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OPTIMAL ORBITS FOR A RECYCLING STATION SUPPORTING
IN-ORBIT RECYCLING

Maria Anna Laino* and Massimiliano Vasile†

This paper proposes a method to find the location of optimal orbits for a recycling
station. The goal is to find the orbital elements of an orbit that can be reached from
the regions of interest, for example where components of non-active spacecrafts are
located. The idea is to look at areas in the orbital parameter space that are reached
by propagating trajectories from the selected regions. Varying all initial parameters,
sets of possible orbits are obtained. The associated manoeuvre cost is computed and
compared to the classical direct transfers. The long-term evolution of the obtained
orbits is studied to assess if they remain inside the reachable set. The orbits that
minimise the manoeuvre cost are selected.

INTRODUCTION

The disposal of large structures in space at their end of life poses a very complex challenge.
Structures of this type, such as Solar Power Satellites (SPSs), are modular and can operate almost
indefinitely with the required repair and maintenance actions. To repair malfunctioning systems (or
to create new ones), it is necessary to have the appropriate material available, that comes from the
components of retired and no longer active spacecrafts, which will then be repurposed in an orbital
station. In this context, it is necessary to identify the most populated regions in between Earth orbit
and cis-lunar space where it is possible to find the material that it will then be transferred to the
area of interest. These regions can be seen as the hubs of a transport network, all connected to a
recycling station through low-cost transfers.

To date, no recycling station exists in space. This raises an unanswered question: what is the
optimal orbit for a recycling station in space? A first solution could be that of a station in a Geosyn-
chronous orbit (the proposed orbit for SPSs). This location, however, poses two main problems:
it may not be easily accessible from the most distant hubs and above all, it would be dangerously
close to protected regions. For this reason, this work analyses the possibility of finding an optimal
location for a recycling station, which is easily accessible from all the hubs, exploiting the natural
dynamics and impulsive manoeuvre.

The paper is organized into several sections. Initially, we introduce the dynamical model em-
ployed throughout this study, along with a mapping of the possible orbits based on their long-term
evolution. Subsequently, we outline the transfer methods from a Geosynchronous orbit to the recy-
cling station orbit while also presenting the reachable set of orbits from this region. The same type
of analysis is performed for the transfer from a low-Earth orbit to the recycling station orbit, as well
as for the transfer from a Moon Halo orbit. The suggested orbits and corresponding considerations
are presented in the concluding sections.
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DYNAMICAL MODEL

In this work, a perturbed two-body dynamical model is utilised, in which the object is subject to
the following equations of motion in vector form:

r̈ = − µ

r3
r+ aJ2 + as + am (1)

where, µ is the gravitational parameter of the Earth*, r = [x, y, z]⊤ denotes the position vector and
r is its magnitude, x, y and z are the Cartesian coordinates in an Earth-Centered Inertial frame (ECI).
The first term in Eq. (1) is the two-body acceleration term, while the other terms are, respectively,
the accelerations coming from the J2 zonal harmonic of the gravity field of the Earth and the Sun
and Moon gravity.1 Both the Sun and the Moon terms are obtained from their real ephemerides.
The model was implemented in MATLAB R2022b and validated against the software GMAT.2 The
Matlab function ode113 was used for the integration of the differential equations with a relative
error tolerance set to 10−13 and absolute error tolerance set to 10−14.

CARTOGRAPHY

For simplicity, the target orbit is assumed to be circular, characterised by the angles right-ascension
of the ascending node or RAAN (Ω) and inclination (i) and by its radius (r). This choice is justi-
fied also by the need of frequent rendez-vous manoeuvres, which would be easier to handle in the
case of a circular orbit. The selection of the final circular orbit starts with an examination of the
long-term evolution of the orbital elements. This investigation aims to assess the stability of the
orbit over time, whether the RAAN and inclination remain bounded and the orbit continues to be
approximately circular (i.e., eccentricity close to zero), while also ensuring there are no impacts
with the Moon, nor any possibilities of escape.

