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Abstract
This work investigates refill friction stir spot welded joints of AA2024-T3 aluminium alloy, produced with short welding times 
between 3 s and 0.75 s. A novel tool geometry that incorporates a chamfer on the inner edge of the shoulder tip is investigated 
as a means of improving joint quality at short welding times by easing material flow during the refill stage. The influence 
of shoulder design on weld microstructure, defect formation, material flow, and mechanical properties was assessed. When 
compared with a standard shoulder geometry, it was found that the introduction of a chamfer on the inner tip edge improved 
material flow during the refill stage and led to improved material mixing at the weld periphery. The formation of voids in 
the region of the weld periphery was eliminated and tensile lap-shear strength of the welded joints was increased by 19% to 
7.2 kN, and 27% to 8.16 kN, for 0.75 s and 1.5 s duration welds, respectively.
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1  Introduction

Refill friction stir spot welding (RFSSW) is a solid-state 
spot welding technique that is well suited to lap joining of 
thin aluminium sheets, and offers a lightweight, durable 
alternative to mechanical fasteners [1, 2]. It is also capable 
of joining high strength aluminium such as 2xxx and 7xxx 
series alloys that are prone to hot cracking during fusion 
based spot welding processes (arc, resistance, laser) [3, 4]. 
As illustrated in Fig. 1, the RFSSW process uses a tool com-
prised of three parts assembled axially concentric. During 
the clamping stage, the clamping ring secures the workpiece 
by applying a downward force; it then remains stationary for 
the remainder of the process. Within the clamping ring, the 
shoulder and pin rotate complimentary with one another. 
During the plunging stage, the shoulder moves downwards 
and plunges into the workpiece, heating, and displacing 

material while the pin simultaneously retracts upwards to 
provide a cavity for the displaced material to flow into. The 
shoulder and pin then return to their original positions dur-
ing the refill stage, extruding the displaced material back 
into the weld and leaving a flat workpiece surface.

The micrograph shown in Fig. 2 highlights several key 
regions of a RFSSW joint: the stir zone (SZ), the thermal-
mechanically affected zone (TMAZ), and the heat affected 
zone (HAZ). The SZ is the region of the weld within the outer 
bounds of the shoulder plunge path where material is stirred 
by the welding tool. High temperature and plastic deforma-
tion result in full or partial dynamic recrystallization within 
the SZ, leading to highly refined, equiaxed grain structures 
[5–7], although coarser grains can sometimes be found in the 
weld centre, where plastic deformation is less extreme [8]. The 
TMAZ begins at the periphery of the shoulder plunge path. 
Temperature is high in this region due to the proximity of the 
rotating shoulder, but deformation is moderate compared with 
the SZ. The resulting grains are distorted and elongated in the 
direction of the shoulder rotation but dynamic recrystallisation 
does not occur [6]. The HAZ experiences no plastic deforma-
tion and is only influenced by the thermal cycle of the welding 
process, causing grain and precipitate coarsening [6, 9].

A significant amount of research has been carried out 
focusing on optimising the key welding parameters of tool 
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rotational speed, tool plunge depth, and welding time, as 
reviewed elsewhere [11, 12]. The majority of the published 
work has sought to maximise weld strength, which is gener-
ally achieved with weld times longer than 4 s. As competitor 
technologies such as resistance spot welding can produce 
joints in 1–2 s [13], the duration of the RFSSW process will 
need to be reduced if it is to be considered a viable alter-
native for mass manufacturing applications [12]. Although 
comparable welding times (< 2 s) have been successfully 
employed for 5xxx and 6xxx series aluminium [9, 14–16], 
this has not been widely reported on for high strength alu-
minium alloys such as AA2024-T3. Several studies have 
achieved high quality AA2024 joints, although at the cost 
of welding times in excess of 5 s [5, 10, 17].

