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A B S T R A C T   

Decommissioning and dismantling of nuclear facilities are complex processes, where an accurate triage of visual 
and radiological characterisation is an important driver of how this process is executed. In-situ measurements 
before dismantling are essential for effective, optimized waste management solutions to ensure the safe and 
secure decommissioning of nuclear installations. Characterising nuclear structures includes a large amount of 
human involvement in decision making, physical inspections and even lifting and relocating radioactive waste 
items. The current process accounts for risks like close human contact with radioactive material for extended 
periods, and errors based on operator knowledge rather than automated detection systems. In this paper, we 
present a framework to explicitly outline the steps required to classify nuclear waste remotely, in-situ and non- 
destructively, and the subsequent evaluation of these steps to determine where they can be automated. This 
framework uses the CommonKADS methodology, a well-established approach for knowledge modelling systems, 
to identify the main decisions in the process of characterising a nuclear reprocessing cell in a nuclear facility. We 
capture the sources of knowledge required to support and justify decisions made, and the resulting models are 
reviewed to assess where decisions can be automated, or supported using AI tools, to ensure robust, reliable, and 
rapid decisions. This framework aims to provide the first step and help to support innovation, toward a system 
able to produce tangible benefits for enhancing the safety, economy and reliability of nuclear cell waste clas-
sification and decommissioning management. We illustrate the use of the framework with a case study appli-
cation which demonstrates how a semi-automated decision support system could be built based on the 
framework.   

1. Introduction 

Decommissioning and dismantling (D&D) of nuclear facilities and 
related waste management issues represent a significant challenge 
around the world as they continue to age (Nuclear Energy Agency, 
2003). The Organisation for Economic Cooperation and Development 
and Nuclear Energy Agency country members are amongst those with 
the early development of nuclear technology in the 1940s and now face 
the decommissioning and dismantling of these facilities and equipment. 
This presents a technical challenge augmented not only by the fact that 
the waste is usually hazardously radioactive, but also these older legacy 
systems often have their original documentations lost and original staff 
retired. This means in a lot of cases, measurements, both contextual and 
radiometric, are paramount in characterising and understanding the 
extent and nature of nuclear waste, which directly impacts the strategies 
needed to decommission and dismantle the facility. Characterisation 

also gives rise to forecasting estimates which underpins waste man-
agement plans. The main purpose of D&D is to reach the end point of the 
life cycle of nuclear facilities while suitably protecting the health and 
safety of the decommissioning workers, the public and the environment. 
Presently there is no universal approach to the D&D of nuclear facilities 
as it is a complex problem that depends on various factors: national 
policies, availability of staff and financial issues amongst others. 

The D&D process includes classifying the nuclear waste. Measure-
ments used to characterise the waste can be used to assign the waste to 
different classes and in the UK, this is according to how much radioac-
tivity it contains (activity per unit mass) and the heat that it produces 
(Pöyry Energy Limit ed et al., 2017). Waste is sorted into 3 main cate-
gories: Low Level Waste (LLW) where waste content must not exceed 4 
giga-becquerels per tonne of alpha activity or 12 giga-becquerels per 
tonne of beta/gamma, Intermediate Level Waste (ILW) where waste 
exceeds the limit for LLW but do not generate enough heat to be taken 
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into account for storage and disposal purposes, and High Level Waste 
(HLW) where the temperature is significant and so must be taken into 
account when deciding upon its storage or disposal. 

In the UK, the Nuclear Decommissioning Authority (NDA) waste 
classification assessment is a life-cycle approach that involves the 
following key steps: planning and preparation which necessitates char-
acterisation, treatment and packaging which necessitates the retrieval of 
waste and sorting and segregating, and storage and disposal (Pöyry 
Energy Limit ed et al., 2017). In the planning and preparation phase, 
early characterisation of waste items can help with cost estimations, 
enhanced safety and provide better accuracy of characterisation and 
classification (INTERNATIONAL ATOMIC ENERGY AGENCY, 2007), 
leading to more informed waste management strategies and quality in-
ventories. The purpose of an inventory is to provide the best available 
information about the nature, quantity and location of the waste, and 
the data used to compile these inventories needs to be of good quality 
and collected in a systematic way, where the data may come from 
measurements, or may be derived or estimated while considering 
practical limits (Dickinson et al., 2020). A primary objective of the 
National Inventory Forum (NIF) is to improve the quality of these in-
ventories by improving efficiency of data collection (NDA, 2019). By 
performing a triage of the classification of nuclear waste in-situ before 
the retrieval phase, a more robust inventory can be compiled, and a 
more robust dismantling and sort and segregation process can be facil-
itated. Building a knowledge system for this triage process is a key 
challenge tackled in this work. 

In the rapidly evolving landscape of nuclear decommissioning, many 
strategies and processes have been developed for characterisation. A 
widely used guidance document in the UK is the NDA “Solid Radioactive 
Waste Characterisation Good Practice Guide” (Jacobs, 2022) of which 
many characterisation providers base their own characterisation strat-
egy. A web tool was developed within the INSIDER EU Horizon 2020 
project which provides a strategy for characterisation, pointing to 
state-of-the-art techniques to implement (Rogiers et al., 2022). More 
closely related to this paper is the work of the PLEIADES project - a 
common platform with a defined interface and reusable models, of 
which ontology was the basis. This enabled a standardised approach to 
organising data and easier data exchange between software (“www. 
pleiades-platform.eu,”). In addition, although there are also some 
well-developed techniques for the D&D process like decontamination 
techniques, cutting techniques for dismantling installations, radioac-
tivity measurement techniques and remote control techniques (Nuclear 
Energy Agency, 2003), it is still in its relative infancy regarding more 
advanced Artificial Intelligence (AI) techniques. 

The nuclear industry in the UK relies heavily on experts in key areas 
within decommissioning processes to manually make time-consuming 
decisions, which may introduce human factors associated with subjec-
tivity and may lead to overly conservative assumptions. It is important 
to note that these problems are not confined to nuclear decommission-
ing, but spans to other decommissioning activities beyond nuclear 
plants. Relevant knowledge often resides in domain experts’ minds, 
along with archived documents of operating history (Nuclear Energy 
Agency, 2006), thus, by eliciting knowledge from domain experts and 
utilising archived documents, knowledge-based systems can be created 
which could help alleviate pressure on experts and make the decom-
missioning process faster and more accessible to newer staff. Because 
knowledge in the nuclear industry is often tactic, it is an industry where 
a direct application of more advanced AI methods is still difficult. The 
primary focus of current AI research and technology are based on “black 
box” techniques and can typically be impossible to interpret. Explic-
ability is crucial for any decision-making tools regarding nuclear activ-
ities in the interest of safety and meeting regulation requirements, so for 
this reason reinforcing the results of the new AI methods with more 
conventional approaches is necessitated to provide quantitative and 
qualitative reasoning (Suman, 2021). Extending the functionality of the 
framework to triage the classification of nuclear waste to review for 

automation capabilities or supported by AI tools is another key chal-
lenge tackled in this work. 