When only gravitational perturbations are considered, the average value of the semi-major axis
of orbits remains constant in time. Allan & Cooke3 demonstrated that for a model incorporating the
second-order zonal harmonics of Earth’s gravitational potential and the gravitational attraction of
the Sun and Moon, assuming the lunar orbit lies in the ecliptic plane, an initially circular orbit will
remain circular. Since the plane of the Moon’s orbit is inclined at a mean angle of only 5.145 deg
with respect to the ecliptic plane, one expects the eccentricity to exhibit small variations even within
the framework of more realistic models that take accurate positions of the Moon and Sun. Thus, the
orbital elements that could show moderate or large variations on long-time scales are the inclination
and the RAAN. Indeed, it follows that the inclination and the RAAN can either librate around the
point with Ω = 0deg, i = iL(d), where iL(d) is the inclination of the Laplace plane, or circulate,
depending on the initial conditions, i.e. on the relative position between the pole of the orbital
plane and the pole of the Laplace plane. The classical Laplace plane is the equilibrium solution
for the averaged dynamics arising from Earth oblateness and luni-solar gravitational perturbation.4

The plane of these uncontrolled circular orbits will precess about the pole of the Laplace plane in a
predictable way. Figure 1 shows the inclination iL(d) of the classical Laplace plane as a function of
the distance d from the centre of the Earth. As it can be noted, iL(d) tends to zero as d tends to zero
and it tends to the inclination of the ecliptic plane (i.e., 23.44 deg) as d increases.

To confirm the theoretical findings, a systematic scan was conducted running numerical propaga-
tions of the orbital elements of initially circular orbits for a duration of 100 years, starting from the

*The “Nomenclature” section at the end of the paper presents a comprehensive list and description of all the mathe-
matical symbols used throughout the paper.
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Figure 1: Inclination of the classical Laplace plane to Earth equator.

altitude of a Geosynchronous orbit (GSO) onwards. Figure 2 shows the librational and rotational
motion in RAAN and inclination, which is the projection of the motion of the orbital pole, for some
set of initial radii r0 and inclinations i0. While extensive numerical tests were performed across a
wide range of initial conditions, for conciseness we present only a representative subset. Figure 3
shows the evolution of the eccentricity for the same set of initial conditions. As it can be noted,
for initial conditions sufficiently close to the equilibrium solution the inclination and RAAN stay
bounded and describe a closed curve around the Laplace plane. Nevertheless, beyond a certain alti-
tude it can be observed that the variation in RAAN and inclination no longer follows a closed path
around the Laplace plane and the eccentricity increases. Furthermore, at even higher altitudes, the
influence of luni-solar perturbations is such that the orbit can approach the Moon closely, potentially
resulting in impacts or fly-bys.

Some considerations can be made about the selection of the target circular orbit from a stability
standpoint. A circular orbit can be chosen only in the case the altitude is low enough so that the
orbital elements remain within specific bounds and the Moon’s influence is not dominant. The nu-
merical simulations show that the threshold value for the radius is 150 000 km. If a higher altitude is
to be chosen, alternative options must be explored. A viable option is to consider orbits around the
Lagrange points of the Earth–Moon or Sun–Earth system.5 Notably, L1, L2, and L3 are unstable
points, whereas L4 and L5 offer stability (although for the Earth–Moon case, their stability is chal-
lenged by solar perturbations). Despite the instability of L1 and L2, numerous satellites currently
occupy orbits in these regions, as they require minimal corrections for their trajectories. Table 1
shows the locations in space for the Lagrange points of the Sun–Earth and the Earth–Moon system.

SE L1 SE L2 EM L4 EM L5

Distance (km) 1.498× 106 1.508× 106 3.84× 105 3.84× 105

Table 1: Distance of Lagrange points of Sun–Earth system (SE) and Earth–Moon (EM) from Earth.

