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Abstract. Response lags are necessary for most physical systems. For the

sake of saving time and costs, the main aim of this paper is to design the
feedback control term based on the response lags varying in a certain interval

and the discrete-time observations of both the system states and the Markovian

states to stabilize the controlled hybrid systems. The control principles are
established, which permit the control function only depends on the partial

information of the states and the modes. The upper bound on the sum of the

upper bound τ̄ of response lags, and the duration τ between two consecutive
observations is obtained. Some examples and numerical experiments are given

to illustrate our theory.

1. Introduction. Hybrid stochastic differential equations (HSDEs) whose coeffi-
cients depend on the states of continuous-time Markov chains provide more realistic
models to describe many systems in branches of science and industry. In the study
of HSDEs, automatic control is one of the critical issues, with subsequent emphasis
placed on the analysis of stability [14, 15, 23]. There are intensive literature on the
stabilization theory, for example, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19,
20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Consider an unstable HSDE described by

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dW (t), t ≥ 0, (1)

with the initial data

x(0) = x0 ∈ Rn, r(0) = i0 ∈ S, (2)

where the state x(t) takes values in Rn, the mode r(t) is a Markov chain taking
values in a finite sates space S, and W (t) is an m-dimensional Brownian motion.
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Recently, for the sake of saving time and costs, Li et al. [10] established the de-
lay feedback control principles for hybrid stochastic differential equations (HSDEs)
based on the discrete-time observations of both the system states and the Markov-
ian states. Namely, they designed the control term u(x(ν(t) − τ0), r(ν(t) − τ0), t),
where τ0 is the response lag, and ν(t) = [t/τ ]τ ([t/τ ] is the integer part of t/τ)
with τ > 0 being the duration between two consecutive observations, such that the
controlled HSDE

dx(t) = [f(x(t), r(t), t) + u(x(ν(t)− τ0), r(ν(t)− τ0), t)]dt

+ g(x(t), r(t), t)dW (t)

becomes stable in pth moment, with probability one or in H∞. However, the control
function used in [10] has the form u(x, i, t) = −α(i)x, where α(i)’s are nonnegative
constants, which implies that all components of the state x(t) need to be control-
lable. Once any component of x(t) is unobservable (then uncontrollable), the control
function designed here fails.

Actually, it is hard to control some components of systems directly. For example,
in finance, operators need to make decisions with a part of asymmetric information;
in the industry, some component information of systems may be non-detectable,
and then the state feedback information stems only from a part of the compo-
nents. A question arises: Could we design a feedback control with such incomplete
information to stabilize the controlled HSDEs?

Mao et al. [18] answered this question by designing the control function with
the form u(x, i) = D(i)x to stabilize the controlled HSDE, where D(i) = F (i)G(i)
with F (i) ∈ Rn×l and G(i) ∈ Rl×n. They focused on designing one of F (·) and G(·)
as the other one is known even degenerate. After that, sustained efforts are made
to elaborate on the stabilization principle based on the discrete-time observations
and enlarging the duration between two consecutive observations, for example, [8,
17, 19]. Due to the realistic requirement of both response lags and the discrete-
time observations on the pair (x(t), r(t)), it is necessary to develop the input and
output feedback control theory. In fact, due to the lack of continuity, even if τ+τ0 is
sufficiently small, (x(ν(t)−τ0), r(ν(t)−τ0)) may take different values from (x(t), r(t))
which brings essential difficulties for the stability analysis. Authors in [8, 10, 25, 28]
tackled this trouble.

On the other hand, the response lag τ0 in [10] is a constant. However, in practice,
the response lags may take different values; for instance, when driving a car, the
response time will be prolonged if the driver gets sidetracked. Meanwhile, designing
a feedback control with a strict constant time lag is quite costly and burdensome.
Dong and Mao [5] proposed the time-varying response lag within a determined
interval in the feedback control, which is much easier to design and costs less.
Therefore, it is more realistic to design the delay feedback control based on the
discrete-time observations of both the system states and the Markovian states,
where the response lag takes values in a determined interval.

Combined with the discrete-time observations, it is natural that the response lags
happen after observations. Assume that {τk}∞k=0 is the sequence of response lags
where τk (k ∈ {0, 1, 2, · · · }) represents the response lag at the (k+ 1)th observation
time taking values in [0, τ̄ ] (0 < τ̄ ≤ τ) (it is reasonable to restrict τ̄ ≤ τ since if
τ < τ̄ , we can adjust the observation duration τ such that τ̄ ≤ τ). Therefore, the
actuation duration of the feedback control corresponding to the (k+1)th observation
for the states (x(kτ ), r(kτ)) is [kτ + τk, (k + 1)τ + τk+1). We give some definitions
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that express the feedback control function u based on such response lags and the
discrete-time observations on t ≥ 0. Define kt be the unique nonnegative integer
such that ktτ + τkt ≤ t < (kt + 1)τ + τkt+1, for t ≥ τ0, and kt = −1 for t ∈
[0, τ0). Also set r(−τ) = r(0), x(−τ) = 0 and τ−1 = 0. Then define the delay
function δ : R+ → [0, τ + τ̄ ] by δ(t) = t − ktτ, for t ≥ 0. Thus for any t ≥ 0,
u(x(t−δ(t)), r(t−δ(t)), t) = u(x(ktτ), r(ktτ), t). Thus, our main aim in this paper is
to design the delay feedback control u(x(t−δ(t)), r(t−δ(t)), t) so that the controlled
HSDE

dx(t) = [f(x(t), r(t), t) + u(r(t− δ(t)), x(t− δ(t)), t)]dt
+ g(x(t), r(t), t)dW (t), t ≥ 0