In summary, the main motivation of this work is that if nuclear waste 
is characterised early in the nuclear facility life-cycle then: it can be done 
more simply and accurately without the need for assumptions that will 
need validated, it will be less expensive, safety is increased since the 
waste will be handled less since characterisation will be more repre-
sentative, overly conservative assumptions will be relied on less, making 
better use of storage and disposal facilities, and inventories and the sort 
and segregation process will be more robust. Another main motivation 
of this work is that innovation is paramount to the success of the nuclear 
industry and AI is central to this innovation. The nature of AI techniques 
poses a challenge for its viability in the nuclear industry, therefor, 
formulating knowledge for use in AI systems can provide the first step 
towards utilising AI and automation in the nuclear industry. 

Large scale nuclear facility decommissioning (e.g., nuclear power 
plants) involves a large and diverse set of processes, therefor, for the 
purpose of this paper, legacy hot cell decommissioning is chosen to 
exemplify a proof-of-concept case study. Choosing legacy hot cells 
simplifies the process because radioactive material will be from a spe-
cific process, rather than a wide array associated with the whole nuclear 
power plant. Therefore, we propose a formal knowledge-based system 
for capturing and representing the key decisions in the classification of 
waste in nuclear cells for informing the decommissioning strategy. The 
emphasis lies in the creation of knowledge models rather than the direct 
implementation of a KBS in a computer. The objective is to investigate 
the feasibility of automating decisions through these models. Separating 
the development of KBS models from the actual code is crucial as it 
serves an effective means for gathering requirements, bridging the gap 
between model design and programming necessities. This approach 
ensures a clearer understanding for both knowledge engineers and 
programmers. This objective is realised through a framework which uses 
the CommonKADS methodology (Schreiber et al., 2001). The Com-
monKADS methodology is used to clearly identify the main decisions in 
the process but also capture the sources of knowledge required to sup-
port and justify the decisions made, an essential element to support a 
transparent decision-making process. By formally capturing this 
decision-making expertise, the resulting models can be reviewed to 
assess where decisions can be either automated or supported using AI 
tools. This will ensure robust, reliable, and rapid decisions are made 
systematically. This paper will illustrate the use of the framework with a 
case study application which demonstrates how a semi-automated de-
cision support system could be built, highlighting tasks and decisions 
which could be automated and providing examples of some of these 
activities. A particular problem facing the UK is the decommissioning of 
reprocessing cells containing pipes, vessels, and steelwork. In this situ-
ation, a key concern is understanding the volumes, spatial distributions 
and types of waste radionuclides present in the nuclear cell, as estab-
lishing this determines which strategies and approaches can be 
employed in decommissioning plans. We present a general KBS for cases 
such as this, and instantiate a part of the KBS by using data from a 
mock-up nuclear cell drawn from a UK nuclear facility. For this work, we 
focus on the decisions directly involved with interpreting the data and 
how this might be automated, taking the existence of the data as a 
pre-requisite to this stage of the work. In this case study, we use a digital 
representation of the real-world environment, comprised of a 3D LiDAR 
scan of a mock-up nuclear cell, which is mainly made up of pipes 
entering/exiting a vessel, with radiometric overlay and spectroscopic 
information included. This demonstrates the feasibility of the design 
while satisfying real-world environments (highly contaminated and 
heavily shielded). 

The paper is broken down as follows: a short introduction and 
summary of KBS in the nuclear industry, and a summary of the Com-
monKADS methodology outlining the main models used in the KBS 
presented in this paper. The subsequent section is the KBS developed for 
a generic case study, presenting the Organization models and Task 
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models for classifying nuclear waste, followed by a section describing 
the inference model approach for reviewing manual processes and de-
cision making, then evaluating the opportunities for introducing auto-
mation or augmentation to improve the speed and reduce the 
subjectivity of these expert judgments, while providing a transparent 
path for explanations of the resulting decisions. Finally, we examine 
how this approach might be expanded on and implemented in part, by 
using a proof-of-concept case study. 

2. Background: knowledge-based systems in the nuclear 
industry 

Knowledge-Based Systems (KBSs) are the result of Knowledge Engi-
neering (KE), which emerged in the late 1970s as a branch of AI. This 
was instigated by the Information Age. Knowledge is a key resource in 
the modern world and managing knowledge has become a scientific 
discipline. KE supports knowledge management by spotting opportu-
nities and bottlenecks in a process. KE can also be the process of taking a 
complex task usually carried out by a human and turning it into a task 
that a computer can do, requiring the collection, modelling and codifi-
cation of knowledge - KBSs are the formalised methods to do this 
(Schreiber et al., 2001) (Puppe, 1999). They are used for knowledge 
intensive tasks where an expert is relied upon for their decision making. 
A KBS can essentially replace or aid experts in their decision making by 
leveraging the domain experts’ knowledge, in a modelled or codified 
format, to imitate their thought process (Akerkar and Sajji, 2009). KBSs 
are powerful as they can draw on techniques from various fields of AI 
and engineering, including AI techniques such as ANNs, machine 
learning, fuzzy logic, natural language processing and knowledge 
modelling (Alor-Hernández and Valencia-García, 2017). The nature of 
KBSs means they can explicate a task so far as to facilitate partial/full 
automation of that task, and are therefore powerful for supporting 
complex processes (Schreiber et al., 2001). 

To incorporate the characteristics of human experts into a computer 
program, there are broad steps to be carried out (Kendal and Creen, 
2007) - knowledge acquisition (obtaining knowledge from experts, 
drawings, databases, academic research etc), knowledge representation 
(producing a map/model of knowledge to be codified into the knowl-
edge base), and creation of an inference engine (applying rules to the 
knowledge base so that the KBS can make decisions or provide advice). 
The main components of a KBS are the knowledge base and the inference 
engine (Akerkar and Sajji, 2009). 