GEOSYNCHRONOUS ORBIT TO RECYCLING STATION TRANSFER

In this study, we explore the hypothesis of placing the Solar Power Satellite in a GSO located in
the Laplace plane.6 Additionally, the Geostationary orbit (GEO) and the Graveyard orbit (approx-
imately 300 km above GEO), are both densely populated regions in space where valuable material
can be retrieved. Establishing a connection between the GSO region and the recycling station is
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Figure 2: Long-term evolution of the orbital plane of circular orbits with initial radius r0 and
inclination i0.

fundamental.

An essential criterion for selecting the optimal orbit, alongside stability and boundedness, is the
manoeuvre cost required to reach the orbit from regions of interest. In this section, we assess the
costs associated with various transfer methods from the GSO to circular orbits, including direct
transfers and transfers that exploit luni-solar perturbations. The objective is to compare these ap-
proaches and identify the most cost-effective option for the intended mission.

Direct Transfer

The direct transfer is the classical two-impulses transfer. The first manoeuvre is executed to leave
the initial orbit and enter an elliptical transfer orbit with perigee equal to the radius of the initial
orbit and apogee equal to the radius of the final orbit. The second manoeuvre takes place at the
apogee of the transfer orbit, it circularises the orbit and changes the inclination to match that of
the final one. The manoeuvres should happen at the common line of nodes. Here, the hypothesis
is that the two circular orbits share the same RAAN. It is worth noting that the perturbations are
not considered in this analysis. In an actual mission scenario, such a transfer would not be realistic
without accounting for perturbations, and it can be assumed that the required ∆v would be larger to
accommodate correction maneuvers.

Figure 4 represents the cost of the first manoeuvre (∆v1), the cost of the second manoeuvre (∆v2),
the total transfer cost (∆vTot), and the total time of flight required for the transfer from the GSO,
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Figure 3: Long-term evolution of eccentricity of circular orbits with initial radius r0 and inclination
i0 for time t.

with Ω0 = 0deg, i0 = 7.4 deg and r0 = 42 241 km, to a circular orbit characterized by inclination
i and radius r.

Perturbation-assisted Transfer

This category of transfers differs from the direct approach due to the inclusion of perturbations.
The aim is to leverage the variations in eccentricity and inclination caused by luni-solar perturba-
tions to perform the transfers more efficiently. For example, the effect of these perturbations can aid
in achieving the change of inclination required, completely or partially, thus reducing the overall
fuel consumption required for a specific plane change manoeuvre.

A point on the GSO, with Ω0 = 0deg, i0 = 7.4 deg and r0 = 42 241 km, is chosen as the starting
perigee point of a transfer orbit with radius of apogee ra. The argument of perigee (ω0) and the
departing epoch (t0) are varied in a range of values. The transfer orbit is propagated for a maximum
time Tmax. All apsis points along this transfer orbit are saved together with the corresponding
orbital elements and time-of-flight. The osculating orbit resulting from the propagation of the set
of initial conditions [t0, ω0, ra] and corresponding to an apsis point is ϕG(t0, ω0, ra), and will be
characterized by a final Ω, i and r and time-of-flight. The manoeuvre costs to leave the GSO and
enter the transfer orbit (∆v1) and to enter the final circular orbit (∆v2) are computed.

The procedure is run for a maximum propagation time Tmax = 1year starting from the following
set of initial parameters:

5

Optimal orbits for a recycling station supporting in-orbit recycling

�� �����
������

���
�

���

��
�

��

���
�

���

����

�� ��
�����

���������

�� ��
�����

�� ����
��������

���
�

�� �
�
�
�������
��

��

��������
��

��

�� ��
�����

��� ������

�� ��
�����

�
���
�

���
�
�

������
��

��

���
��

��

�� ����

�� ��
�����

���������

�� ��
�����



Figure 4: Cost of the first manoeuvre (∆v1), second manoeuvre (∆v2), total cost (∆vTot), and total
time-of-flight necessary to transfer from a GSO to a circular orbit with inclination and radius i and
r with a direct transfer. The dotted line represents the Laplace plane.

