x(t), x(tτ ), t, r(t))

≤E
((
2ηr(t)|x(t)|+ (p+ 1)η̄r(t)|x(t)|p

)
KM |x(t)− x(tτ )|

)
I(t)

≤E

(
KMηr(t)

√
τ |x(t)|2 +KMηr(t)

1√
τ
|x(t)− x(tτ )|2

+
p+ 1

2
η̄r(t)β̄r(t)|x(t)|2p +

(p+ 1)K2
M η̄r(t)

2β̄r(t)

|x(t)− x(tτ )|2
)
I(t). (33)

We can find a non-negative integer n such that nτ ≤ t < (n + 1)τ . Then we have
tτ = nτ , and sτ = nτ for any s ∈ [nτ, t]. Applying the Itô formula and using (6),
(11) yields that

E|x(t)− x(nτ)|2 ≤E

∫ t

nτ

(
2(x(s)− x(nτ))T(f(x(s), s, r(s)) + u(x(nτ), s, r(s))I(s))

+ |g(x(s), s, r(s))|2
)
ds

≤(2αM +KM + L1)

∫ t

nτ

E|x(s)|2ds+ 2L2p

p+ 1

∫ t

nτ

E|x(s)|p+1ds

+ (3KM + L1)

∫ t

kτ

E|x(nτ)|2ds+ 2L2

p+ 1

∫ t

nτ

E|x(nτ)|p+1ds

≤
(
2αM + 4KM + 2L1

ηm
+

2L2

η̄m

)
τ sup

−τ≤θ≤0
EU(x(t+ θ), r(t+ θ)).

Substituting this into (33), we obtain the assertion (15). This ends the proof. □
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