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Abstract
In quest of improving the productivity and efficiency of manufacturing processes, Artificial Intelligence (AI) is being used
extensively for response prediction, model dimensionality reduction, process optimization, and monitoring. Though having
superior accuracy, AI predictions are unintelligible to the end users and stakeholders due to their opaqueness. Thus, building
interpretable and inclusive machine learning (ML) models is a vital part of the smart manufacturing paradigm to establish
traceability and repeatability. The study addresses this fundamental limitation of AI-driven manufacturing processes by
introducing a novel Explainable AI (XAI) approach to develop interpretable processes and product fingerprints. Here the
explainability is implemented in two stages: by developing interpretable representations for the fingerprints, and by posthoc
explanations. Also, for the first time, the concept of process fingerprints is extended to develop an interpretable probabilistic
model for bottleneck events during manufacturing processes. The approach is demonstrated using two datasets: nanosecond
pulsed laser ablation to produce superhydrophobic surfaces and wire EDM real-time monitoring dataset during the machining
of Inconel 718. The fingerprint identification is performed using a global Lipschitz functions optimization tool (MaxLIPO)
and a stacked ensemble model is used for response prediction. The proposed interpretable fingerprint approach is robust to
change in processes and can responsively handle both continuous and categorical responses alike. Implementation of XAI
not only provided useful insights into the process physics but also revealed the decision-making logic for local predictions.
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Introduction

Artificial Intelligence (AI) is one of the core constituents of
the smart manufacturing paradigm, having extensive appli-
cations throughout the product lifecycle. AI-driven manu-
facturing systems are aimed at smarter product design, better
productivity, and enhanced part quality (Nti et al., 2022). Due
to its overall better performance and autonomous decision-
making capabilities, AI is continuously being extended
to several new domains in smart manufacturing, with the
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process and product fingerprint (FP) development being
one of the most recent additions. Process and product
FPs are extracted to establish the fundamental relationship
between manufacturing process parameters or surface geo-
metrical features and product functional performance (Cai
et al., 2019). FP identification leads to significantly reduced
defects, wastages and metrology and optimisation efforts
(Kuriakose et al., 2020). In addition, it also addresses the
issues of data abundance and latency by eliminating redun-
dant parameters and sensors (Bai et al., 2019; Ghahramani
et al., 2020; Qiao et al., 2020). However, extraction of these
intrinsic links is extremely challenging and is still mostly an
exhaustive or expert-knowledge-dependent process. Earlier
fingerprint identification approaches were iterative (Klink,
2016), physics-based (Cai et al., 2019) or statistical (Baruffi
et al., 2018; Bellotti et al., 2019; Zanjani et al., 2019) meth-
ods. Recently, machine learning (ML) (Rostami et al., 2017;
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Scime & Beuth, 2019; Suarez et al., 2021) based FP extrac-
tion has been developed in quest of further enhancement in
accuracy and flexibility than previous approaches. Though
the advanced AI models are far ahead in terms of com-
putational and complex data handling capabilities in the
application domain of FP extraction, it has a fundamental
limitation of being uninterpretable due to their complicated
computing architecture and black box style predictions (Far-
biz et al., 2022). The detailed definitions of FP technology
and other related terminology are provided further in the arti-
cle.

The recent advancements in AI like deep and ensemble
learning have improved prediction accuracy by several folds.
This improved performance is, however, at the expense of
visibility and explainability (de Bruijn et al., 2022). The
complex computational style of modern AI systems has sig-
nificantly affected the explainability of models, where the
stakeholder is often left without any feedback on the predic-
tion logic (Brito et al., 2022; Chiu et al., 2023; Lee & Chien,
2022). Such opaqueness limits the possibilities for model
improvements, parameter tuning and root cause analysis of
a prediction instance. Knowledge of decision-making ratio-
nale is critically vital, especially when the model predictions
are relied upon to make high stake decisions(Farbiz et al.,
2022). Lack of trust and transparency has in turn affected the
repeatability and traceability of AI predictions. To address
these limitations, Explainable Artificial Intelligence (XAI)
is introduced, which is a recent development in AI research
with a core emphasis on the interpretability of model predic-
tions (Lee et al., 2022). It sets out several tools, methods, and
algorithms to develop interpretable and user-comprehensible
explanations for the otherwise blackbox AI predictions. The
explainability is mainly imparted by two means: (a) intrinsic
interpretability—building themodel to be structurally simple
and (b) post-hoc analysis—applying reasoning to themodel’s
decision making logic (Sofianidis et al., 2021).

The concept of XAI is still very nascent in the smart
manufacturing sector, with only a very limited number of
studies conducted so far. Obregon et al. (Obregon et al.,
2021) developed rule-based explanations for defect detec-
tion during the injectionmoulding process. Statistical feature
extraction, followedbydecision rules extraction fromensem-
ble prediction and subsequent rules visualization by partial
dependence plot was proposed in the study. In a different
study, Meister et al. (Meister et al., 2021) used post-hoc XAI
tools like Shapley additive explanations (SHAP), Smooth
IG and Guided Grad-CAM to explain convolutional neural
network (CNN) classifier predictions in composite defect
detection. Carletti et al. (Carletti et al., 2019) designed an
explainable machine learning approach to evaluate the fea-
ture importance of an anomaly detection method called the
Isolation Forest method. Though capable of root cause anal-
ysis based on feature relevance, the proposed method could

give only global-level explanations. Tiensuu et al. (Tiensuu
et al., 2021) developed an interpretable decision support sys-
tem for quality improvement of steel manufacturing. A few
more applications of XAI in predictive maintenance applica-
tions are discussed by Vollert et al. (Vollert et al., 2021).

Though XAI is immensely promising towards imparting
trust and transparency toAI-driven smart manufacturing pro-
cesses, it does have some drawbacks and challenges. First is
the lack of a reference framework for integrating XAI with
existing manufacturing systems. Being in its early stages,
the approach is yet to be implemented in many manufactur-
ing applications except for a few anomaly detection models.
Second, drawing conclusions from a single interpretability
approach may result in over-simplification, interrelated fea-
tures, and contrasting local and global interpretations (de
Bruijn et al., 2022). Thus, there is a need to build an XAI
approach that seamlessly integrates intrinsic and posthoc
explainability. The third challenge is the limited robust-
ness of XAI tools due to which the existing explainable
manufacturing systems are restricted to handle either con-
tinuous or categorical responses. Such partially interpretable
systems will be ineffective in most real-world industrial
applications (Yan et al., 2010). Finally, there are several lim-
itations in combining the existing domain knowledge with
XAI interpretations towards further insights and a deeper
understanding of underlying process physics. These chal-
lenges have so far limited the application domain of XAI in
smart manufacturing systems.