• ra =∈ {1, 1.5, 2, 2.5, 3, 5, 7, 10, 15} × 105 km.

• ω0 varying from 0 deg to 360 deg with a 2 deg step.

• t0 fixed at 12:00:00 on the first day of each month in the year 2023.

REACHABLE SET FROM GEOSYNCHRONOUS ORBIT

In this section, the set of orbits reachable from the GSO of choice is presented. The solutions
are divided in bounded circular orbit solutions, or the stable circular orbits with a radius below
150 000 km, and the Lagrange point solutions or the orbits about the Lagrange points of the Sun–
Earth and Earth–Moon system.

Bounded circular orbit solutions

The selection process is based on a two-step rationale. Firstly, we consider only the solutions
that result in propellant savings compared to the direct approach. Once these potential solutions
are identified, their long-term evolution is studied. This step helps us assess whether the selected
solutions can be maintained over extended periods or if they are prone to instability.

Based on the Cartography study, circular orbits are considered bounded only when their radius is
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below 150 000 km. Figure 5 illustrates the reachable circular orbits from a GSO using perturbation-
aided transfers.

Figure 5: Osculating orbits ϕG below 150 000 km, resulting from perturbation-assisted transfers
from the GSO.

The manoeuvre costs associated to the orbits ϕG in Figure 5 are compared with the correspond-
ing direct transfer solutions, and in both instances, the mass of propellant consumed after each
manoeuvre is computed as

∆m = m

[
1− exp

(
− ∆v

Isg0

)]
(2)

where m is the mass of the spacecraft before the burn, Is is the specific impulse, g0 is the standard
acceleration of gravity. In this analysis, an initial mass of 1000 kg is considered for the spacecraft
and a specific impulse of 455 s.1 The gains in total manoeuvre cost, total propellant mass consumed
and time-of-flight are computed in absolute and relative terms as

∆x gain = ∆xd −∆xp (3)

∆x gain =
∆xd −∆xp

∆xd
% (4)

where x is a generic variable and the subscripts stand respectively for “direct” and “perturbed”.

Only the solutions that show savings in terms of costs and propellant mass are retained. Figure 6
shows the gains in term of manoeuvre costs, propellant mass saved and time-of-flight. It is evident
that only a limited number of solutions out of the wide range depicted in Figure 5 show savings
compared to the direct transfer case. Moreover, the perturbation-aided transfers always require
considerably longer transfer times.

Consider now the box B = [imin, imax] × [Ωmin, Ωmax] × [rmin, rmax] with the boundary values
imin, imax, Ωmin, Ωmax, rmin, rmax. We can define the reachable set as

Ψ = {B | i, Ω, r ∈ B}. (5)

Specifically, the boundary values are fixed to Ωmin = −45 deg, Ωmax = 45deg, imin = 10deg,
imax = 40deg, while the condition on the radius is better expressed in terms of the maximum
eccentricity, which shall remain below 0.01. These values align with the deviations observed in the
long-term evolution analysis.

Once the reachable set is identified, the long-term evolution of each circular orbit is analysed in
order to find the subset of orbits that remain inside the reachable set. This subset is defined as

ΨC = { [Ω, i, r] | [Ω (TC), i (TC), r (TC)] ∈ B } (6)
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Figure 6: Osculating orbits ϕG below 150 000 km, with gains in term of manoeuvre costs (∆v),
propellant mass consumed (∆m) and time-of-flight (∆T ).

where TC is the time horizon over which we expect the orbit ϕ to remain in ΨC. For this analysis,
TC = 50 years. A comprehensive long-term evolution analysis was performed on each circular orbit
ϕG in Figure 6. The results are presented in Figure 7.