(3)

becomes stable in the mean square.
Mathematically speaking, this paper mainly utilizes the Lyapunov functional

analysis, the linear matrix inequalities (LMIs), and the strong ergodicity theory of
Markov chains to propose various criteria for uniform boundedness and the mean
square exponential stability for linear and quasi-linear HSDEs. The main contribu-
tions of this paper are as follows:

• Targeted at the unstable HSDEs with incomplete information, we design prop-
er feedback control function to stabilize the controlled HSDEs. To be precise,
we define the feedback control function u depending on the matrix of the input
information F and the output information G where F,G may be a degenerate
matrix, such that the controlled HSDEs become stable.
• The feedback control function designed in this paper depends on the discrete-

time observations and the response lag, a variable in a determined time interval
but a fixed constant, which is much easier to design and costs less in practice.
Therefore, it has the advantages of simple design and low cost in practical
applications.
• Making use of the structure features of HSDEs, the upper bound of τ + τ̄ is

obtained explicitly such that the feedback control will stabilize the given sys-
tem as long as τ+ τ̄ smaller than the upper bound. The Lyapunov exponential
dependent on the value of τ + τ̄ is also obtained.

The structure of the paper is as follows. Section 2 begins with notations and
preliminaries on stabilization problems. Section 3 and Section 4 pay attention to
the stability analysis of linear and quasi-linear HSDEs, respectively. The examples
are used to illustrate the theoretical results. Section 5 concludes this paper.

2. Preliminary. Throughout this paper, we use the following notations. Let R+ =
[0,+∞). Let | · | be the Euclidean norm in Rn. If A is a matrix or vector, its
transpose is denoted by AT . If A is a symmetric matrix (A = AT ), denote by
λmin(A) and λmax(A) its smallest and largest eigenvalues, respectively. For a matrix

A ∈ Rn×m, its trace norm is denoted by |A| =
√

trace(ATA), and its operator norm

is denoted by ‖A‖ = max{|Ax| : |x| = 1}. One notices that ‖A‖ =
√
λmax(ATA).

Especially, if A is symmetric positive definite, then ‖A‖ = λmax(A). By A ≥ 0
(A > 0), we mean A is non-negative (positive) definite. For two sequences of
matrices {A(i)}1≤i≤N and {B(i)}1≤i≤N with appropriate dimensions, let Ai = A(i),
AiBi = A(i) × B(i), MA = max1≤i≤N ‖Ai‖ and MAB = max1≤i≤N ‖AiBi‖. For
any a, b ∈ R, let a∧b = min{a, b} and a∨b = max{a, b}. Let (Ω,F , {Ft}t≥0,P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e. it is right continuous, and F0 contains all P-null sets). E is the expectation
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with respect to the probability measure P. Let W (t) = (W1(t), . . . ,Wm(t))T be an
m-dimensional Brownian motion defined on the probability space. Let r(t), t ≥ 0,
be a right-continuous Markov chain on the probability space, taking values in a
finite state space S = {1, 2, . . . , N} (N < ∞) with generator Γ = (γij)N×N given
by

P(r(t+ ∆) = j|r(t) = i) =

{
γij∆ + o(∆), if i 6= j,

1 + γii∆ + o(∆), if i = j,

where ∆ > 0, o(∆) satisfies lim∆→0 o(∆)/∆ = 0. Here γij ≥ 0 is the transition rate
from i to j if i 6= j, while γii = −

∑
j 6=i γij . We assume that the Markov chain r(t)

is independent of the Brownian motion W (t). One notices that almost all sample
paths of r(t) are right continuous. To simplify the notation, we write τ̌ := τ + τ̄ .

In this paper, f : Rn × S × R+ → Rn and g : Rn × S × R+ → Rn×m are locally
Lipschitz continuous and grow at most linearly (see, e.g. [23, p. 89, 91]). For easy
operation, we use the feedback control function with a simple form u(x, i, t) = D(i)x
for (x, i, t) ∈ Rn×S×R+, where D(i) ∈ Rn×n for i ∈ S. Then the controlled HSDE
(3) becomes

dx(t) = [f(x(t), r(t), t) +D(r(t− δ(t)))x(t− δ(t))]dt+ g(x(t), r(t), t)dW (t), (4)

for t ≥ 0 with the initial data

x(s) = x0 ∈ Rd r(s) = r0 ∈ S, s ∈ [−τ̌ , 0]. (5)

Thus, by virtue of the results in [23], both system (1) and system (4) have a unique
global solution. Next, we prepare some notations for the controlled HSDE (4).
Define two segments xt(s) := {x(t+s) : −2τ̌ ≤ s ≤ 0} and rt(s) := {r(t+s) : −2τ̌ ≤
s ≤ 0} for t ≥ 0. To make xt and rt well defined on 0 ≤ t ≤ 2τ̌ , we set x(s) = x0 and
r(s) = r0 for s ∈ [−2τ̌ ,−τ̌). Meanwhile, we enlarge the corresponding definition
domains of f , g and u. For any (x, i, t) ∈ Rn×S× [−2τ̌ , 0), let f(x, i, t) = f(x, i, 0),
g(x, i, t) = g(x, i, 0), u(x, i, t) = u(x, i, 0). Now, define the Lyapunov functional as

V (xt, rt, t) = xT (t)Q(r(t))x(t) + ηI(t),

where for each i ∈ S, Q(i) ∈ Rn×n is a symmetric positive definite matrix, η > 0 is
a constant to be determined later, and

I(t) =

∫ 0

−τ̌

∫ t

t+s

[
τ̌
∣∣f(x(z), r(z), z) +D(r(z − δ(z)))x(z − δ(z))

∣∣2
+
∣∣g(x(z), r(z), z)

∣∣2]dzds. (6)

A direct calculation arrives at

dI(t) = J1(t)dt− J2(t)dt,

where

J1(t) = τ̌
[
τ̌
∣∣f(x(t), r(t), t) +D(r(t− δ(t)))x(t− δ(t))

∣∣2 +
∣∣g(x(t), r(t), t)

∣∣2],
J2(t) =

∫ 0

−τ̌

[
τ̌
∣∣f(x(t+ s), r(t+ s), t+ s) +D(r(t+ s− δ(t+ s)))

× x(t+ s− δ(t+ s))
∣∣2 +

∣∣g(x(t+ s), r(t+ s), t+ s)
∣∣2]ds.