The XAI-based FP development approach proposed in
this study has the potential to address all of these afore-
mentioned challenges. For the first time, a generic and
completely interpretable framework is proposed for the appli-
cation of fingerprint extraction. This could act as a reference
framework for the future implementations of XAI in smart
manufacturing processes. This novel approach integrates
both intrinsic and post hoc XAI schemes to impart explana-
tions atmultiple levels. Intrinsic explainability is imparted by
MaxLIPO global search algorithm and symbolic regression.
On the other hand, Shapley values from cooperative game
theory provide posthoc explanations for stacked ensem-
ble ML predictions. A unique approach towards generating
explanations for both continuous and categorical response
prediction is introduced through a novel probability map-
ping scheme. The robustness of the system is validated using
two datasets; a nanosecond laser ablation process to produce
superhydrophobic surfaces and an EDM machining dataset
during the machining of Inconel 718.

The principal objectives of this study are as follows.

• To develop a completely interpretable and robust system
for process and product fingerprint extraction and subse-
quent response prediction.
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• Extending the concept of process fingerprints to develop
an interpretable probabilistic model for bottleneck events
during manufacturing processes

The rest of the paper is arranged as follows:
Sect. “Explainable Artificial Intelligence (XAI)” intro-
duces and discusses the concept of XAI, especially in the
smart manufacturing context; Sect. “Interpretable finger-
print development approach” elaborates on the proposed FP
development approach; Sect. “Experiment details” describes
the dataset and corresponding experimental details used to
demonstrate the proposed framework; Sect. “Results and
Discussion” outlines and discusses the key results, and
finally, Sect. “Conclusions and future work” is dedicated to
discussing the conclusions and future directions.

Explainable artificial intelligence (XAI)

Explainable AI is a newer branch of ML, which is intro-
duced to offer higher levels of transparency and trust in
its otherwise black box-style predictions. Such an approach
is required since the complicated computational structure
of advanced ML models doesn’t reveal its decision-making
rationale to the stakeholders (Barredo Arrieta et al., 2020).
Figure 1 shows the trend of MLmodel accuracy with respect
to its interpretability. Ensemble and deep learning mod-
els are classified under the uninterpretable category, which
require additional tools to make them explainable (Angelov
et al., 2021). Lack of explainability hinders the chances
of improving and debugging the models of possible biases
and informed decision-making in cases of high-stake deci-
sions (Hoffmann et al., 2021). XAI addresses such concerns
by making the predictions explainable while maintaining

Fig. 1 The interpretability vs accuracy trend for ML models

higher levels of performance, thereby enabling the users to
understand, trust andmanage the predictions better. In aman-
ufacturing context, the key focus shall be in providing human
interpretable logic to reveal the underlying process physics
for the operations under consideration (Obregon & Jung,
2022).

XAI can be an integrated framework or tool to under-
stand the model predictions better. There are typically two
approaches to impart explainability to anMLmodel: intrinsic
(Ante-hoc) explainability and posthoc explanations.

Intrinsic explainability

A model is intrinsically explainable if it is ‘by-design’ inter-
pretable. Typical examples are regression and decision trees;
whose computational structure makes their decision-making
transparent. However, such a model architecture may limit
the computational capabilities resulting in lesser predic-
tion accuracy. The explainable representation chosen for
the proposed approach is given by

∏n
i�1( P

bi
i

)
which is

further explained in Sect. “Interpretable fingerprint devel-
opment approach”—Interpretable fingerprint development
approach.

Post-hoc explainability

As the name indicates, post-hoc XAI tools address the
opaqueness of black box ML models after the predictions
are made. Here a range of explanations is offered by stand-
alone model agnostic methods compatible with any ML
model. The interpretations are offered at global or local lev-
els, where global interpretations highlight the overall model
performance at a glance, and local interpretations explain
individual predictions. Some of the specialised tools offering
post-hoc explanations are IntegratedGradients (IG), SHapley
Additive explanation (SHAP) and Local InterpretableModel
Agnostic Explanation (LIME). Among these, IG and LIME
are used for local interpretations, while SHAP can be used
for both local and global interpretations. Due to the wider
scope of interpretations offered, SHAP-based explanations
are predominantly discussed in this paper. Figure 2 shows
the overall capabilities of the post-hoc explanations.

SHAP is an XAI tool for explaining the individual pre-
dictions of a complex ML model (Lundberg & Lee, 2017).
SHAP tool uses shapley values of cooperative game the-
ory for local ML interpretability. Shapley values represent
the contribution and importance of a particular feature sub-
set (S), over the set of all possible feature values (F) (Park
et al., 2021). To calculate a particular feature’s importance,
themodel accuracy is computed in the absence of that feature
by considering every other feature combination, and subse-
quently computing the accuracy improvement if this feature
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Fig. 2 Post-Hoc explainability

is added to the previous combinations. The local interpreta-
tion of shapely values for a feature is the contribution of a
particular feature towards the difference between the local
prediction and the mean model prediction. In a wider con-
text, the collective shapely values for all features completely
explain the overall deviation of a local prediction from the
mean prediction (Vahdat et al., 2022). Unlike SHAP, LIME
explains the local predictions by creating a proxy dataset
(default is 5000) in the vicinity of the individual prediction
under consideration. Responses are predicted for this surro-
gate dataset, and then LASSO or ridge feature selection tools
are used to evaluate the relative feature importance.

In short, post hoc explanations focus on providing insights
after a model has made predictions. They indeed help users
understand the model’s behavior and gain trust in its deci-
sions; however, only the intrinsic explainable models make
the decision-making process transparent. In other terms, post
hoc XAI only offers justifications for local predictions, and
unlike intrinsic XAI, it doesn’t necessarily reveal the internal
computational structure or mechanisms of the model or the
extracted features.On the other hand, intrinsicXAI allows for
easier debugging, enhanced acceptance, and broader appli-
cability of the system. It also permits easier integration of
domain knowledge and causal interpretability. Additionally,
intrinsically explainable models are recently gaining signifi-
cant attention in its usage towards improvement of scientific
understanding and have the potential to lead to scientific dis-
coveries (Kitano, 2021; Krenn et al., 2022). In support of this
view, (Rudin, 2019) discusses in detail why it is important
to have interpretable models over black box model explana-
tions. In this regard, intrinsic XAI is the way towards better
scientific understanding and discoveries in the manufactur-
ing domain.

The presented framework thus incorporates a compre-
hensive, multi-stage explainability approach, where intrinsic
explainability is incorporated first, followed by post hoc jus-
tifications.