A potential solution to this challenge that remains to 
be fully explored is that of alternative welding tool geom-
etries. This involves modifying the shape of the shoul-
der or pin tip to enhance material flow, improve mixing, 
or influence heat generation during the welding process. 
Multiple studies by Łogin et al. [18, 19] reported on the 
influence of various clockwise and counter-clockwise 

grooves on shoulder end-faces to improve the distribu-
tion of alclad coating when joining AA2024-T3 sheets. 
An increase in ultimate lap-shear force (ULSF) of 15% 
was achieved with a spiral grooved end-face at a welding 
time of 4 s. This improvement was attributed to enhanced 
mixing of the alclad layer. A number of studies by Shen 
et al. [20–22] investigated a grooved shoulder end-face to 
improve mixing between dissimilar aluminium sheets. The 
authors found that the presence of grooves reduced defects 
within the weld and increased lap-shear strength, although 
only 5 s weld times were considered. Li et al. [23] investi-
gated three shoulder variants to join 2A12-T42 aluminium 
sheets; a smooth outer surface and end-face, a threaded 
outer surface with grooved end-face, and a smooth outer 
surface with grooved end-face. Both thread and groove 
modifications increased material mixing, and the highest 
ULSF of ≈10 kN was achieved with the grooved shoulder, 
although only very long welds of 12 s were studied.

The current work is an investigation of welds produced at 
much shorter welding times than previously reported in the 
literature for AA2024-T3. Welding times as low as 0.75 s 

Fig. 1   Stages of the refill friction stir spot welding process

Fig. 2   Reference weld produced with a standard shoulder using optimised parameters from [10] (2310 rpm rotational speed, 2.25 mm plunge 
depth, 5.3 s welding time)



5869The International Journal of Advanced Manufacturing Technology (2024) 131:5867–5879	

are explored with the aim of increasing the applicability of 
RFSSW to high production rate environments. To address 
issues relating to poor material flowability at short welding 
times, this study explores an innovative new design for the 
shoulder component of the tool. The novel shoulder incorpo-
rates a chamfered tip (Section 2.1) to improve material flow 
during the refill stage and improve mechanical properties 
of the welds.

2 � Materials and methods

The material investigated in this study was aluminium alloy 
AA2024-T3. The composition and mechanical properties of 
the base material are given in Table 1. Mechanical properties 
were established through pure tensile testing in accordance 
with BS EN ISO 6892–1:2019 [24], using an Instron 5969 
universal testing machine.

Lap-shear joint specimens of 1.8 mm thick AA2024-T3 
sheets were manufactured in the configuration shown in 
Fig. 3 using an RPS100 RFSSW machine (Harms & Wende).

2.1 � Modified tool geometry

Welds were produced using two different shoulder geom-
etries: a conventional cylindrical design with an external 
thread (Fig. 4a), and a novel design with a 45° chamfer on 
the inner rim, leaving a 0.7 mm wide end-face (Fig. 4b). 
Both shoulder geometries had inner and outer diameters of 
6.4 mm and 9 mm, respectively. The clamping ring outer 
diameter was 18 mm.

Joints were produced at welding times of 3 s, 1.5 s and 
0.75 s. The maximum welding time of 3 s, and a rotational 
speed of 1500 rpm, were selected to match the shortest weld-
ing time previously reported in the literature [26]. The mini-
mum welding time of 0.75 s was dictated by the limitations 
of the welding equipment. Shoulder plunge depth was kept 
at 1.25 times the top sheet thickness, in line with the optimal 
plunge depth most often identified in the literature [27, 28]. 
Volume ratio (ratio of shoulder plunge volume to pin retrac-
tion volume) was kept constant at 0.8. Parameters for all of 
the welds produced are given in Table 2. 

Samples were sectioned through the weld centre and pre-
pared to a final polish with 0.02 µm OPS using a standard 
metallographic preparation process, and electro-etched using 
Barker’s solution (20 ml HBF4, 80 ml H2O) for 120 s. Weld 
microstructures were characterised using an Olympus GX51 
metallurgical microscope. Fractography was performed 
using a HITACHI SU-6600 scanning electron microscope 
(SEM).