Constructing knowledge-based-systems to use in AI systems is 
currently something of an ad-hoc task in the nuclear industry and many 
others. While many documents have been published by the IAEA on the 
importance of knowledge management (INTERNATIONAL ATOMIC 
ENERGY AGENCY, 2021) (INTERNATIONAL ATOMIC ENERGY 
AGENCY, 2022) (INTERNATIONAL ATOMIC ENERGY AGENCY, 2017) 
(INTERNATIONAL ATOMIC ENERGY AGENCY, 2016) (INTERNA-
TIONAL ATOMIC ENERGY AGENCY, 2011a) (Chou et al., 2005) (IN-
TERNATIONAL ATOMIC ENERGY AGENCY, 2009) and KBSs 
(INTERNATIONAL ATOMIC ENERGY AGENCY, 1993) (INTERNA-
TIONAL ATOMIC ENERGY AGENCY, 1992) (INTERNATIONAL ATOMIC 
ENERGY AGENCY, 1990) (INTERNATIONAL ATOMIC ENERGY 
AGENCY, 1994) in the nuclear industry, most research surrounds 
modern artificial intelligence techniques like artificial neural networks 
(Mo et al., 2007), support vector machines (Claudio et al., 2007), and 
genetic algorithms (Yangping et al., 2000), and these algorithms tend to 
focus on fault diagnosis. 

Academic studies surrounding KBSs for nuclear power plant 
decommissioning remain scarce. In (Chou et al., 2005), authors 
described a conceptual design and knowledge inference process for the 
organisation of nuclear decommissioning knowledge based on operator 
experience, expert knowledge and regulations. They used Unified 
Modelling Language (UML) diagrams, based off various Integrated 
Definition Language diagrams (IDEF), to implement object-oriented 

programming tools and inference engines. They clearly outline the 
steps to build the inference engine, including problem definition and the 
conceptualisation, integration, and formulation of knowledge model. 
Authors in (Iguchi and Yanagihara, 2016) proposed a KBS to preserve 
and transfer knowledge for long-term decommissioning projects, dis-
cussing various sources of knowledge and the difficulty of acquisition of 
tacit knowledge. An expert system was implemented in (Yanagihara 
et al., 2001) to model a decommissioning project, based on system-
atising past experience from the Japan Power Demonstration Reactor 
(JPDR) dismantling demonstration project, and facility information and 
measurements. The expert system, modelled using flow diagrams, was 
used to create the computer system for planning and management of 
reactor decommissioning (COSMARD) (Yanagihara, 1993). Following 
on from this work, in (Iguchi et al., 2004), authors extend the utility of 
COSMARD to include 3D-CAD models and VR to make informed de-
cisions about physical characteristics and manpower necessary to cut 
and move items. A highlight of this work is how the data is stored and 
managed to effectively produce a dismantling plan in terms of cost and 
manpower. An AI guided reasoning-based operator support system was 
proposed in (Hanna et al., 2021) to provide recommendation to all 
modes of plant operation. Knowledge was represented using Answer Set 
Programming (ASP), providing reasoning about many fault diagnoses 
and proposed actions based on various variables. Intelligent systems 
such as the one in (Byun et al., 2021) aim to reduce the burden on op-
erators during the Radiation Survey and Site Investigation process 
(RSSI), where the user can input information like nuclide measurements, 
documents and drawings, and the system produces a survey plan. 

The work presented in this paper aims to capture the process to 
classify waste in-situ and inform automation capabilities. With a similar 
aim, the INSIDER project (H2020-Euratom) (Rogiers et al., 2022) (Aspe 
et al., 2020) examines the use of non-destructive techniques for radio-
logical characterization in nuclear facilities undergoing decommission-
ing and dismantling. It provides guidance for selecting in-situ 
measurement techniques that can be applied in constrained environ-
ments, and discusses how to integrate constraints such as radioactivity, 
materials, accessibility, and hazards into the system definition. The 
paper also offers recommendations for implementing chosen in-
struments and outlines the strengths and weaknesses of common de-
tectors for in-situ measurement techniques, along with their 
recommended applications in nuclear facilities. 

While some of these systems are not KBSs by the definition of the 
term, they contain elements that are similar, such as using a knowledge 
base. The main difference between these studies and the work here is the 
modelling of knowledge, done not just with a computer or new tech-
nology in mind, but also for a human. The preservation of key knowl-
edge in a human interpretable way is crucial for transfer of knowledge 
for future decommissioning projects. 

3. Background: CommonKADS methodology 

Knowledge and reasoning surrounding tasks associated with nuclear 
waste classification, and indeed the nuclear industry generally, plays a 
pivotal role in the success of completion of that task, and Common 
Knowledge Acquisition and Document Structuring (CommonKADS) 
(Schreiber et al., 2001) is an effective methodology to execute this. 
CommonKADS is the result of international research and projects on 
knowledge engineering starting in the early 1980s. Before this, knowl-
edge systems were developed mainly through trial and error, high-
lighting the need for a more methodical approach to knowledge system 
development. CommonKADS filled this gap by introducing 
industry-quality knowledge-oriented methods and modelling for 
organisational analysis, complete with guidelines and techniques to 
engineering and managing knowledge. It can be used to support the 
identification of problems and opportunities, localise solutions and 
feasibility and improve tasks with the inclusion of knowledge, providing 
a better understanding of why certain decisions are made and with what 
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knowledge. It can also highlight process issues before the coding stage. 
Knowledge elicitation is an activity in the CommonKADS method-

ology that often precedes the knowledge modelling activity. It is a 
foundational step that provides information for knowledge modelling. It 
is a necessary step for knowledge engineers to understand domain 
knowledge from experts in the domain. However, in this paper we have 
brought this activity to the forefront, as information elicited from ex-
perts also informed activities like the organisation model, and task 
model, as it meant the domain was understood and therefore the need 
for a KBS was also understood. 

The CommonKADS methodology separates knowledge systems into 3 
levels, comprising of 6 models shown in Fig. 1. The model suite essen-
tially defines 3 types of questions, the “why”, “what” and “how”. 
Together, the organization, task, and agent models examine the “why” 
question and analyses the organizational context for a knowledge sys-
tem. The knowledge and communication models examine the “what” 
question, yielding the nature and structure of knowledge and commu-
nication, and conceptual descriptions of problem-solving functions of 
this knowledge. The design model asks the “how” question, analysing 
the technical specifications necessary for computer implementation. The 
construction of all these models, however, is not mandatory and largely 
depends on the goals of the application. 