Interpretable fingerprint development
approach

The overall fingerprint development approach is discussed in
this section. Fingerprint extraction is the process of reveal-
ing intrinsic relations between process parameters or product
geometric features, and the product functionality. The pro-
cess fingerprints are the machine control parameters, process
signatures acquired by sensors or real-time data from the
CNC control system. By controlling the process fingerprint
within some predefined limits, overall product and process
performance can be ensured. Product fingerprints are prod-
uct geometric features and characteristics which influence its
functionality.

The proposed fingerprint development approach is robust
and generically designed to work with any manufacturing
process. It involves four functional modules: (1) Extraction
of interpretable FP expression; (2) Dimensionality reduc-
tion; (3) FP-driven response prediction and (4) post-hocXAI.
The approach is demonstrated using two different datasets:
a nanosecond laser ablation process to produce superhy-
drophobic surfaces and a wire EDM dataset during the
machining of Inconel 718. Further details are given in Sect.
“Experiment details”. The overall generic FP development
approach is given in Fig. 3 and involves the following steps.

(1) Selection of the manufacturing process under consider-
ation, along with its relevant process parameters (−→p �
(Pi )), surface characteristics (

−→s � (S j )), responses (y)
or product functional performance (PF).

(2) Extraction of an interpretable FP expression through a
global optimization algorithm. The intrinsic explain-
ability is ensured by the choice of a simple and
transparent expression for FP. The choice of FP expres-
sion is selected to incorporate the cross-interactions and
non-linearity between the process parameters/surface
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Fig. 3 Generic fingerprint development approach

characteristics and product functionality as proposed by
Kundu et al. (Kundu et al., 2022). The basic functional
relationship between process parameters (Pi )/surface
characteristics and product functionality are indicated
by

y � f (Pi ) (1)

Next, to account for the linear interaction effects
among the process parameters/surface characteristics,
the expression is modified to include the product of pro-
cess parameters as

y �
n∏

i�1

f (Pi ) (2)

Finally, to include the non-linear variations of prod-
uct functionality with respect to the process param-
eters/surface characteristics, an exponent term is
included. Such an expression for process and product
fingerprints is reported by Cai et al. (Cai et al., 2019)
where the process FP for a nanosecond laser ablation
process was found to have a cross (Laserpower ×
exposuretime) and exponential (Pitch2) components.
Thus, the final form of the FP expression is given as

FP �
n∏

i�1

(
Pi

bi
)

(3)

Since the product functionality y will be a function of
FP, it is given by the expression

y � f

(
n∏

i�1

(
Pi

bi
)
)

(4)

where n is the number of parameters, Pi represents pro-
cess parameters and bi is the unknown exponent vector
components which have to be found.
To summarize, this approach starts with an explainable
form for the FP expression, and then uses an intelli-
gent search algorithm to find the unknown parameters
(exponent vector,

−→
b � bi ) in the expression that best

correlates the process/product FPwith product function-
ality.An alternative to thismethod inXAI is to search for
all possible equations in the space of all mathematical
expressions and choose the expression which best fits
the product functionality as the fingerprint expression.
Due to its limitations to handle higher dimensional-
ity and huge computational demands, this approach
is not considered in the primary scope of this study,
but is briefly discussed in Sect. “Explainable FP repre-
sentations using symbolic regression” ‘Explainable FP
representations using symbolic regression’.

(3) A global optimization algorithm is employed to extract
the optimal process and product FP. The algorithm finds
the optimal solution from the solution spacewith respect
to the objective function and the search constraints
Though there exist several approaches to solve global
optimization problems like random search, exhaustive
search, grid search and Bayesian optimization, each
method comes with many limitations as well. Ran-
dom search doesn’t guarantee optimal results, exhaus-
tive search is computationally intensive and Bayesian
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optimization demands the right selection of hyperpa-
rameters to yield good results. A recently proposed
non-parametric, non-search algorithm called MaxLIPO
has proven to outperform randomsearch and is preferred
over Bayesian algorithms due to its faster convergence
when combined with the trust region (TR) method
(Alova et al., 2021). Theoverall logic is brieflydescribed
next.
A smoothness condition as given below is assumed for
the objective function in global optimization problems.
For any non-negative k, there exists a collection of Lip-
schitz functions that satisfy

∀x1, x2εA : | f (x1) − f (x2)| ≤ k.|x1 − x2| (5)

The constant k is called the Lipschitz constant. The
MaxLIPO algorithm makes use of this smoothness
condition to constrain the search domain during its oper-
ation. The algorithmdefines anUpper boundU (x) to the
objective function f (x) defined as

U (x) � min
i�1...t

( f (xi ) + k.‖x − xi‖2) (6)

For each new point selected for evaluation, the algo-
rithm basically tries to evaluate if the upper bound of the
point under consideration is better than the best result
obtained so far. If yes, the point is selected for evalua-
tion. If the selected point x is corresponding to max(U
(x)), the point is now in the close vicinity ofmax( f (x))
aswell. The steps are iteratively repeated until a termina-
tion criterion is met, to get the best solution and function
value. Further details on the method can be referred to
in the paper byMalherbe and Vayatis (Malherbe &Vay-
atis, 2017), where the capability of the LIPO method is
evaluated against state-of-the-art techniques in solving
benchmark global optimization problems.
In the context of process/product FP development, the
MaxLIPO algorithmfinds the unknown exponent vector−→
b in the FP expression

∏n
i�1 (Pi

bi
)
, so as to maxi-

mize the Pearson correlation coefficient (CC) between
the process/product FP and product functionality (PF)
as given in Fig. 4.
The unknown parameters in the FP expression define
the search space. The output at this stage is a pro-
cess/product FP expression with the best correla-
tion (CCmax ) with responses, containing all candidate
parameters.

(4) Dimensionality reduction through recurrent feature
elimination (RFE) is performed next. An ideal pro-
cess or product FP shall have the minimum number of

features to facilitate computational efficiency. RFE per-
forms dimensionality reduction by eliminating the least
contributing features one by one based on RFE ranking
(Wang et al., 2021). A decrease in correlation coeffi-
cient is expected as features are getting eliminated, so
it is vital to define a termination criterion based CCmax

is dropped from its maximum value. A 5% reduction is
considered permissible which implies the termination
of dimensionality reduction when the correlation drops
below 95% CCmax .