From the figure, it is evident that none of the orbits ϕG remain within the reachable set, leading to
an empty set ΨC. This means that the condition on the type of transfer should be relaxed. Starting
from a GSO, it is not advantageous to employ perturbation-aided transfers as the direct transfer
already require a low total manoeuvre cost, as shown Figure 4. Future analysis should look into
improving the estimation of the cost of direct transfers accounting for the effects of perturbations.

Lagrange point solutions

As mentioned in the previous section, two “families” of Lagrange points are considered in this
work: Sun–Earth L1 and L2 and Earth–Moon L4 and L5. In this case, we simply want to verify
if any of the solutions ϕG fall inside the vicinity of the points, hence we re-define the limits of
reachable set Ψ. For the Sun–Earth L1 and L2, the boundary values of the reachable set are fixed
to Ωmin = −10 deg, Ωmax = 10deg, imin = 23deg, imax = 24deg, rmin = 1.398 × 106 km and
rmax = 1.608 × 106 km. Notably, none of the orbits ϕG are situated within the set Ψ. Again,
different transfer solutions should be explored in this case.

On the other hand, for the Earth–Moon L4 and L5, the boundaries are set to Ωmin = −15 deg,
Ωmax = 15deg, imin = 18.29 deg, imax = 28.59 deg, rmin = 3.827 × 105 km and rmax = 3.929 ×
105 km. Figure 8 shows the orbits ϕG within the reachable set and the associated total cost (the sum
of ∆v1 and ∆v2, previously defined). A small number of solutions are available, namely 11. This
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Figure 7: Osculating orbits ϕG below 150 000 km, with minimum and maximum RAAN and incli-
nation and maximum eccentricity in the time horizon TC.

implies that a connection from a GSO to one of these Lagrange point employing a perturbation-
aided transfer is feasible. To get a better understanding, further analysis should look into the actual
manoeuvre cost necessary to enter one of the orbits about the Lagrange points.

LOW EARTH ORBIT TO RECYCLING STATION TRANSFER

The Low Earth Orbit (LEO) is a densely populated region in space, making it a valuable resource
for material retrieval. As such, it is essential to establish a connection between LEO and the recy-
cling station orbit. Figure 9 shows the distribution of objects in LEO (Space-Track.org database,
accessed 6/4/2023) based on their semi-major axis (a) and inclination (i). As it can be noted, most
objects are located in quasi-circular orbits. In contrast, the distribution of right-ascension of RAAN
is pretty even. Our strategy for connecting LEO to the recycling station orbit will be based on a
set of initial conditions consistent with this observed distribution. In a similar manner as in the
previous section on the GSO, the costs of connecting a Low Earth Orbit (LEO) to a circular orbit
using various transfer methods are evaluated.

Direct Transfer

Figure 10 and Figure 11 show the cost of the first manoeuvre (∆v1), time-of-flight (∆T ) and
second manoeuvre (∆v2) of a direct transfer from a LEO with initial radius r0 = 7500 km and initial
inclination i0 ranging from 50 deg to 100 deg. For lower initial inclinations, increasing the radius of
apogee to execute the change of plane manoeuvre would not result in a significant reduction in the
final total ∆v.1
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Figure 8: Osculating orbits ϕG falling inside the reachable set for the Earth–Moon L4 and L5 and
associated total manoeuvre cost.

Figure 9: Distribution of objects in LEO.

Perturbation-assisted Transfer

Similarly to the GSO case, a point on a circular orbit in LEO is chosen as the starting perigee
point of a transfer orbit with radius of apogee ra. The RAAN (Ω0), argument of perigee (ω0) and the
departing epoch (t0) are varied in a range of values. The transfer orbit is propagated for a maximum
time Tmax. The apsis points along the transfer orbit are saved together with the corresponding orbital
elements and time-of-flight. The osculating orbit resulting from the propagation of the set of initial
conditions [t0, Ω0, ω0, ra] is ϕL(ti, Ω0, ω0, ra), and will be characterized by a final Ω, i and r. The
manoeuvre cost to leave the LEO and enter the transfer orbit (∆vL 1) and to enter the final circular
orbit (∆vL 2) are computed and the time-of-flight (∆TL) is saved.