This work is primarily centred around describing the inference 
knowledge in the KBS. Inferences carry the reasoning element of the KBS 
and are indirectly linked to the domain knowledge, so serves as a 
promising start to identify where decisions can be automated. As such, a 
description of the CommonKADS ontology for the inference knowledge 
is included here. Ontologies describe the representation of knowledge 
within the CommonKADS KBS, including the representation of inference 
knowledge. Inference knowledge specifies the reasoning, based on 
available knowledge and information, that the KBS employs to make 
decisions. 

Inferences uses “knowledge roles" to describe its data. These roles are 
like labels for data objects, showing what they do in the reasoning 
process. There are two types: dynamic roles change with each inference 
run (like taking in a complaint and giving out a hypothesis), and static 
roles stay more constant, representing the core knowledge guiding the 
inference. This makes it easier to see how data is used in the reasoning 
process. 

In the knowledge model, we concentrate on the structure of the 
reasoning process, not direct communication with other agents 

(software agents). However, recognizing the importance of external 
interactions, especially in processes like diagnosis, CommonKADS 
introduce “transfer functions." These functions act as black boxes, 
handling the exchange of information between the reasoning agent in 
our model and the external world (other systems or users). There are 
four types of transfer functions based on initiative and information 
possession: Obtain (requesting information), Receive (getting informa-
tion), Present (sharing information), and Provide (giving information). 
Detailed specifications of these functions are found in the communica-
tion model. 

Represented graphically in an inference structure, dynamic knowl-
edge roles appear as rectangles labelled with their names, while in-
ferences are ovals connected by arrows showing input-output 
dependencies. Transfer functions, like “obtain," are depicted in rounded 
boxes. Static roles are represented between two lines, connected to the 
inferences. While optional, static roles are often included during con-
struction. Also, a small solid circle on a data-dependency line indicates 
that input or output should be interpreted as a set of objects, offering 
clarity in cases where inferences operate on single or multiple objects. 

The models in the CommonKADS methodology are method/task 
specific, requiring the KE to identify the decision-making requirements 
and select an appropriate inference model based on the nature of the 
problem. The types include, but are not limited to, classification, diag-
nosis, and assessment, all of which have different types of inputs, out-
puts and knowledge. 

We have revised the CommonKADS methodology slightly to apply in 
the context of the goals of this project by creating only the first orga-
nization model to support the general context of the project from a 
technical perspective and not the business perspective that the Com-
monKADS methodology provides a structure for. We also do not analyse 
the communication and design models in this paper but may be included 
in future work. The following is the structure of our analysis.  

1. Knowledge Elicitation  
2 Organization model  
3 Task Model  
4. Knowledge Model  
5. Agent Model 

4. Knowledge-based system 

The KBS described in this section is largely generic but is slightly 
tailored to a legacy hot cell example, for proof of concept. The KBS is 
described in Sections 4.1–4.5 and an instantiation of part of the KBS is 
presented in Section 5. We use a case study of a mock-up vessel with 
radioactive contamination. A point cloud of this vessel was generated 
using a FARO Focus device with a 2D radiometric source overlay, 
generated by the RadScan 3D gamma imaging system (Cavendish Nu-
clear, 2023). The vessel has loose contamination inside it of typical ra-
dioisotopes found in reprocessing. 

The focal point of this project was not how to gather data but how to 
structure the processes and knowledge required to automate performing 
a triage of the classification of nuclear waste inside a nuclear cell. This 
KBS provides a proof of concept that is specified in some detail for the 
mock-up nuclear cell, however many aspects remain broad to show how 
it may be applied to different scenarios. This section follows the Com-
monKADS methodology, providing details on knowledge elicitation, the 
organisation model, task model, knowledge model and agent model. 
Results of an instantiation of part of the KBS is then presented in Section 
6. 

4.1. Knowledge elicitation 

Knowledge engineers carry out knowledge elicitation, which is a 
process of acquiring knowledge from technical manuals, research papers 
and textbooks but also domain experts (Schreiber et al., 2001). The 

Fig. 1. CommonKADS model suite. Organisation model, task model, agent 
model = “why”, knowledge model and communication model = “what”, design 
model = “how”. The components described in this paper are the organisation 
model, task model, agent model and knowledge model. (Nuclear Energy 
Agency, 2006). 
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nuclear industry is one with an ageing workforce, and knowledge 
transfer to the next generation is essential for the reliable operation, 
maintenance and decommissioning of nuclear sites (Aspe et al., 2020). 
In this paper, the elicitation process was a mix of research papers and 
eliciting knowledge from practitioner experts, who engage in constant 
day-to-day problem-solving in the domain. The aim was to understand 
how decisions were made and to transform this knowledge into an 
explicit form. 

4.2. Organization model 

The organizational model, or context modelling, serves the purpose 
of listing problems and solutions concisely, essentially covering the 
overall visioning of the study. It involves carrying out a feasibility study 
where we identify problems and opportunities and determine solutions 
based on features of the wider organizational perspective and mission. 
The CommonKADS methodology is not a “one size fits all” and should be 
used flexibly, and, to suit the purpose of this research, we used organi-
zation model 1, Table 1, to explicate the problems and opportunities for 
waste management. Through online research reinforced by interviews 
with technical experts working in the field, the major problem found 
was that, currently, nuclear waste within a nuclear cell is classified 
manually and requires significant manpower and various steps, and the 
importance of an accurate inventory was highlighted. 

Protective equipment for each operator is needed for the sort and 
segregation process and there can only be a few hours of productivity 
due to the nature of the working conditions. Once dismantled, a mixture 
of waste objects is placed into a container for transit to the waste 
treatment cell, and it may not necessarily be known exactly what is in 
each container. There are telemanipulators and telerobotics (INTER-
NATIONAL ATOMIC ENERGY AGENCY, 2005) to lift it from the 
container while avoiding damage to surrounding areas, and then trained 
operators with many years of experience are required for a 
knowledge-based approach to classifying the waste using radioactivity 
and physical characteristics. Once this process has been carried out, 
decisions are made to sort and segregate the waste into their grade 
classes, which requires moving the waste to the correct containers for 
disposal, while making the best use of space in each container. A 
representative site typically sorts 2–6 drums per day, where the latter 