(5) The next step is the response prediction through the
extracted process/product FP. For continuous responses,
the method is relatively straightforward. An ML model
is trained to predict the responses based on pro-
cess/product FP as input. A stacked-ensemble ML
model is used in this case for response prediction, with
post-hoc explanations using XAI tools.
In ML, ensemble models use techniques to combine
multiple ML predictions to enhance the accuracy than
their constituent models. In comparison to its compet-
itive ensemble techniques like bagging, and boosting,
stacking has an overall better performance owing to its
flexibility to combine anyMLmodels as low-level learn-
ers and not justweak learners. The stacked ensemble can
thus harness the capabilities of already well-performing
models and take the overall predictive accuracy a step
higher (Kim et al., 2020; Pavlyshenko, 2018). In addi-
tion, it can handle both classification and regression
problems.
The ensemble technique combines the predictions of
multiple base models on unseen data samples to train
a meta-learner. Meta learner receives the base model
predictions along with the training dataset as its input.
The base and meta learners can be any capable ML
model. The general architecture of a stacked ensemble
model is given in Fig. 5. In this study, five base mod-
els are considered namely Ridge, Lasso, support vector
regression (SVR), random forest regression (RFR), and
light-gradient boost (LGB). The extreme gradient boost
(XGB) algorithm is selected as the meta-learner.
Prediction of categorical responses through process FP
requires an additional mapping of FP values into a prob-
abilistic scale. The overall approach for manufacturing
event detection throughprocessFP is given inFig. 6. The
steps to develop this interpretable probabilistic model
are given below:

• First, a vector of ‘n’ categorical events is trans-
formed to a discrete integer vector (for example by
assigning the values 1, 2, 3...n for each event). With
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Fig. 4 MaxLIPO problem definition

Fig. 5 Generic stacking ensemble architecture

Fig. 6 Process FP of bottleneck events
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reference to Fig. 6, let the vector −→mo � (MO1,
MO2, MO3 . . . ..MOn) represent the machining
outcomes and vector −→a � (1, 2, 3, 4, . . . n) rep-
resents the numeric values assigned to each of the
n events. In a smart manufacturing context, such
events can be defined appropriately to distinguish
between a normal/healthy process state and with bot-
tleneck/unhealthy process states like a tool failure or
a process anomaly.

• Next, the process FP is developed according to step
(3), considering process parameters (machine param-
eters, machine controller data, and sensor signatures)
as FP candidates and the categorical events (produc-
tivity, quality parameters) as output.

• The threshold values of process FP (decision bound-
aries) which most appropriately differentiate one
manufacturing event from another are to be defined
next. The probability values are defined as a linear
function of closeness to the decision boundaries. At
the decision boundary, the probabilities of both events
are 0.5 each. The probability of an event increases
from 0.5 towards 1, as the FP value moves away from
theboundary into the centroid of the event spaceunder
consideration. The event probabilitymapping enables
online anomaly detection by monitoring just the pro-
cess FP value. Stacked ensemble models are trained
to predict manufacturing events based on process FP,
and the rationale behind ML predictions is supported
by post hoc XAI explanations.

(6) The post-hoc explanations for ML predictions are given
using shapley additive explanations (SHAP) inspired by
cooperative game theory. Though demonstrated for an
ensemble model receiving an intrinsically explainable
FP input, this approach is more relevant for explaining
the decisions if the model were directly trained with a
raw dataset. Both global and local interpretations are
offered for the model and a single prediction respec-
tively.
Theoverall logical dataflowof theproposed approach

is given in Fig. 7.

Experiment details

To demonstrate the robustness of the proposed method,
datasets from two processes with very different functionali-
ties are considered. First, the framework is used to develop
process and product fingerprints for a nanosecond laser
ablation process to produce superhydrophobic surfaces. Sec-
ondly, the approach is validated by extracting the process FP
towards building a process monitoring system for the wire
EDM process. The details are as follows:

Dataset 1: Superhydrophobic surfaces through laser
ablation

Due to their unique properties like low contact area and
adhesion at the solid–liquid interface, superhydrophobic
surfaces offer exceptional drag resistance, atmospheric cor-
rosion resistance, dirt repellence, surface icing prevention
and self-cleansing. In the first dataset, superhydrophobic-
ity is achieved on AISI 316L stainless steel by producing
micro Gaussian holes using a nanosecond laser ablation pro-
cess. An openCNC-controlled ultra-precisionmicromachine
is used for laser ablation. The experimental setup is shown in
Fig. 8a. The machine has a maximum laser pulse frequency
of 200 kHz, a source emission wavelength of 1064 nm and
average laser output power of 20 W.

The static contact angle is measured using a drop shape
analyser having a 5 µL liquid droplet volume. The surfaces
are classified as superhydrophobic if the contact angle is
greater than 150°. To ensure repeatability, all measurements
are performed thrice and the average reading is recorded. A
few selected cases demonstrating the variations in contact
angle with respect to different Gaussian hole dimensions
and patterns are given in Fig. 8b. Since the surface micro
features have a close correlation with its water repellence,
the surface geometric characteristics like arithmetic mean
roughness (Sa), surface peak to valley height (Sz), surface
kurtosis (Sku), surface rootmean square gradient (Sdq), devel-
oped interfacial area ratio (Sdr), mean profile element width
(Rsm), and largest 2D peak to valley height (Rz) aremeasured
and recorded using a 3D surface profilometer. Experiments
are conducted by varying the laser power, pitch length, and
exposure time. Further details on the experiments and surface
characterization can be referred to in the work done by Cai
et al. (Cai et al., 2019). The process parameters are considered
the potential constituent elements of a process FP expression,
whereas the surface characteristic features are the potential
constituent elements of a product FP expression.

Dataset 2:Wire EDM processing of inconel 718

A process monitoring dataset during wire EDM of Inconel
718 is considered to demonstrate the inclusion of online
process signatures, along with machine control variables as
process FP candidates. Inconel 718 is difficult to cut Nickel-
based superalloy used in aerospace applications owing to
its superior high-temperature performance. Conventional
machining of Inconel 718 is challenging due to thematerial’s
hardness, low thermal conductivity and chemical reactiv-
ity. Electric discharge machining is widely employed to
machine the superalloys since it overcome these challenges
(Markopoulos et al., 2008). In particular, wire-EDM offers
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Fig. 7 Overall dataflow of the proposed approach

a feasible solution to process such alloys due to its non-
contact material removal mechanism (Abhilash & Chakrad-
har, 2021a, 2021b). However, pulse classification (Zhang
et al., 2020) and process monitoring is essential during wire-
EDM to ensure the part quality and predict process failures
(Abhilash & Chakradhar, 2021c).

The experiments are conducted on a wire EDM machine
having an accuracy of 1 µm on each axis. A zinc-coated
brass wire of 250 µm diameter is used as the tool electrode.
Dielectric fluid considered is deionizedwater with an electric
conductivity of 20µS/cm.An online processmonitoring sys-
tem comprising current and voltage sensors is also installed.
Tektronix sensors and data acquisition systems have a band-
width of 200 MHz. The operating range of the current probe
is 0 to 150A and the voltage probe is 0 to 1300 V. Maximum
sampling rate is 2.5 GS/s/channel, however, an ideal value of
250MS/s/channel is selected to reduce the prediction latency.