(7)

Changing the integration order of (6) implies

I(t) ≤ τ̌J2(t). (8)
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To control the deviation between x(t) and x(t− δ(t)) in (4), we analyze as follows.
Using the Hölder inequality and the Itô isometry formula, we obtain from (4) that
for t− δ(t) ≥ 0,

E|x(t)− x(t− δ(t))|2

= E
∣∣∣∫ t

t−δ(t)

[
f(x(s), r(s), s)+D(r(s−δ(s)))x(s−δ(s))

]
ds+

∫ t

−δ(t)
g(x(s), r(s), s)dW (s)

∣∣∣2
≤2E

∫ t

t−τ̌
τ̌
∣∣f(x(s), r(s), s)+D(r(s−δ(s)))x(s−δ(s))

∣∣2ds+2E
∫ t

t−τ̌
|g(x(s), r(s), s)|2ds

= 2EJ2(t),

for t ≥ 0 and t− δ(t) ≤ 0,

E|x(t)− x(t− δ(t))|2 = E|x(t)− x(0)|2

= E
∣∣∣ ∫ t

0

[
f(x(s), r(s), s)+D(r(s−δ(s)))x(s−δ(s)))

]
ds+

∫ t

0

g(x(s), r(s), s)dW (s)
∣∣∣2

≤ 2E
∫ t

0

τ̌
∣∣f(x(s), r(s), s)+D(r(s−δ(s)))x(s−δ(s))

∣∣2ds+2E
∫ t

0

|g(x(s), r(s), s)|2ds

≤ 2E
∫ t

t−τ̌
τ̌
∣∣f(x(s), r(s), s)+D(r(s−δ(s)))x(s−δ(s))

∣∣2ds+2E
∫ t

t−τ̌
|g(x(s), r(s), s)|2ds

= 2EJ2(t),

where the first inequality follows from τ̌ ≥ δ(t) ≥ t. In consequence, for t ≥ 0,

E|x(t)− x(t− δ(t))|2 ≤ 2EJ2(t). (9)

On the other hand, a direct application of the generalized Itô formula (see, e.g., [23,
p. 47-49]) derives

EV (xt, rt, t) = EV (x0, i0, 0) + E
∫ t

0

LV (xs, rs, s)ds,

where

LV (xt, rt, t) = 2xT (t)Q(r(t))
[
f(x(t), r(t), t) +D(r(t− δ(t)))x(t− δ(t))

]
+ trace

(
gT (x(t), r(t), t)Q(r(t))g(x(t), r(t), t)

)
+

n∑
j=1

γr(t),jx
T (t)Q(j)x(t) + ηJ1(t)− ηJ2(t).

(10)

Here γr(t),j = γij when r(t) = i.
To close this section, we present a criterion on the mean square exponential

stability of HSDEs.

Lemma 2.1. If there are positive constants δ1, δ2 such that

ELV (xt, rt, t) ≤ −δ1E|x(t)|2 − δ2EJ2(t), ∀t ≥ 0, (11)

then

lim sup
t→∞

1

t
log(E|x(t)|2) ≤ −θ, (12)

where

θ = min
{ δ1
λM

,
δ2
ητ̌

}
, λM = max

i∈S
λmax(Qi). (13)
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Proof. By the generalized Itô formula (see, e.g., [23, p. 47-49]), we have

eθtEV (xt, rt, t) = EV (x0, i0, 0) +

∫ t

0

eθs
[
θEV (xs, rs, s) + ELV (xs, rs, s)

]
ds, (14)

where LV (xt, rt, t), θ are given by (10), (13) respectively. The matrix inequality
together with the definition of V (xt, rt, t) and (8) yields

EV (xt, rt, t) ≤ λME|x(t)|2 + ητ̌EJ2(t),

where λM is defined by (13). Substituting the above inequality and (11) into (14),
we get by the definition of θ that

eθtEV (xt, rt, t)

≤ EV (x0, i0, 0)−
(
δ1 − λMθ

) ∫ t

0

eθsE|x(s)|2ds−
(
δ2 − ητ̌θ

) ∫ t

0

eθsEJ2(s)ds

≤ EV (x0, i0, 0) <∞.
We therefore derive

λme
θtE|x(t)|2 ≤ eθtEV (xt, rt, t) ≤ EV (x0, i0, 0),

where λm = mini∈S λmin(Qi). Then, the desired assertion (12) follows.

3. Stabilization of Linear HSDEs. This section focuses on the stabilization of
linear HSDEs. Consider an unstable linear HSDE described by

dx(t) = A(r(t))x(t)dt+

m∑
k=1

Hk(r(t))x(t)dWk(t), t ≥ 0,

where for each i ∈ S, A(i), Hk(i) ∈ Rn×n, k = 1, 2, . . . ,m. Based on the discrete
observations and the response lags, the controlled HSDE becomes

dx(t) =
[
A(r(t))x(t)+D(r(t−δ(t)))x(t−δ(t))

]
dt+

m∑
k=1

Hk(r(t))x(t)dWk(t), (15)

with the initial data given in (5). One notices that

f(x, i, t) = A(i)x, g(x, i, t) = (H1(i)x, · · · , Hm(i)x),

which are globally Lipschitz continuous.