end of the scale is achieved when the radioactivity is homogenous 
throughout and the objects are similar, and the lower output is when the 
waste was very mixed (Nuclear Decommissioning Authority et al., 
2020). Triage of the classification of nuclear waste, before dismantling, 
would increase the homogeneity of waste to be sorted, therefore, we 
define the overarching opportunity, problem, and potential solution, in 
line with the general context, as “Manual classification of nuclear waste 
is expensive, time-consuming and relies heavily on operator knowledge 
and expertise. Opportunity to automate.”, “No method for providing an 
assessment of automation suitability for classification of waste.” And 
“Application of the CommonKADS KBS to assess feasibility to automate 
the classification of nuclear waste.” respectively. Potential threats to the 
proposed solution are also included in Table 1. Firstly, the dynamic 
nature of radioactive waste (decay and other processes) may pose a 
threat to an automated system, since CommonKADS relies on a static 
knowledge base. However CommonKADS is flexible, and a flexible rule 
engine can be implemented that can be adjusted or extended based on 
new knowledge. Threat 2 also addresses input data, but from another 
angle. Classification relies on specialised expert knowledge, often tacit, 
which is challenging to capture for CommonKADS. Historical records 
also may be incomplete or imprecise, which may pose a challenge for 
CommonKADS in handling uncertainty. Addressing these threats may 
involve effective knowledge elicitation techniques, dynamic rule mod-
ifications to accommodate changes and reduce impact of uncertainty. 
The last potential threat is about integration with existing systems, and, 
while this paper aims to address the decisions and review for automated, 
not the design phase of the CommonKADS system, it is important to keep 
in mind technical compatibility of the end result. This may be addressed 
by standardised data formats for data exchange, and importantly 
collaboration with providers of existing systems to smooth out integra-
tion, aligning the CommonKADS system with already existing technol-
ogies in use. 

The next part of organisation modelling allows for the process to be 
modelled, ordering functions of the process in a time-ordered fashion, 
and implies “input” and “output” dependencies. This is done down to the 
level of detail that enables decision making about a task, e.g., construct a 
knowledge model to automate or explicate that task. We break down the 
process into tasks and illustrate this with a UML diagram as shown in 
Fig. 2, with some tasks broken down into subtasks in organisation model 
3 (Table 2). 

The new process of classifying nuclear waste is presented in Fig. 2. 
The process is time-ordered left to right, and arrows show the in-
terdependencies of tasks. The first step is data collection from both vi-
sual and radiation inspection, and the gathering of historical 
information. The data from the visual inspection is an input to visual 
data analysis and same for radiation. The gathered historical data is an 
input to tasks in the visual and radiation data analysis; this, in both 
cases, is to match/cross check data collected via inspection to historical 
data, and therefor acts as a supplementary step to information we know 
about the cell. The last step is to categorise the waste based on infor-
mation we have gathered and analysed. The primary focus in this 
research is the decision making that happens within each step in the 
process and identifying areas for (semi)automation. 

Table 2 presents a worksheet (numbered OM-3) to specify the task 
details, identifying which knowledge assets are used, and the signifi-
cance of the task based on effort required and task criticality. This gives 
an improved understanding of the role of each task in the process. In task 
No. 1 (determine likely objects), we can see that the more useful 
knowledge applied and evaluated here, the more accurate the outcome 
will be, as this task is a prerequisite to subsequent tasks. 

In most waste characterisation processes (in-situ, ex-situ, sampling) 
existing information is reviewed and evaluated to build an initial un-
derstanding of the waste (Jacobs, 2022). Importantly, evaluating exist-
ing information and identifying the limitations in this existing data can 
direct us in what information, and therefor what measurements need 
taken, therefor building a fuller picture of the nature of the waste. 

Table 1 
Organisation Model 1 - Explicating problems and opportunities for nuclear 
waste management.  

Organisation Model - 1 Problems and Opportunities Worksheet OM-1 

Problems and 
opportunities 

Driver/Opportunity: Manual classification of nuclear 
waste is expensive, time-consuming and relies heavily 
on operator knowledge and expertise. Opportunity to 
automate. 
Problem-1: No method for providing an assessment of 
automation suitability for classification of waste. 
Problem-2: Location of radiation in the cell, currently 
2D radiation image is overlayed onto 3D point cloud - 
yields ambiguity of radiation source. 

General Context (mission, 
strategy …) 

The need for safer, faster, and more cost-efficient 
operations than conventional methods. Innovate to 
deliver nuclear services safer, faster and at a lower 
cost. 

Potential Solutions Soln-1: Application of the CommonKADS KBS to assess 
feasibility to automate the classification of nuclear 
waste. 
Soln-2: Exploiting object detection to achieve better 
isolation of radiation and allows for specific activity 
calculation to classify waste if combined with weight 
information. 

Potential Threats Threat-1: Dynamic nature of nuclear waste 
classification 
Threat-2: Domain expertise and uncertainty and 
ambiguity of available information 
Threat-3: Integration with existing systems  
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Having a pre-conceived notion of what kind of waste being dealt with is 
can help estimate the radioactivity of the waste and therefor anticipate 
the safety precautions workers may need to follow, and knowledge of 
the process the waste has arisen can allow the concentration of 
easy-to-measure radionuclides predict harder-to-measure radionuclides. 
Existing information can be reviewed against the characterisation pro-
cess objectives, including the accuracy required for certain waste man-
agement approaches, to determine utility of it. 

Existing information can come in a variety of forms: engineering 
drawings (CAD models, blueprints) of nuclear facilities for in-situ waste 
are useful for estimating the volumes and materials (concrete structures, 
metal pipes and vessels), plant and process information to provide an 
understanding of how the waste was generated which, when coupled 
with process information like characterisation data from routine moni-
toring, can indicate a likely physical and chemical characterisation 
criteria (e.g., what radionuclides or hazardous substances are likely to 
be present), operational records, experience and expert judgement to 
provide extra detail on the history of the in-situ waste in question, e.g., 
spills or events, previous characterisation survey data, the age of the 
facility to consider temporal changes like radioactive decay and changes 
of parts of equipment. 

Following on from the fourth part of organisation modelling, 
focusing attention on the knowledge assets, specified in Table 2, Table 3 
provides a worksheet (numbered OM-4) to describe the knowledge as-
sets used in more detail. This is later refined more in task modelling and 
knowledge modelling. The gradual construction of knowledge in this 
way builds an understanding of the knowledge and also gives more 
opportunities for flexibility in knowledge management. 