Process parameters considered are pulse on time (TON,
Mu), pulse off time (TOFF, Mu), servo voltage (SV, V), wire
feed rate (WF, m/min), and the input current (Ip, A). In
addition, process signatures like spark frequency (SF) and
discharge energy (DE, µJ) are extracted from the real-time
current and voltage sensor data. The process parameters and
online signatures together constitute the process FP expres-
sion. Both continuous and categorical process responses
are recorded during the machining process. Continuous
responses are surface roughness (Ra,µm), cutting speed (CS,
mm/min) and remaining useful life (RUL, min). One multi-
class categorical response called machining outcomes has its

class labels as ‘wire breakage (WB)’, ‘spark absence (SA)’
and ‘normal machining (NM)’. Among these, wire breakage
and spark absence are the wire EDM failure events, which
cause machining interruption, and unacceptable part quality.
The dataset follows a full factorial experimental design as
given in (Abhilash & Chakradhar, 2021d).

Results and discussion

Results from each computational module of the intrinsic
and post-hocXAI approaches for process/product fingerprint
development are described and discussed in this section.

Interpretable representation of process/product FP
for continuous responses

The proposed approach to make the process/product FP
intrinsically or by design explainable is through their inter-
pretable representations. As explained in Sect. “Interpretable
fingerprint development approach”, since the form of the FP
expression is determined as FP � ∏n

i�1 (Pi
bi

)
, the pro-

cess of FP extraction boils down to finding the unknown
parameters (in the current case, the exponent vector,

−→
b �

b1, bn , . . . . . . , bn) in the expression which maximizes the
product/process Fingerprint-Product Functionality (FP-PF)
correlation. Due to its overall superior performance in com-
parison to the competitive search techniques, a MaxLIPO
algorithm is selected to extract the most appropriate Process
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Fig. 8 a Experimental setup of hybrid micromachining system b Surface characteristics and its effect on surface contact angle (Cai et al., 2019)

123



Journal of Intelligent Manufacturing (2024) 35:4159–4180 4169

and Product FP. The details of FP extraction and performance
evaluation have been demonstrated using EDM and laser
ablation datasets as follows.

FP development using MaxLIPO

Dlib python library was used to performMaxLIPO in an ana-
conda python distribution. Optimization constraint is defined
in such a way that, each component (bi ) of the exponent vec-

tor
−→
b is searched in the confined continuous space of [−2.5,

2.5]. Such a selection of search constrain is from the generic
understanding of mechanical processes that it is extremely
unlikely to have a parameter interaction of the order greater
than 2. However, for confirmation, a larger search space
of [−5, 5] was also considered and the results are verified
to have negligible variations in changing the search con-
straints. First, FP development including the full feature set
is performed to extract the maximum correlation (CCmax )
between process/product FP and product functionality. Dur-
ing the developmental stage, the framework considered two
objective functions: Pearson’s correlation coefficient (CC)
and the correlation and testing error ratio (CTER), as defined
by (Kundu et al., 2022). For both objective functions, the
performance of the converged solution was compared in
terms of RMSE, and the following results were obtained:
For the Product FP extraction of the superhydrophobic sur-
face dataset, the RMSE improved from 0.8987 to 0.3787 (a
57.8% improvement) when CC was used as the objective
function, as compared to CTER. Similarly, for the process
FP, the RMSE improvement was from 0.3859 to 0.2866
(a 25.7% improvement). Consequently, CC was chosen as
the preferred objective function for the framework due to
its superior performance in terms of error, correlation, and
computational efficiency. Details of FP extraction for both
datasets are given below.

FP development for the laser ablation For laser ablation,
laser power, pitch length and exposure time have been con-
sidered as theFPconstituents and contact angle as the product
functionality. The MaxLIPO global optimization algorithm
was used for FP extraction with the Pearson correlation
coefficient as the objective function, with the exponent vec-
tor

−→
b being the design variable. A CCmax of 0.965 at−→

b � (−0.068, −0.0128, 0.063) was obtained as the output.
The extracted process FP is given as

ProcessFP � Pitch0.063

Power0.068 × time0.0128
(7)

Next, to extract the product FP, surface geometric fea-
tures Sa, Sz, Sku, Sdq, Sdr, and Rhy are considered as the
constituents. The algorithm converged to provide a CCmax

of 0.94 at
−→
b � (−0.018, −0.03, −0.015, −0.028, 0.043,

−0.092). Figure 9a and b show the convergence plot for pro-
cess and product FP extraction respectively. The product FP
is given by

(8)

Product FP

� S0.043dq

S0.018a × S0.03z × S0.015dr × S0.028ku × Rhy
0.092

It is worth noting that the prediction of product function-
ality through product FP can lead to design-driven systems,
where the design characteristics can be tweaked to maximize
performance.

Process FP development for EDM Both process parameters
and online process signatures are considered potential candi-
dates for process FP in thewire EDMmonitoring dataset. The
process parameters considered are pulse on time, pulse off
time, servo voltage, wire feed rate and the input current. In-
process signatures are spark frequency and discharge energy.
The process FPwas extractedwith aCCmax of 0.931 as given
by the expression

ProcessFP

� T 0.0489
OFF × SV 0.035

T 0.0489
ON × WF0.0486 × I 0.001p × SF0.001 × DE0.0114

(9)

Subsequently, process FPs with CCmax of 0.97 and 0.87
were obtained for Ra and RUL as responses respectively.
The corresponding

−→
b for Ra and RUL are [− 0.067, 0.0319,

0.0243,− 0.040, 0.00022,− 0.0019,− 0.0036] and [0.0174,
− 0.005, − 0.003, − 0.005, − 0.00047, − 0.00045, 0.0015]
respectively.

Though the FPs gives themaximum correlationwith func-
tional performance, it is computationally intensive to extract
and use FPs with all available parameters/surface geometric
features. Finding a reduced order FP without compromis-
ing much on the correlation is often more significant with
regard to computational efficiency and reduced prediction
latency. In addition, dimensionality reduction can also con-
tribute towards optimal sensor selection. Identification of
a reduced order FP through Recursive Feature Elimination
(RFE) keepingCCmax (from the full order FP) as a reference,
is discussed next.