Theorem 3.1. Suppose that for each i ∈ S, there exists a symmetric positive
definite matrix Q(i) = Qi ∈ Rn×n such that

Q̄(i) = Q̄i := Qi(Ai +Di) + (Ai +Di)
TQi +

m∑
k=1

HT
k (i)QiHk(i) +

N∑
j=1

γijQj < 0.

Then, for any 0 < τ̌ < τ∗ :=
(
1/(4MD)

)
∧ y∗, the solution of HSDE (15)-(5) is

exponentially stable in the mean square, where y∗ is the positive root of β(y) = λ,

β(y) :=
√
y
[
2
√

2MQDNH+3λMΛ+
(√2MQD

NH
+8λMΛy

)(
2y(M2

A+2M2
D)+NH

)]
,

Λ=max
i∈S

√
−γii max

i,j∈S
‖Dj−Di‖, −λ=max

i∈S
λmax(Q̄i), NH =max

i∈S

m∑
k=1

‖Hk(i)‖2,

(16)

and λM is given by (13).
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Proof. Fix 0 < τ̌ < τ∗. Using the elementary inequality, we derive from (10) that

ELV (xt, rt, t)

= E
[
xT (t)Q̄(r(t))x(t) + 2xT (t)Q(r(t))[(D(r(t− δ(t)))−D(r(t)))x(t− δ(t))

−D(r(t))(x(t)− x(t− δ(t)))] + ηJ1(t)− ηJ2(t)
]

≤ −
(
λ− 2

√
2MQDNH

√
τ̌ − λMΛ

√
τ̌
)
E|x(t)|2 + I1(t) + ηEJ1(t)− ηEJ2(t),

(17)

where

I1(t) =
MQD

2
√

2NH
√
τ̌
E|x(t)− x(t− δ(t))|2

+
λM

Λ
√
τ̌
E
[
‖D(r(t))−D(r(t− δ(t)))‖2|x(t− δ(t))|2

]
.

We proceed to estimate the term E
[
‖D(r(t)) − D(r(t − δ(t)))‖2|x(t − δ(t))|2

]
in

I1(t). The property of conditional expectation gives that for any t with t−δ(t) ≥ 0,

E
[
‖D(r(t))−D(r(t− δ(t)))‖2|x(t− δ(t))|2|Ft−δ(t)

]
= |x(t− δ(t))|2E

[
‖D(r(t))−D(r(t− δ(t)))‖2|Ft−δ(t)

]
.

(18)

One further obtains that for any t with t− δ(t) ≥ 0,

E
[
‖D(r(t))−D(r(t− δ(t)))‖2|Ft−δ(t)

]
= E

[∑
i∈S

I{r(t−δ(t))=i}‖D(r(t))−D(i)‖2|Ft−δ(t)
]

=
∑
i∈S

I{r(t−δ(t))=i}E
[
I{r(t)6=i}‖D(r(t))−D(i)‖2|r(t− δ(t)) = i

]
≤ max

i,j∈S
‖Dj −Di‖2

∑
i∈S

I{r(t−δ(t))=i}E
[
I{r(t)6=i}|r(t− δ(t)) = i

]
≤max
i,j∈S

‖Dj−Di‖2
∑
i∈S

I{r(t−δ(t))=i}P
(
∃v ∈ (t−δ(t), t], r(v) 6= i|r(t−δ(t))= i

)
.

(19)

Note that the waiting time for the next jump of the Markov chain r(·) from current
state j obeys the exponential distribution with parameter −γjj (see, e.g., [23]) and
1− e−x ≤ x for x ≥ 0. Thus the elementary inequality together with (18) and (19)
yields that for any t with t− δ(t) ≥ 0,

E
[
‖D(r(t))−D(r(t− δ(t)))‖2|x(t− δ(t))|2

]
≤ E

[
|x(t− δ(t))|2 max

i,j∈S
‖Dj −Di‖2

∑
i∈S

I{r(t−δ(t))=i}(1− eγiiτ̌ )
]

≤ 2Λ2τ̌E|x(t)|2 + 2Λ2τ̌E|x(t)− x(t− δ(t))|2,

(20)

where Λ is given in (16). By the initial value (5), as t− δ(t) < 0, we have

E
[
‖D(r(t))−D(r(t− δ(t)))‖2|x(t− δ(t))|2

]
≤ E

[
|x0|2 max

j∈S
‖Dj −Dr0‖2(1− eγr0r0

t)
]

≤ 2Λ2τ̌E|x(t)|2 + 2Λ2τ̌E|x(t)− x0|2

= 2Λ2τ̌E|x(t)|2 + 2Λ2τ̌E|x(t)− x(t− δ(t))|2.

(21)



8 XING CHEN, XIAOYUE LI AND XUERONG MAO

Combining (20) and (21), one obtains that for t ≥ 0,

E
[
‖D(r(t))−D(r(t− δ(t)))‖2|x(t− δ(t))|2

]
≤ 2Λ2τ̌E|x(t)|2 + 2Λ2τ̌E|x(t)− x(t− δ(t))|2.

(22)

Inserting (22) into (17) yields

ELV (xt, rt, t)

≤ −
(
λ− 2

√
2MQDNH

√
τ̌ − 3λMΛ

√
τ̌
)
E|x(t)|2 +

( MQD

2
√

2NH
√
τ̌

+2λMΛ
√
τ̌
)
E|x(t)− x(t− δ(t))|2 + ηEJ1(t)− ηEJ2(t).

(23)

Now we deal with EJ1(t). Using the definition of J1(t) in (7) and the elementary
inequality, we compute

EJ1(t) ≤ τ̌E
[
2τ̌
(
|A(r(t))x(t)|2 + |D(r(t− δ(t)))x(t− δ(t))|2

)
+NH |x(t)|2

]
≤ τ̌(2M2

Aτ̌ +NH)E|x(t)|2 + 2M2
D τ̌

2E[|x(t)|2 + |x(t)− x(t− δ(t))|2].