In this organisation model we indicate the knowledge utility. Often 
in the nuclear industry, inadequate or minimal records and documen-
tation available for decommissioning activities presents challenges. It 
does not cause the inability to characterise facilities however it does 
mean there is an extra effort to re-establish the records by inspections 
and measurements which means increased technical challenges and 
costs (INTERNATIONAL ATOMIC ENERGY AGENCY, 2011b). While 
existing information is evaluated to aid the characterisation process, it is 
a manual, case-by-case process. For example, analysis of information 
from Piping and Instrumentation Diagrams (P&IDs) (commonly used to 
describe piping structures) is challenging as it is not only extracted 

Fig. 2. UML diagram of main tasks in the process to characterise waste in a nuclear cell. The tasks are numbered and described in more detail in Table 2.  

Table 2 
Organisation Model 3 – Process breakdown to main tasks.  

OM 
- 3 

Process Breakdown Worksheet OM-3 

No. Task Performed 
By 

Knowledge 
Asset 

Significance 

1 Determine 
Likely Objects 

Expert Engineering 
Drawings 
Operator 
Knowledge 
Existing Process 
information 

This task 
determines which 
primitives MATLAB 
searches 
for, so this task must 
be completed with 
valid assumptions 
as it affects 
subsequent tasks. 

2 Characterise 
Objects as 
Primitives 

Expert Object to 
primitive 
knowledge e.g., 
pipes are 
cylinders 

See above 

3 Pre-process 
data 

Matlab   

4 Detect 
Primitives and 
Dimensions 

Matlab Object to 
primitive 
knowledge e.g., 
pipes are 
cylinders  

5 Check/update 
models of 
objects 
detected 

Expert  This task ensures 
the prim-itives 
detected by 
MATLAB 
do not contain 
mistakes and can be 
matched to an item, 
so affects 
subsequent tasks 
and overall output 

6 Match to 
inventory/ 
engineering 
drawings 

Matlab Engineering 
Drawings  

7 Retrieve 
Parameters 

Matlab 
Operator 

Matlab Output 
Engineering 
drawings   
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manually which is a laborious task and error prone (Gao et al., 2020) but 
also there may be differences between the engineering drawings to 
actual reality because of modifications throughout the nuclear plant 
lifetime (Bean et al., 2009). There is also no established way to capture 
and codify prior knowledge and expertise; for example anecdotal in-
formation from operators with significant operational experience can be 
important to characterise nuclear facilities. Here, we make an attempt at 
this, however the work here should not be interpreted as absolute or 
all-encompassing of all knowledge assets. 

Some evaluation of knowledge, and therefor existing information, 
starts to get drawn out in Table 3 in terms of if it can be improved in 
form, accessibility, or quality. These tasks typically require operator 
knowledge and existing information about the facility being charac-
terised. Thus, knowledge sharing and having knowledge in a format 
where it can be used effectively in a (semi) automated system is 
important. The knowledge assets are summarised in Table 3 but are 
described below in more detail;  

Engineering Drawings Engineering drawings are commonly considered crucial 
knowledge assets in any decommissioning project and may 
include floor plans instead of engineering drawings. 
In terms of form, drawings tend to be inconsistent in 
format and presentation. Some drawings are old and 
therefor clarity and legibility are compromised. Consistent 
drawings are a major factor in successful automation. If 
they were standardised, they could be more efficiently 
processed. It is appreciated that standardisation is difficult 
to implement across complex nuclear facilities and the 
interdisciplinary nature of them. 
In terms of quality, their effectiveness depends on their 
accuracy and completeness and quality. 

Operator Knowledge Operator knowledge is often a critical component when 
decommissioning nuclear facilities. 
In terms of form, operator knowledge is sometimes 
documented, but is often never documented 
comprehensively, especially for older facilities. This 
information is often not very well organised and creates a 
substantial time-consuming task of sifting and organising 
this information as part of the task of characterisation. If 
knowledge is captured, it is almost always in a digital 
format, but not in a format that can be easily processed. 
In terms of quality, the information by nature is 

(continued on next column)  

(continued ) 

experienced-based insights gained from operational 
experience which is valuable for making informed 
decisions. This information is often incomplete and can 
only be used to create a holistic understanding. 

Existing historical 
Information 

In terms of form, this information is like engineering 
drawings. Information tends to be non-standardised. 
However, surveys like health physics surveys tend to be 
somewhat standardised and tabularised, meaning data can 
be utilised and processed easily. This may lend itself more 
to being used in automated processes sooner than non- 
standardised information such as operator knowledge. 
In terms of quality, it can vary widely and is contingent on 
several factors. The age of the facility can impact quality, 
as the older ones may not have had adequate investment in 
information management. It is also dependent on the 
culture. A strong safety culture usually maintains higher 
standards of quality in their processes and information 
management. 

Object to primitive 
Knowledge  

This knowledge asset is more targeted towards the KBS in 
this paper specifically for task 2, “Characterise objects as 
primitives”. Objects from visual data should be in a 
consistent format should be structured. This ensures that 
any AI/algorithm used to process an object to a primitive 
can universally handle different structures. In this paper, 
this step is done using human processing rather than 
automation, as it is a simple task and can be done quickly 
by a human.  

Some knowledge is less intensive than others, e.g., determining likely 
objects requires operator knowledge of the process and therefor a 
deduction can be made, or visual inspection if possible. In contrast, 
characterising objects as primitives can be clearly nailed down. In both 
cases, a more appropriate form (electronic) would facilitate knowledge 
sharing. 

4.3. Task model 

The task model explores the tasks in more detail, and Task 5 (Check/ 
update models of objects detected, see Table 2), is discussed here for 
reference. The task model comprises Tables 4 and 5. The content in these 
tables decomposes each task further into subtasks, dependency and flow 
indicated by the task inputs and outputs, which are articulated through 
the utilization of a worksheet denoted as TM-1 in Table 4. This work-
sheet serves as a detailed refinement of information gleaned from 
another worksheet, OM-3 in Table 2. 

For task 5 the main goal is to make sure models detected in task 4 are 
sound, therefor the input task is task 4 and the output task is task 6. Input 

Table 3 
Organisation Model 4 – Knowledge assets.  

OM - 4 Process Breakdown Worksheet OM-4 

Knowledge 
Asset 

Used in Right form? Right quality? 

Engineering 
drawings  

1 Determine 
likely objects  

6 Match to 
inventory/ 
engineering 
drawings 

Yes, typically 
electronic. 

Yes, however 
engineering 
drawings need to be 
up to date with latest 
developments e.g. 
equipment may have 
been taken away/ 
added since initial 
installation. 