This procedure was implemented for a circular orbit with radius r0 = 7500 km, maximum prop-
agation time Tmax = 1year and the following initial parameters:

• ra ∈ {3, 5, 7, 10, 15} × 105 km.

• Ω0 and ω0 varying from 0 deg to 360 deg with a step of 2 deg.

• t0 fixed at 12:00:00 on the first day of each month in the year 2023.

The outcome of this procedure will be presented in the upcoming sections.
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Figure 10: Cost of the first manoeuvre (∆v1) and time-of-flight (∆T ) necessary to transfer from
a circular LEO with radius r0 to a circular orbit with inclination and radius i and r with a direct
transfer. The dotted line represents the Laplace plane.

MOON HALO ORBIT TO RECYCLING STATION TRANSFER

In recent years, there has been a significant growth in interest in lunar exploration and study. Also,
the idea of manned exploration has become popular with the concept of the Lunar gateway among
the others, a small space station intended to orbit a Near-Rectilinear Halo Orbit (NRHO) about
Lagrange point L2 of the Earth–Moon system.7 The Lagrange points are advantageous locations
for space missions, in particular Earth–Moon L2 could serve as a gateway to other destinations in
the Solar System, or it could be used as a communication link between the Earth and the hidden
side of the Moon.8 Given the anticipated increase in activity and congestion at this location in the
future, it holds good potential as a resource for material for the recycling station. A smart approach
for transferring from the Lagrange points involves the utilisation of invariant manifold structures, as
demonstrated in the Genesis mission profile within the Earth–Sun system.8 These manifolds offer a
cost-effective means of travelling in space.

Manifold Transfer

The invariant manifolds are peculiar to the periodic orbits in the circular restricted three-body
problem (CR3BP), like Halo orbits about the Lagrange points L1 and L2.5 Stable/unstable man-
ifolds are phase space structures comprising vectors whose future/past positions converge to the
orbit. If a spacecraft is on a stable manifold, its trajectory will converge towards the orbit, whereas
if it is on the unstable one, it will diverge away from it. For a more detail analysis on the CR3BP,
periodic orbits and invariant manifolds, it is advised to consult the original work by Koon et al.5

A point on a Halo orbit is chosen as the starting point of the invariant manifold. The trajectory
is propagated in the perturbed dynamical model previously presented, for a maximum time Tmax,
directed both towards the interior and exterior of the three-body system. All apsis points along the
manifold are recorded. The osculating orbit will be ϕM(t0, θ0, Az), resulting from the propagation
of the initial conditions [t0, θ0, Az], where θ0 is the starting point along the Halo orbit (it can be seen
as a “true anomaly”, but starting from the right-most point of the orbit and proceeding in clockwise
direction) and Az is out-of-plane amplitude that defines the specific starting Halo orbit. While the
manoeuvre cost to leave the Halo orbit is practically null, the cost to enter the final circular orbit
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(∆vM) is computed and the time-of-flight (∆TM) is saved.

The procedure was implemented for Earth–Moon L2 southern (the maximum amplitude is in the
−z direction) Halo orbits, with:

• 100 Halo orbits, characterised by amplitude Az varying from zero to ca. 75 000 km.

• θ0 varying from 0 deg to 360 deg, with a step of 2 deg.

• t0 fixed at 12:00:00 for the dates 9/3/2025, 16/3/2025, 23/3/2025, 30/3/2025, 28/5/2030,
4/6/2030, 11/6/2030, 18/6/2030, 26/12/2034, 2/1/2035, 9/1/2035, 16/1/2035. These dates
were chosen to encompass the full range of variations in the position and inclination of the
Moon. Specifically, the dates correspond to lunar inclination spanning across 28.59 deg,
23.44 deg, and 18.29 deg.

The outcome of this procedure will be presented in the next sections.