Inserting the above inequality into (23) and using (9) imply that

ELV (xt, rt, t)

≤ −
(
λ− 2

√
2MQDNH

√
τ̌ − 3λMΛ

√
τ̌ − ητ̌

(
2τ̌(M2

A + 2M2
D) +NH

))
E|x(t)|2

−
(

(1− 8M2
D τ̌

2)η − MQD√
2NH

√
τ̌
− 4λMΛ

√
τ̌
)
EJ2(t).

Fix η =
√

2MQD/(NH
√
τ̌) + 8λMΛ

√
τ̌ > 0. The above inequality becomes

ELV (xt, rt, t) ≤ −δ1E|x(t)|2 − δ2EJ2(t), (24)

where δ1 = λ−β(τ̌), δ2 =
(
2(1−8M2

D τ̌
2)−1

)(
MQD

/
(
√

2NH
√
τ̌)+4λMΛ

√
τ̌
)
. Due

to the definition of τ∗ and the increasing property of function β(·) defined by (16),
one observes that

λ− β(τ̌) > 0, 1− 8M2
D τ̌

2 >
1

2
,

which implies δ1 > 0 and δ2 > 0. Thus, by Lemma 2.1, the desired assertion follows
from (24).

Now we go a further step to consider the case D(i) = F (i)G(i), where F (i) ∈
Rn×l and G(i) ∈ Rl×n. Then the controlled system (15) becomes

dx(t) =
[
A(r(t))x(t) + F (r(t− δ(t)))G(r(t− δ(t)))x(t− δ(t))

]
dt

+
m∑
k=1

Hk(r(t))x(t)dWk(t).
(25)

Given F or G, we aim to design the other using LMIs (see, e.g., [23]). Both cases
are known as:

• State feedback: design F (·) when G(·) is given
• Output injection: design G(·) when F (·) is given.
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3.1. State feedback. This subsection investigates designing the mapping F : S→
Rn×l for stabilization as the mapping G : S→ Rl×n is given. By virtue of Theorem
3.1, for each i ∈ S, we need to find a symmetric positive definite matrix Qi ∈ Rn×n
and a matrix Fi ∈ Rn×l such that

Q̄i=QiAi+A
T
i Qi+QiFiGi+G

T
i F

T
i Qi+

m∑
k=1

HT
k (i)QiHk(i)+

N∑
j=1

γijQj<0. (26)

The above matrix inequality is not linear in Qi and Fi. Let Yi = QiFi. Then (26)
becomes the following LMI

Q̄i = QiAi +ATi Qi + YiGi +GTi Y
T
i +

m∑
k=1

HT
k (i)QiHk(i) +

N∑
j=1

γijQj < 0. (27)

If the above inequality has the solution Qi with Qi = QTi > 0 and Yi, then (26)
holds with Fi = Q−1

i Yi. Thus, we yield the following corollary under Theorem 3.1.

Corollary 3.2. Assume that for each i ∈ S, (27) has the solution Qi ∈ Rn×n with
Qi = QTi > 0 and Yi ∈ Rn×l. Let Fi = Q−1

i Yi, Di = FiGi. Then, for 0 < τ̌ < τ∗,
the controlled HSDE (25)-(5) is exponentially stable in the mean square.

To illustrate the result of Corollary 3.2, we give the following example where
some system states are uncontrollable.

0 1 2 3 4 5 6 7 8 9 10
t

1
1.5
2

0 1 2 3 4 5 6 7 8 9 10
t

-200

0

200

x1
(t)

0 1 2 3 4 5 6 7 8 9 10
t

-100

0

100

x2
(t)

r(t)

Figure 1. Paths of r(t) and x1(t), x2(t) of HSDE (28)-(29).

Example 3.1. Consider the 2-dimensional linear HSDE as the examples discussed
in [8] and [18]

dx(t) = A(r(t))x(t)dt+H(r(t))x(t)dW (t), t ≥ 0, (28)

with initial data

x(0) = [x1(0), x2(0)]T = [−2, 1]T , r(0) = 1. (29)

Here W (t) is a scalar Brownian motion; r(t) is a Markov chain on the state space

S = {1, 2} with the generator Γ =

[
−1 1
1 −1

]
; The parameter matrices are

A1 =

[
1 −1
1 −5

]
, A2 =

[
−5 −1
1 1

]
, H(1) =

[
1 1
1 −1

]
, H(2) =

[
−1 −1
−1 1

]
.
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Figure 1 depicts HSDE (28)-(29) is not exponentially stable in the mean square.

0 1 2 3 4 5 6 7 8 9 10
t

1

2
r(t
)

0 1 2 3 4 5 6 7 8 9 10
t

-2

0

2

x1
(t)

0 1 2 3 4 5 6 7 8 9 10
t

0

1

x2
(t)

Figure 2. Paths of r(t) and x1(t), x2(t) of (30)-(31) in the state
feedback case with τ = 0.005 and τ̄ = 0.002.

Based on both the delay response and the discrete-time observations of state and
mode, the controlled HSDE is described by

dx(t) =
[
A(r(t))x(t) + F (r(t− δ(t)))G(r(t− δ(t)))x(t− δ(t))

]
dt

+H(r(t))x(t)dW (t),
(30)

where G1 = (1, 0) and G2 = (0, 1) are known. Here, the response lag at each
observation is a random value in [0, τ̄ ]. The corresponding initial data is

x(s) = x(0), r(s) = r(0), s ∈ [−τ̌ , 0]. (31)

where x(0) and r(0) are defined in (29). In order for the exponential stability of
(30), by virtue of Corollary 3.2, we require that

Q̄i := QiAi +ATi Qi + YiGi +GTi Y
T
i +HT (i)QiH(i) +

2∑
j=1

γijQj < 0 (32)

holds for i = 1, 2. One notices that matrices

Q1 =

[
1 0
0 2

]
, Y1 =

[
−10

0

]
, and Q2 =

[
2 0
0 1

]
, Y2 =

[
0
−10

]
,

satisfy (32) with

Q̄1 =

[
−14 0

0 −18

]
, Q̄2 =

[
−18 0

0 −14

]
.