Operator 
Knowledge  

1 Determine 
likely objects 

Sometimes – 
depends on 
information 
management by the 
nuclear facility. 

Can be incomplete. 

Existing 
historical 
information  

1 Determine 
likely objects 

Yes, surveys 
conducted 
throughout the 
facility life-cycle 
along with purpose 
of cell/equipment 
are usually 
available. 

Yes. 

Object to 
primitive 
knowledge  

2 Characterise 
Objects as 
Primitives 

No, knowledge in 
operators minds. 

Yes – not much scope 
for subjectivity.  

Table 4 
Task Model 1 – Task analysis of Task 5 (Check/update models of objects 
detected).  

Task Model 1 Task Analysis Worksheet TM-1 

Task  5 Check/update models of objects detected 
Goal and Value This task aims to check the reasonableness of the objects 

detected in task 4. This is a necessary task as over-fitting/ 
under-fitting the data will lead to wrong results and overall 
wrong classification 

Dependency and 
Flow 

Input Tasks: Detect primitives and determine dimensions 
Output Tasks: Match to inventory of expected objects 

Objects Handled Input Objects: Objects and their dimensions within point cloud 
Output Objects: Complete set of objects that have been 
correctly identified 

Timing and Control Frequency: Once when data is received. 
Duration: This task should take a couple of days 

Agents Expert/Knowledgeable person 
In new situation: knowledge system, Matlab 

Quality and 
Performance 
Measures 

Successful execution will mean this task will have an output 
of detected primitives with low mean error and have been 
checked visually by an expert that objects detected are 
reasonably well fitted  
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and output objects handled is information content necessary to complete 
the task, and information gained because of the task. For task 5, the 
objects and the dimensions (an output object for task 4) is an input 
object, making the output object a complete set of items that have been 
correctly identified. Also shown is a temporal order and control of 
subtasks where “how long” and “how often” is specified for each task, 
and some quality measures. For task 5, a quality measure will mean the 
objects detected will have a low mean error and will also have been 
checked visually by the doer. These items in the task have a natural link 
to approaches and how the KBS will be implemented. Additionally, in-
formation like goal and value, and agents who perform the task and 
quality are re-introduced. 

In task model 2 (Table 5) the knowledge assets used in the process to 
evaluate visual data, from is scrutinised further. Each knowledge item is 
described in terms of nature, form, and availability into its own separate 
worksheet. Table 5 describes the knowledge item “Engineering 
drawings”. 

The nature of this knowledge is formal meaning it has been made 
explicit in writing. It is also empirical as the drawing is a representation 
of the real-life scenario in the cell and is also highly specialised and 
domain specific. However, the nature of this knowledge is also uncertain 
and may be incorrect. This is because, oftentimes, engineering drawings 
were made during construction of the facility and haven’t kept up with 
modifications that may have happened in real life. The developments of 
a facility need to be maintained in a formal format, and therefore, 
improved. Because of the type of hazards/contamination these cells 
often harbour, verifying the information in the engineering drawings 
can be hard to verify in person, necessitating remote/robotic techniques. 
This is a key area of improvement that this KBS will attempt to account 
for. The form of engineering drawings is electronic, usually initially in 
paper form and electronically scanned in. This leads to limitations in 
form since the information cannot be interrogated or modified easily to 
keep up with developments. Lastly, information is held by the facility 
owner so getting access to information is not always the quickest 
process. 

4.4. Knowledge model 

The knowledge model comprises of domain knowledge and inference 
models. Here, we explicate how knowledge is used in tasks to infer 
outcomes, which can then be used as specifications for system devel-
opment and ultimately automation development. 

For the overarching visual characterisation task, several inference 
structures were created that encompass each task within this process. 
The inference structure describes the lowest level of functional decom-
position. There are several task templates for inference structure in the 
CommonKADS methodology. For tasks 1, 2, 4 and 5 in the visual char-
acterisation application, the diagnosis template was chosen and modi-
fied, as is shown in Fig. 3. This structure was chosen as it fits well with 
the application - the annotated inference structure specifies the dynamic 
roles. We can see that these examples can be extended to other scenarios 
with other items and so this template should be reusable and useful. In 
words, this inference structure describes how the items in the scenario 
are determined and characterised as primitives, and how the models are 
checked for fitness. The Cover inference takes, as input, the dynamic role 
of the scenario needing characterised and decommissioned and pro-
duces a set of hypotheses as output. The Select inference selects one of 
the hypotheses and the Specify inference takes the hypothesis as input 
and produce a new object as output that is associated with the input. The 
“Specify” inference is vague, but it produces a new output from forward 
reasoning, using the static, heuristic knowledge that if a vessel is what 
we are looking for, the primitive that may be looked for in visual data 
will most likely be a cylinder. A “Select” inference could also be added to 
select an observable from a list of multiple observables specified by the 
“Specify” inference, incorporating nuts/bolts. The “Present” transfer 
function presents the observable to an external agent (in this case, it is 
cylinder detection in MATLAB). The “Generate” inference provides the 
finding given the observable. In this case, the observable is a cylinder in 
the visual data, so the “Generate” inference will perform cylinder 
detection on the point cloud data. Then, the “Verify” inference indicates 
consistency of the observable hypothesis with the actual finding by a 
simple truth value, e.g., was a cylinder found, yes/no. This inference 
also incorporates task 5 where the user will check the cylinder found in 
the visual data was not over fitted, creating specious cylinders, or indeed 
under fitting. 

The inference structure for task 6 and 7 is shown in Fig. 4. Result 1 
from the previous inference structure in Fig. 3 is the input to this 
inference. Given the result was that a cylinder was found in the visual 
data, the “Generate” inference provides possible candidates that the 
cylinder may be. The static knowledge is all the possible solutions the 
result may be matched to (essentially, the inventory for that cell). Then 
an attribute is specified based on domain specific heuristic rules. The 
rules here are that the diameter and length can be used to quickly 
compare two cylindrical objects. That feature is obtained from the 
external agent output (MATLAB object detection), and the “Compare” 
inference compares that feature with the candidate’s, producing a truth 
value. If truth value is equal, inference structure goes on to obtain the 
mass feature from the item data sheet (see Fig. 5). 