Table 1   Chemical composition [25] and mechanical properties of AA2024-T3

Chemical composition (wt%) Mechanical properties

Al Si Fe Cu Mn Mg Cr Ni Zn Ti Tensile strength (MPa) Yield strength (MPa) Elongation (%)

Bal 0.5 0.5 4.9 0.9 1.8 0.1 0.05 0.25 0.15 509 375.8 13.9

Fig. 3   Dimensions and configuration of welding samples

Fig. 4   Shoulder geometries a) 
standard shoulder, b) chamfered 
shoulder
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To establish the influence of shoulder geometry on hard-
ness throughout the weld region, Vickers HV0.05 microhard-
ness maps were produced using a Qness 60 A + Evo hardness 
tester (QATM), in accordance with BS EN ISO 6507–4:2018 
[29]. Measurements were taken in a square grid pattern with 
a spacing of 0.1 mm and dwell time of 10 s. ULSF was deter-
mined via tensile lap-shear testing using an Instron 5969 uni-
versal testing machine, with a crosshead speed of 2 mm/min, 
in accordance with EN ISO 14273. An average ULSF was 
calculated from 3 replicants of each welding condition.

3 � Results and discussion

3.1 � Weld macrostructure

Figure 5 presents macrographs of welds produced using each 
shoulder variant and reveals several significant differences 
in hook geometry, void formation, and extent of mixing at 
the lap interface and SZ/TMAZ interface.

3.1.1 � Hook morphology

The hook defect forms at the transition from welded to 
un-welded material, where the plunging motion of the 
shoulder plastically deforms the seam of the top and bot-
tom sheet into a downwards sloping hook. The hook acts 
as a stress concentrator and point of crack initiation; larger 
hook heights have been shown to amplify this effect and 
reduce ULSF [6, 8, 16, 30]. Figure 5a-c shows that the 
standard shoulder produced downwards sloping hooks at 
all weld times, with hook height decreasing with shorter 
welding times. This is the result of less frictional heating, 
limiting plastic deformation during the plunging stage, and 
is consistent with the findings of Cao et al. [16]. A marked 
difference can be seen in the hook region for welds pro-
duced with the chamfered shoulder (Fig. 5d-f, where no 
hook formed at any welding time and the seam between 
the top and bottom sheet joins the SZ at a normal angle. 
This is clearly shown in the magnified images of Fig. 5b,e. 

This improvement in hook defect behaviour can be attrib-
uted to the narrower end-face of the chamfered shoulder 
(Fig. 4b), allowing it to plunge through the sheets with less 
plastic deformation.

3.1.2 � Interface mixing

The SZ/TMAZ interface is the circumferential region at the 
outside of the shoulder plunge path, where the displaced mate-
rial is forced back together with the bulk material during the 
refill stage. Poor bonding in this region creates a path for crack 
propagation and leads to reduced joint strength [31–33]. When 
using the standard shoulder, the quality of the SZ/TMAZ inter-
face was strongly influenced by welding time, with shorter 
times leading to voids and poor consolidation (Fig. 5a-c). In 
contrast, mixing at the SZ/ TMAZ interfaces of welds pro-
duced with the chamfered shoulder were not affected by weld-
ing time and no voids were present in this region (Fig. 5d-f). 
These improvements can be attributed to the influence of the 
chamfer geometry on material flow during the refill stage. As 
illustrated in Fig. 6, during the refill stage the pin forces the 
displaced material back into the weld and applies pressure to 
promote bonding at the lap and SZ/ TMAZ interfaces [34, 35].