Let F1 = Q−1
1 Y1, F2 = Q−1

2 Y2. Then we compute

−λ = max
i=1,2

λmax(Q̄i) = −14, MQD = MY G = max
i=1,2

‖YiGi‖ = 10,
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MA =5.2361, NH = 2, MD = 10, Λ = 10, λM = 2, τ∗ = 0.0075.

Choose τ = 0.005, τ̄ = 0.002. Then HSDE (28) is mean square exponentially stable
by using Corollary 3.2. Figure 2 dispects the paths of r(t) and x1(t), x2(t) of (30)-
(31) in the state feedback case with τ = 0.005 and τ̄ = 0.002 by the Euler-Maruyama
numerical method. One observes that by our result, τ < 0.0075 is enough for the
stabilization as τ̄ = 0 while τ < 1.5 × 10−5 is required by [8]. In other words, we
obtain the wider range of τ .

3.2. Output injection. This subsection focuses on designing the mapping G : S→
Rl×n for stabilization as the mapping F : S → Rn×l is given. Under Theorem 3.1,
for each i ∈ S, it is sufficient to find a symmetric positive definite matrix Qi ∈ Rn×n
and a matrix Gi ∈ Rl×n such that (26) holds. Define Xi = Q−1

i . By multiplying
Xi from left and right, we derive from (26) that

Q̄i = AiXi +XiA
T
i + FiGiXi +XiG

T
i F

T
i +

m∑
k=1

XiH
T
k (i)X−1

i Hk(i)Xi

+

N∑
j=1

γijXiX
−1
j Xi<0.

Let Yi := GiXi. Then we have

Q̄i=AiXi+XiA
T
i +FiYi + Y Ti F

T
i +

m∑
k=1

XiH
T
k (i)X−1

i Hk(i)Xi+
N∑
j=1

γijXiX
−1
j Xi<0.

By the Schur complements [23, Theorem 2.8, p. 64], the above inequality is equiv-
alent to the following LMI Mi1 Mi2 Mi3

MT
i2 −Mi4 0

MT
i3 0 −Mi5

 < 0, (33)

where

Mi1 = AiXi +XiA
T
i + FiYi + Y Ti F

T
i + γiiXi,

Mi2 =
[
XiH

T
1 (i), · · ·, XiH

T
m(i)

]
,

Mi3 =
[√
γi1Xi, · · ·,

√
γi(i−1)Xi,

√
γi(i+1)Xi, · · ·,

√
γiNXi

]
,

Mi4 = diag[Xi, · · ·, Xi],

Mi5 = diag[X1, · · ·, Xi−1, Xi+1, · · ·, XN ].

If (33) has the solution Xi with Xi = XT
i > 0 and Yi, then (26) holds with

Qi = X−1
i , Gi = YiX

−1
i . Thus, we gain the following corollary through Theorem

3.1.

Corollary 3.3. Assume that for each i ∈ S, (33) has the solution Xi ∈ Rn×n with
Xi = XT

i > 0 and Yi ∈ Rl×n. Let Qi = X−1
i , Gi = YiX

−1
i , Di = FiGi. Then

for 0 < τ̌ < τ∗, the controlled HSDE (25)-(5) is exponentially stable in the mean
square.

Example 3.2. Consider the linear HSDE (30) with the initial data (31), where
F1 = [1, 0]T , F2 = [0, 1]T . Here, the response delays are random values in [0, τ̄ ]. In
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Figure 3. Paths of r(t) and x1(t), x2(t) of (30)-(31) in the state
feedback case with τ = 0.0024 and τ̄ = 0.002.

order for the exponential stability of (28), using Corollary 3.3, we require that

Q̄i : = AiXi +XiA
T
i + FiYi + Y Ti F

T
i +XiH

T (i)X−1
i H(i)Xi

+

N∑
j=1

γijXiX
−1
j Xi < 0

(34)

holds for i = 1, 2. One notices that matrices

X1 = X2 =

[
1 0
0 1

]
, Y1 =

[
−10 0

]
, Y2 =

[
0 −10

]
,

satisfy (34) with

Q̄1 =

[
−16 0

0 −8

]
, Q̄2 =

[
−8 0
0 −16

]
.

Let G1 = Y1X
−1
1 , G2 = Y2X

−1
2 . Hence, we compute

− λ = max
i=1,2

λmax(Q̄i) = −8, MQD = MFY = 10, MA = 5.2361,

NH = 2, MD = 10, Λ = 10, λM = 1, τ∗ = 0.0046.

Choose τ = 0.0024, τ̄ = 0.002. Then, the controlled system (30)-(31) is mean
square exponentially stable by Corollary 3.3. Figure 3 dispects the paths of r(t) and
x1(t), x2(t) of (30)-(31) in the state feedback case with τ = 0.0024 and τ̄ = 0.002
by the Euler-Maruyama numerical method. It is worth noting that with τ̄ = 0, our
result covers the results in [19].

4. Stabilization of quasi-linear HSDEs. This section discusses the stabilization
of quasi-linear HSDEs. Consider an unstable quasi-linear HSDE described by (1)
with initial data (2), where f and g are locally Lipschitz continuous and grow
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linearly (see, e.g., [23, p. 89, 91]). Based on the discrete observations, the controlled
delay HSDE becomes

dx(t) =
(
f(x(t), r(t), t) +D(r(t− δ(t)))x(t− δ(t))

)
dt+ g(x(t), r(t), t)dW (t), (35)

with the initial data (5).
For convenience, we impose some assumptions on f and g.