4.5. Agent model 

Every task was broken down into inference models, and the approach 
for reviewing the manual processes and decision-making in this way 
supports the evaluation of opportunities to introduce automation or 
supporting technologies to improve the speed and cost. Every inference 
(oval) and transfer function (round cornered rectangle) in Figs. 3 and 4 
has the potential to be automated. To demonstrate the automation of the 
“Generate” inference in Fig. 3 and the “Generate”, “Specify”, and 
“Compare” inferences, along with the first “Obtain” transfer function in 
Fig. 4, we created an agent model and give an example of automating 
these tasks, where the agent model specifies tasks allocated to agents 
(Table 6). 

5. Instantiation of the knowledge-based system 

MATLAB was used to perform the tasks deemed able to automate, 
rationalized from the inference models. A Faro Focus Laser Scanner was 
used to create a point cloud inside the mock-up cell, and initially, we use 

Table 5 
Task Model 2 – Knowledge asset characterization of engineering drawings.  

Task Model 2 Knowledge Item Worksheet TM-1 

Name: Engineering drawings 
Used in: Tasks 1, 6, 7 

Nature of knowledge  To be Improved? 

Formal, rigorous X  
Heuristic   
Highly specialised, domain specific X  
Empirical, Quantitative X  
Experience-based   
Incomplete X  
Uncertain, may be incorrect X X 
Quickly changing   
Hard to verify X X 
Tacit, hard to transfer   
Form of knowledge 
Electronic X X 
Mind   
Paper   
Availability of Knowledge 
Limitations in access   
Limitations in form X X 
Limitations in quality X X  
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the M-estimator SAmple Consensus (MSAC) algorithm, which is a 
generalization of the RANSAC estimator (Torr and Zisserman, 2000), to 
find the walls of the cell and extract them. This is to segment the objects 
within the cell from the walls containing them, as shown in Fig. 6. The 
algorithm chooses points at random and assumes that these points lie on 
a plane. Then it decides if it is a plane or not by inspecting the sur-
rounding points, since there will be a lot of other points that lie close to 
that plane. It accepts the largest consensus set and those points are 
allocated to the first plane in the scene (Martin and Bolles, 1981). Then, 
after removing the points allocated to plane 1, the algorithm searches for 
the next largest consensus set, and, iteratively, finds all the planes in the 
point cloud. Certain thresholds are set and only points that lie within this 
threshold are used for planes. We applied the distance to the model 
threshold where only points within this is a planar fit, and similarly, we 
applied a threshold based on the angular deviation between the normal 
and inlier points of the plane. Setting a region of interest also minimizes 
wrong planar fits. 

Fig. 3. Annotated inference structure for the nuclear cell diagnosis tasks (tasks 1, 2, 4 and 5).  

Fig. 4. Annotated inference structure for task 6 and 7.  

Fig. 5. UML Task model for evaluating visual data and relevant MATLAB functions performing each task.  

Table 6 
Agent model 1 – Matlab agent.  

Agent Model Agent Worksheet AM - 1 

Name MATLAB 
Organization Programming platform 
Involved in Preprocess 

Detect primitives and dimensions 
Match to inventory 

Responsibilities and constraints The algorithm should not overfit data  
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For this project, object detection focused initially on cylindrical ob-
jects as is the output from 2. Characterise objects as primitives since 
pipework is significant in nuclear cells and indeed any industrial site and 
predictions were made on the geometric parameters. We used the MSAC 
algorithm again to define and estimate a model for 3D cylinder seg-
mentation, using additional orientation constraints specified by a 1-by-3 
orientation vector, and distance to the model threshold, to do so. Again, 
setting a region of interest also minimized the wrong cylinder fits. The 
detected vessel and its estimated parameters are given from the model 
cylinder as shown in Fig. 7. Then, we extract the first cylinder from the 
remaining point cloud and repeat the process to find the next cylinder in 
the point cloud. We choose MSAC for its simplicity and convenience, and 
it is considered more efficient than other methods of planar segmenta-
tion, like Hough transform (Borrman et al., 2011), and this method 
works as a proof of concept for the framework. 

We match the parameters taken from the cylinder models above to 
parameters given in reference drawings of the objects in the mock-up 
cell. We created a simple algorithm in MATLAB to compare the pa-
rameters, radius and length of the cylinders detected in the point cloud, 

to the parameters of the vessel and pipework in the cell and decide upon 
a match, as is outlined in the inference model in Fig. 4. Parameters were 
manually retrieved from reference drawings as, although it is a laborious 
and time-consuming task, the cost of developing and deploying software 
to interpret this data was beyond the scope of the project. However, 
there exists a limited number of solutions to extract relevant information 
from engineering drawings (Rohit et al., 2019) (Ondrejcek et al., 2009). 

6. Discussion and conclusion 

In this work, we have attempted to begin the process of creating a 
KBS to support the safe and secure decommissioning of a cell in a nuclear 
facility. The work describes a CommonKADS methodology approach to 
define a process to triage nuclear waste in-situ, establish which parts of 
the process can be automated, assess automation capabilities and 
configure automation for proof of concept. We establish that the tasks to 
pre-process the point cloud of the cell, detect cylinders within and match 
to parameters from a CAD drawing can be automated with a human in 
the loop, and we provide an instantiation of this part of the KBS, showing 

Fig. 6. Original point cloud (left) and remaining point cloud (right) with walls of cell extracted revealing the mock-up vessel and pipes.  

Fig. 7. Detected cylinder from remaining point cloud (left) and model cylinder (right).  
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a proof-of-concept example using point cloud data of a mock-up cell and 
implemented RANSAC-based methods to conduct planar segmentation 
to separate indoor walls from waste objects for processing and to detect 
the vessel and pipes via cylinder fitting. On the contrary, the tasks to 
determine likely objects in a nuclear power station and characterising 
these objects as primitives for straightforward object detection are more 
likely to stay a manual process given the nature of the knowledge asset, 
however creating the task process still highlights the partial but valuable 
role of knowledge modelling by laying out and archiving the process, 
which is essential for knowledge retention and can also be used later 
when there are advances in technology. In any respect, automation of 
tasks is usually only feasible if the basic plan elements are predefined, 
however computationally the task is usually more demanding than the 
task analysis. In terms of benefits analysis and future potential devel-
opment, if fully implemented as a codified system, this KBS is expected 
to be fourfold –safety, time, sharing of knowledge, and cost. 

Legacy systems, like the nuclear industry systems, can provide in-
formation and guidelines but lacks knowledge about domain-specific 
problems and automated solutions. Eliciting and conserving knowl-
edge within the nuclear industry is very important, and the Common-
KADS knowledge-based analysis not only reveals automation feasibility 
but provides a method to identify, capture and use tactic knowledge to 
do so. 
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