Final FP selection through dimensionality reduction

Recursive Feature Elimination (RFE) is an ML technique
for dimensionality reduction. In this approach a model is
initially developed with a full feature set, having ‘n’ param-
eters. Then the least important feature is eliminated and the
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Fig. 9 Variation of fitness value (CC) with iterations during MaxLIPO search for a Process FP b Product FP

model has developed again with the reduced dataset having
(n−1) parameters. This is repeated till the required num-
ber of features is eliminated or a predefined termination
criterion is met. It is important to note that feature reduc-
tionmethods represent a compromise between computational
efficiency and the desired level of accuracy. The extent of this
compromise may vary depending on the application. In this
study, a 5% reduction from themaximum attainable accuracy
(CCmax ) is considered as the threshold for accepting the
reduced-order fingerprints. For manufacturing applications
with stricter accuracy requirements or a greater emphasis on
accuracy over computational efficiency, the threshold can be
reduced to an even lower value.

RFE ranking of process parameters and surface charac-
teristics for the laser ablation dataset is given in Table 1.
Similarly, the RFE process parameter ranking for EDM is
given in Table 2 considering CS, Ra, and RUL.

Reduced dimension process FP and product FP are devel-
oped by eliminating features in the order of RFE rankings
discussed and listed earlier. After each feature reduction, new
CC is compared with CCmax . Though it is expected that the
CC reduces with each feature elimination, it is important to
set an appropriate threshold as termination criteria to ensure
that CC is still in a tolerable range. Here, a 5% reduction
fromCCmax is considered acceptable. Thus, the set criterion
is that the feature elimination gets terminated when the CC
falls less than 95% of CCmax . The variation of CC versus
the number of features considering process FP and product
FP for the laser ablation process is given in Fig. 10a and b
respectively.

Through this approach, the dimension of process FP is
reduced to 2 from 3, and that of product FP is reduced from 6
to 2.CC of the reduced process and product FP are computed
as 0.9595 and 0.929 respectively, which is very close to their
corresponding CCmax values. The variation of process FP
and product FP with respect to the product functionality is
shown in Fig. 11.

The overall performance comparison of the proposed
approach with the state-of-the-art in terms of CC and the
number of features is given in Table 3 for the laser abla-
tion dataset. The proposed approach clearly outperforms
the existing FP development strategies based on process
physics and random forest regression (RFR) in terms of
CC and parameter reduction. In addition, the computational
efficiency is significantly better in terms of the number of
computational steps. In comparison to the exhaustive search
strategy proposed in (Kundu et al., 2022), where process and
product FP identification took 4913 and 531,441 computa-
tions respectively, the proposed approach converged within
2000 iterations for all cases.

Table 4 shows the details of process FP for EDMresponses
before and after dimensionality reduction. It is worth noting
that, for all the EDM responses, the process FP dimension is
reduced from 7 to 4 through dimensionality reduction. CC
of the newly computed fingerprints are 0.924, 0.97 and 0.861
respectively for CS, Ra andRUL,which are greater than 95%
of their corresponding CCmax .

Response prediction based on process FP

In the context of explainableAI, linear regression and stacked
ensemble models are at opposite ends of the interpretability
spectrum. Linear regression models are ‘by-design’ inter-
pretable since it provides an equation of the form y �
m × FP + c to represent the response variable as a function
of process or product FP. Though its prediction rationale is
clear being a transparent or white box model, its prediction
accuracy can be lesser in comparison with more advanced
ML models. On the other hand, ensemble models are one
of the best performing among ML algorithms since they use
techniques to combine and better the prediction accuracy of
multipleMLmodels. However, their complex computational
architecture makes it one of the least interpretable ML mod-
els.
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Table 1 RFE ranking of process
parameters and surface
characteristics

Process Parameters

Features Power Time Pitch

RFE Rank 1 3 2

Surface Characteristics

Features Sa Sz Sdr Sku Sdq Rhy

RFE Rank 3 1 6 4 5 2

Table 2 RFE ranking of process
parameters in EDM dataset Features TON TOFF SV WF IP SF DE

RFE Rank (y � CS) 6 4 5 2 7 1 3

(y � Ra) 6 4 5 1 7 2 3

(y � RUL) 7 3 5 4 6 1 2

Fig. 10 Variation of Pearson correlation coefficient with respect to number of parameters for a process FP b product FP

Fig. 11 Variation of contact angle with respect to a process FP b product FP

123



4172 Journal of Intelligent Manufacturing (2024) 35:4159–4180

Table 3 Comparison of the proposed FP identification approach with existing approaches

Approach ProcessFP Order CC Product FP Order CC

Physics-based Cai et al., (2019) Power×time
Pitch2

3 0.63 Rhy 1 0.80

RFR-based Kundu et al., (2022) Laser Power
Pitch0.75

2 0.93 Sz0.5×Sdq×R
hy

Sdr 2
4 0.83

Proposed method (Full dimension) Pitch0.063

Power0.068×time0.0128
3 0.965 S0.043dq

S0.018a ×S0.03z ×S0.015dr ×S0.028ku ×Rhy
0.092

6 0.94

Proposed method (Reduced dimension) Pitch0.029

Power0.0315
2 0.96 1

S0.058z ×R0.07
hy

2 0.93

Table 4 Details of process FP for EDM dataset

CS Ra RUL

CC Order CC Order CC Order

Proposed method (Full dim) 0.93 7 0.97 7 0.87 7

Proposed method (Reduced dim) 0.924 4 0.97 4 0.861 4

Final Process FP I P0.038×DE0.026

TOFF
0.086×SF0.033

I P0.12×DE0.09

TOFF
0.36×SF0.14

TOFF
0.0082

I P0.003×SF0.0032×DE0.002

For continuous responses, both linear regression and
stacked ensemble models are developed to predict the func-
tional performance with process/product FP as inputs. For
categorical responses, the response transformation and prob-
ability mapping method described in Sect. “Interpretable
fingerprint development approach”—Fig. 6 is followed for
FP development and subsequent response prediction.

Response prediction for laser ablation

The coefficient of determination (R2) values for the regres-
sion models to predict contact angles based on process and
product FP was 0.92 and 0.86 respectively. The linear regres-
sion equations are:

Contact Angle � 1175.97 − 983.62 × ProcessFP (10)

Contact Angle � 380.63 − 291.36 × Product FP (11)

It is important to note that the extraction of FPs relies on
the prior selection of the power function as the FP expression
(as explained in Sect. “Interpretable fingerprint development
approach”, point (2) and given by Eq. (4)), and the linearity
of the FP-PF relationship depends on the level of confor-
mity of FP to the power function. Though the extracted FPs
have shown significant improvement compared to existing
approaches (as detailed in Table 3), there is still room for
improving prediction accuracy, as FP and PF may contain
other minor correlations beyond the considered power func-
tion.