Assumption 4.1. For each i ∈ S, there is a pair of symmetric matrices Qi, Q̂i ∈
Rn×n with Qi > 0 such that

2xTQif(x, i, t) + trace
(
gT (x, i, t)Qig(x, i, t)

)
≤ xT Q̂ix

for all (x, i, t) ∈ Rn × S× R+.

Assumption 4.2. There is a pair of positive constants K1 and K2 such that

|f(x, i, t)|2 ≤ K1|x|2 and |g(x, i, t)|2 ≤ K2|x|2

for all (x, i, t) ∈ Rn × S× R+.

Theorem 4.3. Let Assumption 4.1 and Assumption 4.2 hold. If for each i ∈ S,

U(i) := Ui = Q̂i +QiDi +DT
i Q

T
i +

n∑
j=1

γijQj < 0. (36)

Then, for 0 < τ̌ < τ̃∗ :=
(
1/(4MD)

)
∧ y∗, the solution of HSDE (35)-(5) is expo-

nential stable in the mean square, where y∗ is the positive root of ι(y) = γ,

ι(y) :=
√
y
[
2
√

2MQDK2 + 3λMΛ +
(√2MQD

K2
+ 8λMΛy

)(
2y
(
K1 + 2M2

D

)
+K2

)]
.

(37)

Here γ = −maxi∈S λmax(Ui), and λM ,Λ are given by (13) and (16), respectively.

Proof. Since the proof uses techniques similar to those in the proof of Theorem 3.1,
we only give the outline to avoid duplication. Fix 0 < τ̌ < τ̃∗. By Assumption 4.1
and the elementary inequality, it follows from (10) that

ELV (xt, rt, t)

≤E
[
xT (t)U(r(t))x(t)+2xT (t)Q(r(t))

(
(D(r(t−δ(t)))−D(r(t)))x(t−δ(t))

−D(r(t))(x(t)−x(t−δ(t)))
)
+ηJ1(t)−ηJ2(t)

]
≤ −

(
γ−2
√

2MQDK2

√
τ̌−λMΛ

√
τ̌
)
E|x(t)|2+I2(t)+ηEJ1(t)−ηEJ2(t),

(38)

where

I2(t) =
MQD

2
√

2K2

√
τ̌
E|x(t)−x(t−δ(t))|2

+
λM

Λ
√
τ̌
E[‖D(r(t))−D(r(t−δ(t)))‖2|x(t−δ(t))|2].

By the definition of J1(t) in (7) and Assumption 4.2, we compute

EJ1(t) ≤ τ̌(2(K1 + 2M2
D)τ̌ +K2)E|x(t)|2 + 4M2

D τ̌
2E|x(t)− x(t− δ(t))|2.

This together with (38) gives

ELV (xt, rt, t)

≤ −
(
λ− 2

√
2MQDK2

√
τ̌ − 3λMΛ

√
τ̌ − ητ̌

(
2τ̌(K1 + 2M2

D) +K2

))
E|x(t)|2
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−
((

1− 8M2
D τ̌

2
)
η − MQD√

2K2

√
τ̌
− 4λMΛ

√
τ̌
)
EJ2(t).

Fix η =
√

2MQD/(K2

√
τ̌) + 8λMΛ

√
τ̌ > 0. Then by (9) and (20) , we arrive at

ELV (xt, rt, t) ≤− δ1E|x(t)|2 − δ2EJ2(t), (39)

where

δ1 = γ − ι(τ̌), δ2 =
(

2(1− 8M2
D τ̌

2)− 1
)( MQD√

2K2

√
τ̌

+ 4λM
√

Λτ̌
)
.

Due to the definition of τ̃∗ and the increasing of function ι(·) defined in (37), one
observes that

γ − ι(τ̌) > 0, 1− 8M2
D τ̌

2 >
1

2
,

which implies δ1 > 0, δ2 > 0. Thus, by virtue of Lemma 2.1, the desired assertion
follows from (39).

We continue to analysis the design of feedback control with D(i) = F (i)G(i) (i ∈
S), where F (i) ∈ Rn×l and G(i) ∈ Rl×n. Thus (36) becomes

U(i) := Ui = Q̂i +QiFiGi +GTi F
T
i Q

T
i +

n∑
j=1

γijQj < 0. (40)

When Fi or Gi is given, the aim is to design the other. If (40) has the solution
Fi or Gi as Gi or Fi is given respectively. Thus, making use of Theorem 4.3, one
obtains the following corollary.

Corollary 4.4. Let Assumption 4.1 and Assumption 4.2 hold. Assume that for
each i ∈ S, (40) has the solution Fi or Gi as Gi or Fi is given. Let Di = FiGi.
Then, for 0 < τ̌ < τ̃∗, the solution of HSDE (35)-(5) is exponential stable in the
mean square.

To apply this theory, we need two steps:

1. Seek suitable matrices Qi and Q̂i satisfying Assumption 4.1;
2. Solve (40) as Fi (or Gi) is given.

In the rest part of this section, we focus on developing the techniques to deal with
step 1. Then, we proceed the step 2 by using Matlab software. We only discuss the
state feedback case to avoid duplication, while the other one is similar. One notices
that the flexible choice of 2N matrices Qi and Q̂i means more work involved in
practice. Then, we introduce an extra assumption.

Assumption 4.5. There are N + 1 symmetric matrices Z, Zi ∈ Rn×n with Z > 0
such that

2xTZf(x, i, t) + trace
(
gT (x, i, t)Zg(x, i, t)

)
≤ xTZix,

for all (x, i, t) ∈ Rn × S× R+.