In the case of the standard shoulder (Fig. 6a), plasticised 
material must flow around the 90° inner edge of the shoul-
der tip in order to reach the SZ/ TMAZ interface. In longer 
duration welds, this does not present a problem as higher 
temperatures and lower deformation rates mean the material 
can flow more easily [36]. This does not hold true for short 
welding times where less frictional heat is generated and, 
consequently, the material’s ability to flow is reduced [35]. 
Under these circumstances, it is difficult for material to flow 
around the shoulder, hence most of the pin force is applied 
to the lap interface, rather than the SZ/ TMAZ. This is evi-
denced in Fig. 6a i-ii by the poor mixing and presence of 
voids at the SZ/ TMAZ interface and high-quality bonding at 
the lap interface. The introduction of the chamfer geometry 
(Fig. 6b) eases the flow of material and redirects more of the 
pressure applied by the pin from the lap interface towards 
the SZ/ TMAZ interface, leading to improved mixing and 
elimination of voids in this region (Fig. 6b i). However, a 
consequence of this effect is a reduction of pressure applied 
at the lap interface, leading to a lack of mixing between top 
and bottom sheets (Fig. 6b ii). While outside the scope of 
this study, these results suggest that the chamfer angle could 
be tailored to balance pressure between SZ/TMAZ and lap 
interfaces for optimal bonding in both regions.

3.1.3 � Tunnel defect

Tunnel defects are continuous or intermittent voids that run 
circumferentially around the weld periphery at the deepest 

Table 2   Welding parameters for all tested specimens

Parameter 
ID

Shoulder Welding 
time (s)

Rotational 
speed 
(rpm)

Plunge 
depth 
(mm)

Volume 
ratio

01 Standard 3 1500 2.25 0.8
02 1.5
03 0.75
04 Cham-

fered
3

05 1.5
06 0.75
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point of the shoulder plunge path [37]. This defect is the 
result of poor material flowability and is typically associated 
with insufficient heat input, therefore presents a challenge 
at short welding times [36, 37]. Figure 5 shows that tunnel 
defects were present in all welds and were influenced by 
the shoulder geometry and welding time. The size of the 
defects increased as welding time decreased, which is con-
sistent with poor material flowability due to reduced heat 
generation, and is in agreement with the findings of Shen 
et al. [36]. As a small volume of tool material was removed 
to create the chamfer profile, a corresponding flash was left 
on the surface of each weld, as indicated in Fig. 5f. This 
represents workpiece material that is not refilled back into 
the weld and, as such, contributes to the larger tunnel defects 
seen in the chamfered shoulder welds (Fig. 5d-f).

3.2 � Weld microstructure

Figure 7 compares micrographs of the SZ and SZ/TMAZ 
interface of welds produced with standard and chamfered 
shoulders at 1.5 s welding time. The images are taken from 
a top-down orientation, 1 mm below the weld surface, as 
illustrated in Fig. 7a. Within the SZ (Fig. 7b i-ii), grains 
are refined and equiaxed due to the intense stirring of the 
tool. Figure 7b iii-iv show the transition from SZ to TMAZ, 
where the refined grain structure begins to coarsen and 
become elongated in the direction of the tool rotation, before 
transitioning into the coarser structure of the bulk material. 
Grain structure within the SZ was found to be more refined 
in welds produced with the standard shoulder than with the 
chamfered shoulder at a given welding time (Fig. 7b i-ii). 

Fig. 5   Micrographs of welds produced at varying weld times, 1500 rpm rotational speed, and 2.25 mm plunge depth using a standard shoulder 
(a-c) and chamfered shoulder (d-f)
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The opposite holds true at the SZ/ TMAZ interface, where 
grains are more heavily refined in welds produced with the 
chamfered shoulder. Both of these observations are consist-
ent with the analysis presented in Section 3.1.2, in that the 
chamfered shoulder redirects more of the pin’s refill force 
towards the weld periphery, leading to more aggressive mix-
ing and grain refinement in this region. Figure 7b iii-iv also 
reveal that the chamfer reduced the width of the TMAZ by 
approximately 20%. This can be attributed to the punching 
effect of the narrower shoulder end-face (Fig. 4) causing less 
plastic deformation during the plunging stage.

Microhardness maps for welds produced with both shoul-
der variants at different welding times are presented in Fig. 8. 
All welds displayed a hardening effect in the SZ region, 
consistent with intense plastic deformation and the grain 
refinement shown in Fig. 7. As discussed in Section 3.1.2, 

the standard shoulder led to strong mixing at the lap inter-
face but poor mixing at the SZ/ TMAZ interface, whereas 
the opposite was the case for chamfered shoulder welds. As 
a result, standard shoulder welds all have a deeper SZ that 
extends into the bottom sheet. The chamfered shoulder SZs 
do not extend into the bottom sheet, which is consistent with 
the lack of mixing at the lap interface observed in Fig. 5.