The fundamental principle of ensemble learning is har-
nessed to capture such secondary correlations and enhance
overall prediction accuracy. The stacked ensemble model
combines a set of already capable models to provide better
accuracy than each individual model considered. Figure 12
depicts the concept for the case of product FP. A better R2

value of 0.95 was observed using a stacked ensemble model.
It can be observed from Fig. 13 that the prediction accu-
racy of the stacked ensemble is much closer to experimental
results compared to the linear regression model. To demon-
strate the superior performance of stacking, it is compared
with other ML models like extreme gradient boost (XGB),
random forest regression (RFR) and linear regression. The
stacked ensemble clearly outperformed the other models in
terms of model accuracy, as defined by R2 values, the details
of which are shown in Fig. 14.

Response prediction for EDM The linear regression equa-
tions for various responses are

CS � 94.02 − 99.99 × processFP (12)

Ra � 3.966 − 2.88 × processFP (13)

RUL � 387.53 − 366.52 × processFP (14)

R2 values for the responses CS, Ra and RUL using lin-
ear regression are 0.83, 0.89, and 0.69 respectively. Through
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Fig. 12 Response prediction using stacked ensemble

Fig. 13 Comparison of ensemble prediction and linear regression with experimental values for a process FP b Product FP

Fig. 14 Performance comparison of different ML models

ensemblemodelling, an improved R2 of 0.93, 0.97 and 0.861
are obtained for CS, Ra, and RUL respectively.

Extending the FP development approach
for bottleneck events

A novel approach is introduced to extend the concept of
process FP for categorical responses. Once successfully
implemented, the diagnostics and prognostics of bottleneck
events can be done just by tracking/monitoring the process
FP. The acceptable range of process FP for an ideal/healthy

manufacturing process condition is defined in terms of the
probability of manufacturing events.

As described in Sect. “Interpretable fingerprint develop-
ment approach”, the idea is to transform the categorical
responses into an integer space by assigning distinct numeric
values to each event. This is demonstrated using the EDM
dataset which has a categorical response labelled as ‘machin-
ing outcome (MO)’. The various class labels assigned for
MO are spark absence (SA), normal machining (NM) and
wire breakage (WB), among which NM is the ideal desirable
machining state and the other two are process failures. Since
these events are mutually exclusive, integers 1, 2 and 3 are
assigned to SA, NM and WB respectively. The increasing
order of feature importance according to RFE is TON, TOFF,
WF, SV, IP, DE and SF. Based on this, the full and reduced
order process FPs are given as:

(15)

ProcessFP

� TON
0.049 × TOFF

0.026 × SV 0.007 × I P0.038

WF0.009 × DE0.05 × SF0.046

ProcessFP

� TOFF
0.074 × SV 0.089 × I P0.0514×WF0.035 × DE0.001

SF0.057

(16)
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The computed CCmax and CC values for the original and
reduced dataset are 0.88 and 0.8 respectively. The drop inCC
is more drastic for MO in comparison with other responses
and hence, the termination criteria were met after the first
feature elimination itself. This can be due to a relatively equal
contribution of all features towards the machining outcome.

Figure 15 shows the variation of process FPwith respect to
categorical values ofmachining outcomes. It can be observed
that a distinct FP range can be attributed towards each
machining event. Next, probability mapping is performed to
relate the process FP and event probabilities. This step allows
the determination of manufacturing event probabilities based
on the process FP values. For this purpose, a decision space
and boundary have been determined. In this case, there are
two decision boundary points (since the process FP is a 1D
vector) to differentiate between the three machining events.
For each event, probability values are assigned based on the
distance from the boundary points towards the centroid of the
event space under consideration. In this case, at the decision
boundary (event junction), the probability of both events will
be 0.5. As the centre of the event space is being approached,
the probability increases towards 1, as shown in Fig. 16.

Next, to predict the MO based on process FP, a stacked
ensemble model is trained with an R2 of 0.9. The details
are given in Fig. 15a. Since the predicted values can have
fractions, the outputs are rounded off to their nearest inte-
ger (1, 2, or 3 in this case) to determine the predicted MO
as shown in Fig. 15b. The confusion matrix showing over-
all prediction accuracy of 95.37 is given in Fig. 15c. The
proposed event probability mapping based exclusively on
process FP is particularly useful for real-time systems like
Digital Twins, where probabilities of failure events can be
displayed in real-time through a suitable human–machine
interface (HMI). This allows the operators to take informed
decisions at critical junctures. For the purpose of automa-
tion, the event probability data can be communicated to the
process controller for real-time feedback control to prevent
potential failures.

Post-hoc explanations

Though stacking has one of the best in class prediction accu-
racy, the computational structure is so sophisticated that often
the expert is left with no feedback on the prediction logic.
Dedicated post-hoc interpretations of local predictions can
add transparency to such ML models without compromising
accuracy. It improves the decision-making skills of experts
and stakeholders by offering multiple perspectives towards
examining the model predictions. The following subsections
introduce and discuss Shapley additive explanations (SHAP)
from cooperative game theory to interpret a few instances of

local predictions. Finally, the potential of post-hoc explana-
tions towards a better understanding of process physics is
presented and discussed.

SHAP interpretations

Figure 17 shows the overall capabilities of a SHAP tool
towards the local and global explainability of a black box
MLmodel. The global impact of each parameter towards the
model predictions is expressed in terms of mean absolute
shapely value. Since shapley values represent the marginal
contribution of a feature towards a response, the mean abso-
lute shapley value is proportional to the feature’s importance.
Based on this, laser power has the maximum contribution
towards the surface contact angle, followed by a pitch and
finally exposure time as shown in Fig. 18a.

To demonstrate the local explainability, a specific obser-
vation is randomly chosen from the laser ablation dataset
having the following parameter settings: laser power � 20
W;pitch�130µm;exposure time�0.4 s. For the considered
settings, the ensemble model has predicted a contact angle of
140.7 O, which is a relatively higher value than the average
predicted value for the overall dataset, which is 136.82°.

The shapely value-based contributions plot indicating the
influence of individual features on the local prediction under
consideration is given in Fig. 18b. In the considered instance,
laser power has the maximum contribution towards increas-
ing the surface contact angle from the model average by
11.11

◦
. On the contrary, the other two parameters, pitch

and exposure time have contributed towards a decrease in
the surface contact angle by 5.47

◦
and 1.76

◦
respectively.

Such individual contributions cumulatively add up towards
the final prediction, which has resulted in an overall increase
of 3.88O (11.11 − 5.47 − 1.76) from the average.