REACHABLE SET FROM LEO AND MOON HALO ORBITS

Here, the set of orbits reachable from LEO and from the Moon Halo orbits is presented, following
the same structure and rationale as in the previous GSO case.

Figure 12 shows all the orbits that can be reached from the LEO with a Perturbation-aided transfer
and from the Moon Halo orbits with a manifold transfer.

Bounded circular orbit solutions

After all trajectories are propagated, two datasets are found that contain all osculating orbits
ϕL and ϕM. A nearest neighbour search† is used to find all the matching orbits in these sets, or
neighbouring points, which means that all the orbits from the sets that have RAAN, inclination and
radius within a certain tolerance are kept, while the others are discarded. Here, the tolerance in the
[Ω, i] plane is 1 deg, while the tolerance in radius is 10 km.

Figure 13 shows all the solutions with radius below 150 000 km.

The gains, defined as in Eq.(3) and Eq.(4) comparing LEO perturbation-aided transfers and direct
transfers are computed and depicted in Figure 14. Here, only the solutions that show positive savings
in terms of costs and propellant mass are retained. In contrast to the GSO case, a larger number
of solutions is available. The savings in propellant mass are up to 100 kg. This is because the
perturbation-aided transfers eliminate the cost of the change of inclination manoeuvre, which in
this case is performed exclusively by the Sun and the Moon. However, this advantage comes at the
expense of longer transfer times, which can extend up to a year compared to a maximum of about
40 days in the case of a direct transfer.

At last, solutions are propagated for TC = 50 years to assess if they remain inside the reachable
set, as defined in Eq.(5) and Eq.(6). The results are shown in Figure 15. In this case, nearly 2500
solutions are accessible.

Hence, some considerations can be drawn about the circular orbit solutions that minimise the
manoeuvre cost. Figure,16 presents the costs and time-of-flight for solutions within the set ΨC,

†https://uk.mathworks.com/help/stats/nearest-neighbors-1.html
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originating from Low Earth Orbit (LEO) using a perturbation-aided transfer, Moon Halo orbits
employing a manifold transfer, and Geostationary Orbit (GSO) via a direct transfer (as previously
noted, employing a perturbation-aided transfer for the GSO case does not yield any advantage over
a direct one). The solutions that allow to minimise the overall total ∆v across the three regions are
the ones located in the south-east region of the [r, i] plane, around r = 100 000 km and i = 20deg,
while the RAAN spans between −40 deg and 40 deg. It is worth noting that within this interval,
solutions arise from the whole range of initial inclinations in LEO (from 50 deg to 100 deg) and
from Halo orbits ranging from the minimum to the maximum amplitude.

A last observation shall be made about the time-of-flight. Surely, the savings in propellant mass
and manoeuvre cost are offset by significantly longer transfer durations. This trade-off is acceptable
given that low-thrust solutions require transfer times in the same order of magnitude if not higher.
Nevertheless, we isolated the solutions that require less than 150 days for both the LEO and Moon
Halo orbit cases, as illustrated in Figure 17.

Lagrange point solutions

Figure 18 shows the orbits inside ϕL and ϕM inside the Sun–Earth reachable set and associated
total cost, Figure 19 shows the same solutions for the Earth–Moon reachable set. A large number of
solutions is available in both cases. This implies that Lagrange point regions can be easily connected
with LEO and Moon Halo orbits via perturbation-aided transfers and manifold transfers. For a future
extension to this work, it is essential to investigate the manoeuvre cost required for insertion into
any of the orbits about the Lagrange points.

CONCLUSION

This paper presents a novel approach for identifying optimal orbits to locate recycling stations.
Initially, a comprehensive assessment of the long-term orbital evolution was conducted to investigate
the stability of possible orbits. It was found that a circular Earth orbit should have a radius below
150 000 km to be bounded or other options, like orbits about the Lagrange points in the Sun–Earth
and Earth–Moon system should be investigated.