This hardening behaviour was also influenced by the 
welding time. At 3 s welding time, both shoulder vari-
ants led to similar minimum and maximum hardness of 
approximately ± 20 HV from that of the base material 
(140 HV), as shown in Fig. 8a,d. However, a more prom-
inent HAZ is visible for the chamfered shoulder, indi-
cating that higher welding temperatures may have been 
reached, although further testing is required to confirm 
this assertion. As welding time is reduced, so too is the 

Fig. 6   Material refill behaviour for 1.5 s duration welds using a) standard shoulder, b) chamfered shoulder
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heat generation and associated thermal effects. This can 
be seen in all 1.5 s and 0.75 s welds, where no softening 
is evident to indicate a distinct HAZ.

3.3 � Tensile shear testing and failure modes

The results of tensile lap-shear testing are presented in 
Table 3. While the highest ULSF of 9.05 kN was achieved 
with the standard shoulder at 3 s welding time, a sharp 
decrease in strength to 6.45 kN was observed as welding 
time was reduced to 1.5 s, along with a further drop to 
6.06 kN at 0.75 s. This represents a 33% drop in ULSF and 

highlights the sensitivity of the standard shoulder to welding 
time. In contrast, with the chamfered shoulder, ULSF was 
consistent at 3 s and 1.5 s (≈ 8 kN) and decreased by 10%, 
(to 7.02 kN) at 0.75 s welding time. This can be attributed to 
the improved mixing at the SZ/TMAZ interface, discussed 
in Section 3.1, and supported by the change in failure mode 
shown in Fig. 10.

Figure 9 compares the results of this study with those of 
the published RFSSW literature for 2xxx series aluminium 
alloys, highlighting the positive influence of the chamfered 
shoulder and that a substantial reduction in welding time is 
achievable without a significant loss of ULSF.

Fig. 7   Micrographs of welds at welding time = 1.5 s, etched with Barker’s solution: a) diagram of weld and micrograph locations b) micrographs 
within SZ and SZ/TMAZ interface
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Fig. 8   Hardness profiles for welds produced at 1500 rpm with modified shoulder geometries

Table 3   Results of tensile lap-
shear testing

Parameter ID Shoulder type Welding 
time (s)

Lap-shear 
force (kN)

Standard 
deviation (kN)

Sample failure mode

1 2 3

01 Standard 3 9.05 0.34 PPO PPO PPO
02 1.5 6.45 0.55 PPO PPO PPO
03 0.75 6.06 0.17 PPO TWS PPO
04 Chamfered 3 8.01 0.14 TWS TWS TWS
05 1.5 8.16 0.11 TWS TWS TWS
06 0.75 7.20 0.27 PPO PPO PPO

Fig. 9   Comparison of ULSF 
results from this study with 
published literature for RFSSW 
joints of 2xxx series aluminium 
alloys [5, 10, 17, 26–28, 33, 34, 
38–50]
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Post-tensile testing fractography revealed two modes of 
failure that have been reported extensively in the literature 
[5, 9, 34, 38, 51, 52]: plug pull-out (PPO) (Fig. 10b-c) and 
45° shear through the bottom sheet (TWS) (Fig. 10d-e). 
PPO failure occurred in almost all welds produced with the 
standard shoulder, as well as in the 0.75 s welds produced 
with the chamfered shoulder. Welds produced at 1.5 s and 
3 s welding time with the chamfered shoulder all failed 
by TWS.

The loading of welds during lap-shear testing is complex, 
with different regions in tension and compression, as illus-
trated in Fig. 10a. During PPO failures, a crack initiates at the 

hook tip in the tensile region of the top sheet and propagates 
upwards through the SZ/ TMAZ interface and around the weld 
periphery, moving through points 1, 2 and 3 as indicated in 
Fig. 10b [52]. The offset loading of the lap configuration also 
causes a rotation about the centre of the joint, allowing a sec-
ondary crack to open at the hook tip in the tensile region of the 
bottom sheet (point 4). This secondary crack advances down-
wards, towards the bottom of the weld (point 5) and around 
the periphery towards point 6, until the weld nugget is pulled 
completely from one or both sheets [36]. Figure 11a shows 
the compressive face of the weld nugget from the direction 
indicated in Fig. 10a after PPO failure has occurred.