Let Qi = qiZ and Q̂i = qiZi for some qi > 0. Then (40) becomes

Ui = qiZi + qiZFiGi + qiG
T
i F

T
i Z +

n∑
j=1

γijqjZ < 0, i ∈ S.
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This together with Yi = qiFi implies

Ui = qiZi + ZYiGi +GTi Y
T
i Z +

n∑
j=1

γijqjZ < 0, i ∈ S. (41)

For each i ∈ S, if (41) has the solution qi > 0 and Yi, then (40) holds with Qi = qiZ,

Q̂i = qiZi and Fi := q−1
i Yi. Then, we obtain the following result by virtue of

Corollary 4.4.

Corollary 4.6. Let Assumption 4.2 and Assumption 4.5 hold. Assume that for
each i ∈ S, (41) has the solution qi > 0 and Yi. Let Qi = qiZ, Q̂i = qiZi, Fi = q−1

i Yi
and Di = FiGi. Then for 0 < τ̌ < τ̃∗, the controlled HSDE (35)-(5) is exponentially
stable in the mean square.

We further introduce a relatively simple (but stronger, in fact) assumption.

Assumption 4.7. For each i ∈ S there is a constant zi > 0 such that

2xT f(x, i, t) + |g(x, i, t)|2 ≤ zi|x|2

holds for all (x, t) ∈ Rn × R+.

Define Qi = qiI, Q̂i = qiziI, for some qi > 0, where I is an identity matrix in
Rn×n. Then (40) becomes

Ui = qiziI + qiFiGi + qiG
T
i F

T
i +

n∑
j=1

γijqjI < 0, i ∈ S.

Let Yi = qiFi. The above inequality directly becomes

Ui = qiziI + YiGi +GTi Y
T
i +

n∑
j=1

γijqjI < 0, i ∈ S. (42)

For each i ∈ S, if (42) has the solution qi > 0 and Yi, then (40) holds with Qi = qiI,

Q̂i = qiziI and Fi = q−1
i Yi. Then, we yield the following result by virtue of

Corollary 4.4.

Corollary 4.8. Let Assumption 4.2 and Assumption 4.7 hold. Assume that for
each i ∈ S, (42) has the solution qi > 0 and Yi. Let Qi = qiI, Q̂i = qiziI,
Fi = q−1

i Yi and Di = FiGi. Then, for 0 < τ̌ < τ̃∗, the controlled HSDE (35)-(5) is
exponentially stable in the mean square.

Finally, we illustrate our result with an example: some Markovian states are
unobservable (and then uncontrollable).

Example 4.1. Consider a 2-dimensional unstable HSDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dW (t), t ≥ 0,

with initial data x(0) = x0, r(0) = i0. Here f, g : R2 × S × R+ → R2 are locally
Lipschitz continuous and satisfy Assumption 4.2 and Assumption 4.7, W (t) is a
scalar Brownian motion, and {r(t)}t≥0 is a Markov chain taking values in S = {1, 2}
with generater

Γ =

[
−γ12 γ12

γ21 −γ21

]
, (γ12, γ21 > 0).
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Assume that mode 1 (r(t) = 1) is observable, mode 2 (r(t) = 2) is unobservable.
Thus, for mode 1, we design a delay feedback control based on the discrete observa-
tions and the response lags, taking values in [0, τ̄ ] randomly. Then, the controlled
HSDE becomes

dx(t) =
(
f(x(t), r(t), t) + F (r(t− δ(t)))G(r(t− δ(t)))x(t− δ(t))

)
dt

+ g(x(t), r(t), t)dW (t),
(43)

with initial data (5), where G1 = I (Here I is an identity matrix in R2×2), G2 = 0.
Choose F2 = 0 naturally. By virtue of Corollary 4.8, we require that

U1 = q1z1I + Y1 + Y T1 − γ12q1I + γ12q2I = −I,
U2 = q2z2I + γ21q1I − γ21q2I = −I,

(44)

hold with q1, q2 > 0 and Y1 ∈ R2×2. To solve (44), one needs z2−γ21 < 0 obviously,
which implies that the switching rate from mode 2 to mode 1 should be large. Go
a further step, one notices that

q1 = 1, q2 =
γ21 + 1

γ21 − z2
, Y1 =

1

2

(
− 1− z1 + γ12 +

γ12(γ21 + 1)

z2 − γ21

)
I

satisfy (44). Thus we obtain that Q1 = q1I,Q2 = q2I,D1 = F1 = Y1, D2 = 0. We
compute

λM = q1 ∨ q2, Λ =
1

2

(√
γ12 ∨

√
γ21

)∣∣∣− 1− z1 + γ12 +
γ12(γ21 + 1)

z2 − γ21

∣∣∣,
γ = 1, MQD =

q1

2

(
− 1− z1 + γ12 +

γ12(γ21 + 1)

z2 − γ21

)
.

Therefore τ̃∗ is obtained by the definition in Theorem 4.3. Choose τ and τ̄ sufficient
small such that τ + τ̄ < τ̃∗. Thus, by Corollary 4.6, the controlled system (43)-(5)
is exponentially stable in the mean square.

5. Conclusion. In this paper, we design the delay feedback control function u
based on discrete observations and partial information of both the system states
and the Markovian states to stabilize the controlled system where the response lags
vary in an interval. Making use of the structure features of linear and nonlinear
HSDEs, we obtain the upper bound of τ+ τ̄ explicitly such that the feedback control
stabilizes the given system as long as τ+ τ̄ smaller than the upper bound. Moreover,
Example 3.1 shows that we can find the broader range of τ .

We have further advanced in two aspects: (a) The delay feedback designed here
can stabilize the controlled HSDEs with incomplete information, namely, the feed-
back control function u depends on the degenerate matrix F ×G, which dealt with
the case that Li et al. [10] can not cover. (b) The time lag in the feedback control
takes value in a determined time interval [0, τ̄ ] but a fixed constant, which is much
easier to design and costs less in practice.
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