The partial dependence plot (PDP) is a powerful tool
which shows the response variation with respect to an indi-
vidual parameter. PDP for pitch and exposure time is given in
Fig. 19. The thick blue curve shows the variation in response
for the local instancewith respect to a particular featurewhen
the remaining settings are unchanged. On the other hand, the
thick grey line represents the average change in response.
Variations of other sample observations are shown in light
grey lines. From the PDP of pitch given in Fig. 19a, for the
considered observation, if other parameters are unchanged, a
decrease in pitch increases the contact angle. The vice versa
is true for exposure time, as observed in Fig. 19b. This has
far greater implications in the context of the hydrophobic-
ity of the surface. Since the surfaces whose contact angle
is greater than 150° are considered superhydrophobic, the
PDP facilitates the decision-making on the potential param-
eter revisions to produce superhydrophobic surfaces. It is
worth noting that under current settings, superhydrophobic-
ity is achievable by just reducing the pitch to a value below
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Fig. 15 MO probability mapping on process FP axis

Fig. 16 a Stacked ensemble prediction of machining outcomes b after rounding off c confusion matrix
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Fig. 17 SHAP post-hoc predictions

Fig. 18 Post hoc analysis using SHAP a Global feature importance b Local feature contribution

110 µm, and CA can go up to ~ 160° at the limiting pitch
condition. On the other hand, superhydrophobicity can also
be achieved by increasing the exposure time to 0.9 s, however
to a maximum of only 150°. Since XAI offers multiple per-
spectives on increasing theCA, themost convenient/practical
route towards achieving the target can now be opted by the
decision maker.

To assess the capabilities of XAI from a process control
perspective, an unhealthy EDM machining state is consid-
ered. The predicted MO is 2.6 for the selected local instance,
which means it is likely to have a wire breakage failure.
An MO of 2.6 indicates a 60% wire breakage possibility
(since MO � 2 indicates NM; and MO � 3 indicates WB).
Figure 20 shows the PDP at this instance with respect to
the online process signatures, SF and DE. PDP explanations
reveal that decreasing the SFwill make the process condition
less prone to wire breakage as it takes theMO value from 2.6

to 2. Also, It is worth noting that, decreasing SF has a steeper
effect on the MO as compared to DE. In EDM, reducing SF
and DE is achieved by adjusting TOFF and TON/IP respec-
tively using the machine controller. Thus, a more appropriate
process control measure would be to tune TOFF to reduce SF
towards ensuring process continuity and quality compliance.
XAI offers a similar range of choices and explanations at
each juncture towards better high-stake decisions.

In addition to supporting control-level decision-making,
post hoc XAI tools have significant potential to reveal
the underlying process physics of manufacturing processes.
Decreasing the DE or SF towards reducing the probability
of wire breakage is very much in line with EDM’s physical
interpretation of the wire breakage mechanism. Wire sur-
face deterioration accelerates and leads to breakage during
high-frequency short-circuit discharges. Higher discharge
energy during short circuits causes deeper craters in the wire,
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Fig. 19 Partial dependence plot for a Pitch b Exposure time

Fig. 20 Partial dependence plot for a spark frequency b Discharge energy

whereas higher frequency reduces the inter-spark distance
which weakens the wire electrode’s load-carrying capability
(Abhilash & Chakradhar, 2022). Such post-hoc explanations
can lead to a better understanding of process physics, thus
aiding the experts in complex decision-making by combin-
ing existing domain knowledge and local interpretations of
black box predictions.

Explainable FP representations using symbolic
regression

Based on the novel approach discussed so far, the intrinsic
explainability of the process and product FP is ensured by
an initial selection of explainable expressions. An alternate
way to infuse intrinsic explainability into a model is through
a supervised machine-learning technique called symbolic
regression. The interpretable algorithm searches the space of
all mathematical equations to find the best fingerprint. The
expression is selected based on a hybrid termination criterion
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Fig. 21 Contact angle prediction through symbolic regression

considering both prediction accuracy and model simplicity.
During the expression search, binary operators considered
are "*", “ + ”, “− “, “/”, and “ˆ”. Also, unary operators like
“square”, “cube”, “exp”, and “log” are considered. Themean
square error is the selected loss function. The final selected
process FP expression for the laser ablation dataset is given
as

Contact Angle � 98.85 − 0.29 × Pitch + 8.45

× Laser Power − 0.21× Laser Power2

(17)

The R2 value of themodel is 0.92, and the variation of pre-
dicted CA with experimental readings are given in Fig. 21.
One of the main limitations of this approach is the higher
computational load to search the entire space ofmathematical
equations. The computational demand increases exponen-
tially with the increase in the number of variables. In case
the number of variables is more than 10, dimensionality
reduction through principal component analysis is recom-
mended. Also, the approach is relatively less accurate than
the state-of-the-art deep learning/ensemble models. In short,
though capable of direct extraction of fingerprint expres-
sions, this approach suits only smaller dimensional data.
Also, the approach is suited for continuous responses and is
not intended to handle categorical responses like manufac-
turing events. Overall, MaxLIPO-based FP search method
serves better as a generic approach for fingerprint extraction
since it handles higher dimensions, and categorical responses
alike.

Conclusions and future work

In the smartmanufacturing processes, the lack of explainabil-
ity of AI-based predictions has restricted informed decision-
making in high stake situations. The opaqueness of current

state-of-the-art models has resulted in reduced trust in AI
predictions among stakeholders and end-users. The current
study aims to build a completely transparent framework for
process and product FP extraction considering both intrin-
sic and post-hoc aspects of interpretability. The intrinsically
explainable FP expression is identified through MaxLIPO
global search, whose correlation is found better than the
one found by symbolic regression. Through this approach,
a correlation coefficient of 0.96 and 0.93 are obtained for
process and product FPs with respect to contact angle (prod-
uct functionality), which is significantly higher than the
earlier physics-based and RFR-based approaches. Also, the
approach is robust to the response types, enabling extraction
of explainable process FP for machining events (categorical
response) for the first time. These process FPs are utilized to
predict the probability of EDMmachining failures through a
unique probability mapping technique. Finally, a few cases
on the application of post hoc explanations towards complex-
decision making is demonstrated.

The key conclusions from the study are as follows:

• It is possible to develop a completely transparent yet better-
performing FP identification approach through LIPO
global optimization. The correlation is better than existing
physics-based, RFR, and symbolic regression methods of
FP identification.

• Fingerprints of categorical events can be identified through
a technique of response transformation and probability
mapping. This in turn ensures the human comprehensi-
bility of manufacturing events through XAI integration.

• XAI explanations can assist the experts in complex
decision-making by combining existing domain knowl-
edge and local interpretations of black box predictions.

Future work focuses on testing the model’s generalization
capability against additional manufacturing datasets. Also,
the feasibility of using process FPs in real-time systems like
digital twins and condition monitoring will be investigated.
The approach can be further equipped with unsupervised and
reinforcement learning capabilities to get rid of the training
phase. An additional interesting area to explore is the usage
of adaptive learning techniques to tackle concept and data
drift risks, due to equipment degradation and environmental
conditions, so that the accuracy of system is ensured even
with changing ambient/test conditions.
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