We searched for a set of orbits reachable, at low ∆v cost, from the GSO, LEO and Moon regions
by exploiting a combination of natural dynamics and impulsive manoeuvres. Different transfer
methods were proposed: for the GSO and LEO, direct bi-impulsive transfers and perturbation-aided
transfer, or transfers that leverage the variations in orbital elements mainly caused by luni-solar
perturbations. For the Moon Halo orbit case, invariant manifolds were employed. The reachable
set of solutions was divided in “bounded circular orbit solutions”, namely the solutions with radius
below 150 000 km and Lagrange point solutions, and in both instances a reachable set was defined,
bounding the solutions in terms of RAAN, inclination and radius.

For the GSO to bounded circular orbits case, it was found that only in few instances the perturbation-
aided transfers outperform the direct bi-impulsive approach, and of the remaining set of orbits none
of them stays inside the reachable set for a time horizon of 50 years. For the Lagrange point solu-
tions, instead, we simply aimed at assessing if any of the osculating orbits obtained would fall in the
region of Sun–Earth L1 and L2 and Earth–Moon L4 and L5, leaving a more detailed analysis for
future extensions. In the two cases, respectively none and very few orbits give approach the desired
region.
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In the context of transfers from LEO and Moon Halo orbits, a similar methodology was applied.
Bounded circular solutions that outperform the direct transfer and remain inside the reachable set
for 50 years were found. Notably, solutions minimizing the overall ∆v are concentrated around a
radius of 100 000 km, inclination of 20 deg, and RAAN ranging from −40 deg to 40 deg. Despite
longer transfer times required compared to a direct approach, some solutions within this set exhibit
a time-of-flight under 150 days. For the Lagrange point solutions, a large number of the osculating
orbits departing from LEO and from Moon Halo orbits effectively reach the desired region. Future
analysis should investigate more in detail this option, assessing the cost necessary for insertion into
Lagrange point-orbits.
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NOMENCLATURE

∆T Time-of-flight
∆v Manoeuvre cost
Ω Right ascension of the ascending node
ω Argument of perigee
ϕ Osculating orbit
Ψ Reachable set
θ0 Starting point along Halo orbit

a Semi-major axis
Az Out-of-plane amplitude
e Eccentricity
i Inclination
Is Specific impulse
Li Lagrange point
r Radius
ra Radius of apogee
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Figure 11: Cost of the second manoeuvre (∆v2) necessary to transfer from a LEO with initial
inclination i0 and radius r0 to a circular orbit with inclination and radius i and r with a direct
transfer. The dotted line represents the Laplace plane.
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Figure 12: Osculating orbits ϕL and ϕM, resulting from perturbation-assisted transfers from LEO
and manifold transfers from Moon Halo orbits, with manoeuvre costs and time-of-flight.
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Figure 13: Osculating orbits ϕL and ϕM below 150 000 km, resulting from perturbation-assisted
transfers from LEO and manifold transfers from Moon Halo orbits, with manoeuvre costs and time-
of-flight.

Figure 14: Osculating orbits ϕL below 150 000 km, with gains in term of manoeuvre costs (∆v),
propellant mass consumed (∆m) and time-of-flight (∆T ).
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Figure 15: Osculating orbits ϕL and ϕM below 150 000 km, with minimum and maximum RAAN
and inclination and maximum eccentricity in the time horizon TC.

Figure 16: Osculating orbits from LEO, Moon Halo orbits and GSO falling inside the set ΨC with
the associated total manoeuvre cost and time-of-flight.
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Figure 17: Osculating orbits from LEO, Moon Halo orbits and GSO falling inside the set ΨC with
the associated total manoeuvre cost and time-of-flight below 150 days.

Figure 18: Osculating orbits ϕL (left) and ϕM (right) falling inside the reachable set for the Sun–
Earth L1 and L2 and associated total manoeuvre cost.
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Figure 19: Osculating orbits ϕL (left) and ϕM (right) falling inside the reachable set for the Earth–
Moon L4 and L5 and associated total manoeuvre cost.
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