Fig. 10   Failure modes of RFSSW joints made at 3 s welding time, 1500 rpm rotational speed, and 2.25 mm plunge depth a) joint configuration 
during tensile lap-shear testing b-c) PPO failure, d-e) TWS failure
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In the case of TWS failures through the bottom sheet, 
the initial fracture begins at the hook tip in the bottom sheet 
(Fig. 10d-e). Referring to Fig. 10e, the crack travels down-
wards from the hook at point 1 and into the tunnel defect. 
The tunnel defect then acts as a stress concentrator, allow-
ing the crack to propagate through the remainder of the 
bottom sheet to point 2. The crack then moves around the 
weld periphery towards point 3 until the remaining intact 
material can no longer support the test load. A secondary 
failure then begins at the opposing hook tip, shearing rap-
idly through the path from point 4 to point 5. The SEM 
image presented in Fig. 11b shows the weld nugget of a 
TWS failure from the direction indicated in Fig. 10e. The 
progress made by the initial tensile crack around the weld 
periphery before shear fracture occurs can be identified by 

the disappearance of the tunnel defect, as the shear fracture 
does not propagate through the tunnel.

These failure modes show that in this study the primary 
weld characteristic influencing ULSF was the quality of join-
ing at the SZ/ TMAZ interface. With a 3 s welding time, 
both shoulder variants produced good quality mixing in 
this region, however the chamfered shoulder welds failed 
prematurely due to large tunnel defects which led to crack 
propagation through the bottom sheet. At a shorter welding 
time of 1.5 s, ULSF dropped significantly for the standard 
shoulder welds because of poor mixing at the SZ/ TMAZ 
interface, allowing early PPO failure to occur. Mixing at the 
SZ/ TMAZ interface remained sufficient for the chamfered 
shoulder welds because of the redistribution of refill pressure, 
as illustrated in Fig. 5, and as such ULSF remained constant.

Fig. 11   SEM images of a) weld 
nugget after PPO failure b) 
weld nugget after TWS failure 
through the bottom sheet
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4 � Conclusions

This study has investigated the use of a novel axisym-
metric shape modification to the shoulder tip of a RFSSW 
tool, in the form of a 45° chamfer on the shoulder’s inner 
edge. Compared with the standard shoulder, the modified 
shoulder was shown to influence the refill path of weld 
material and improve bonding at the SZ/TMAZ interface, 
leading to higher strength joints at very short welding 
times of 0.75 s and 1.5 s. However, the presence of the 
chamfer also caused large tunnel defects and reduced mix-
ing at the lap interface. The following key conclusions can 
be drawn from this work:

1.	 The inclusion of a chamfer to the shoulder tip improved 
bonding and eliminated defects at the SZ/TMAZ inter-
face by easing material flow towards the weld periphery 
during the refill stage.

2.	 The quality of bonding at the SZ/ TMAZ interface was 
more influential to ULSF than bonding at the lap interface.

3.	 All welds produced with the chamfered shoulder had 
flat hook geometries, compared with downwards slop-
ing hooks for the standard shoulder. This influence on 
hook geometry could provide a means of reducing the 
stress concentration effects associated with large hook 
heights.

4.	 The ULSF of welds produced with the chamfered shoul-
der was less influenced by welding time. Average ULSF 
of welds produced with the chamfered shoulder varied 
by only 10% over the tested welding times (3 s to 0.75 s) 
compared to 33% for the standard shoulder.

5.	 The chamfered shoulder yielded increases in ULSF of 
19% (to 7.2 kN) and 27% (to 8.01 kN) for 0.75 s and 1.5 s 
welds respectively, compared with the standard shoulder.
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