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Abstract: Silicon microring resonators serve as critical components in integrated photonic
neural network implementations, owing to their compact footprint, compatibility with CMOS
technology, and passive nonlinear dynamics. Recent advancements have leveraged their filtering
properties as weighting functions, and their nonlinear dynamics as activation functions with
spiking capabilities. In this work, we investigate experimentally the linear and nonlinear dynamics
of microring resonators for time delay reservoir computing, by introducing an external optical
feedback loop. After effectively mitigating the impact of environmental noise on the fiber-based
feedback phase dependencies, we evaluate the computational capacity of this system by assessing
its performance across various benchmark tasks at a bit rate of few Mbps. We show that the
additional memory provided by the optical feedback is necessary to achieve error-free operation in
delayed-boolean tasks that require up to 3 bits of memory. In this case the microring was operated
in the linear regime and the photodetection was the nonlinear activation function. We also show
that the Santa Fe and Mackey Glass prediction tasks are solved when the microring nonlinearities
are activated. Notably, our study reveals competitive outcomes even when employing only
7 virtual nodes within our photonic reservoir. Our findings illustrate the silicon microring’s
versatile performance in the presence of optical feedback, highlighting its ability to be tailored
for various computing applications.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, artificial neural networks have garnered significant attention for their remarkable
ability to handle vast datasets and address complex tasks, such as facial and speech recognition,
as well as time-series predictions [1]. These networks draw inspiration from their biological
counterparts and fundamentally consist of artificial neurons interconnected with specific synaptic
strengths. As the energy footprint of the training and operation of the digital neural networks has
recently exponentially exploded [2], photonic hardware offers inherent advantages, including
energy-efficient parallel processing at the speed of light, scalability, reduced susceptibility to noise,
and the potential to overcome data transfer bottlenecks [3]. Remarkably, photonic neural networks
have made significant strides in recent years, with notable advances in hardware implementations
and network topologies [4]. Reservoir Computing (RC) is a popular hardware-friendly paradigm
that makes the training of the neural network time- and cost-efficient [5,6]. In the RC concept,
the reservoir is a set of interconnected, recurrent nonlinear nodes with fixed and untrained
connectivities. A fixed relation between the input information and the reservoir is established, and
only the output layer is trained by linear classifiers. Thus, any black box system with nonlinear
dynamics suites the requisite of RC, resulting in a variety of physical implementations. The
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reservoir nodes may refer to different pixels in a camera, which are connected by a tank of water
where light has first propagated [7], or they may be even virtual when sampled in time from
the dynamical response of only one physical node. The latter concept was proposed as time
delay RC [8] and simplifies further the RC requisites by using only one physical nonlinear node -
named real node - which is usually coupled to external feedback for introducing recurrence. Time
delay RC allowed time-multiplexed networks with a large number of nodes, which could not be
achieved otherwise [9]. Many optoelectronic and all-optical implementations have been proposed,
including real nodes based on Mach Zehnder interferometers [10–13], semiconductor optical
amplifiers [14], semiconductor ring lasers [15], semiconductor lasers [16–20] and VCSELs [21].
All these physical systems incorporate an external feedback loop to extend their memory and
enrich their dynamic responses. The feedback may consist of an optical fiber or may be integrated
on a chip [22,23]. An elegant implementation with just a simple and passive fiber loop, combined
with photodetection nonlinearity, has been also proposed [24]. However, the coupling connection
in a virtual reservoir does not necessarily require a feedback loop. It can also emerge from the
inertia of the nonlinear phenomena within the real node itself, as recently demonstrated in single
microring resonators [25,26].

In a recent work [27], we numerically investigated the behavior of a time delay RC system based
on a single silicon microring resonator coupled to an optical feedback loop. The interest in silicon
microrings is motivated by their compact footprint (down to µm size) and CMOS compatibility,
along with their rich dynamical properties which enable key functions of biological neurons [28].
For example, the linear filtering properties of microrings, relying on their resonance nature, can
emulate the input weights of photonic neurons [29–32]. Additionally, the nonlinearities induced
in silicon microrings by two-photon absorption (TPA), allow threshold dynamics [26]. TPA
nonlinear effects produce temperature and free carrier variations in the microring waveguide and
thus result in an opposite refraction index change [33]. Thermal bistability [34] is achieved when
thermal effects dominate over the free carrier ones and can emulate a sigmoid nonlinear function
in a photonic neuron. Free carrier and temperature effects can compete to generate spiking output
dynamics under a constant input optical signal, closely miming the spiking electrical activity of
biological neurons [35–38].

In this study, we extend our preliminary numerical findings [27] by developing and deploying an
experimental setup involving a single silicon microring resonator coupled with optical feedback,
within a time delay reservoir computing (RC) model. Our experiments confirm both the microring
and the external optical feedback as sources of memory in the system. We systematically evaluate
the optimal system configuration for solving diverse benchmark computing tasks, encompassing
Boolean operations, the Santa Fe prediction task, and the Mackey Glass prediction task. We find
that the optical feedback is necessary to achieve error-free operation in delayed boolean tasks that
require up to 3 bits of memory, while the microring nonlinearity is exploited to solve the Santa Fe
and Mackey Glass prediction tasks. Remarkably, even with prediction tasks traditionally requiring
a multitude of nodes, we demonstrate that a mere 7 virtual nodes in our photonic reservoir yield
competitive outcomes. For the Santa Fe prediction task, the most optimal performance is obtained
with 38 virtual nodes and the activation of microring’s spiking dynamics, without relying on the
feedback loop. In this case, we experimentally show that the spiking dynamics of the microring
provides the long-term memory that is necessary to solve the task. To ensure the robust operation
of our system and to counteract phase instabilities arising from environmental noise along the
fiber-optic feedback loop, we incorporate a phase-locked loop electronic controller, which directly
manages the phase state of the optical feedback.

The structure of this manuscript is as follows: Section 2 introduces the design and principles
underpinning the time delay RC employing silicon microring resonators. Section 3 elaborates on
the experimental setup and operational parameters. Section 4 presents and discusses the outcomes
obtained in our system across various computing benchmark tasks. Finally, in Sections 5 and
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6, we provide a comparative analysis with other photonic implementations and the concluding
insights of this study.

2. Time delay RC with a microring resonator

In Fig. 1 we show the basic functionality of the time delay RC, employing a photonic reservoir.
It consists of a microring resonator in add-drop filter configuration with an external optical
feedback connectivity. The time delay RC model assumes that a time-multiplexed interpretation
of the information to be processed is introduced at the input. Therefore, this scheme is optimal
for processing time-dependent information. The input information to be processed (xi) is
amplitude-encoded in a sequence of optical pulses with a duration of bw, separated in time by bs,
and represents the digital or analog values of the computational task. Therefore, the processing
bit rate of the neural network is equal to Br = 1/(bw + bs). Before its encoding to the optical
domain, each input value is masked with a random vector of values M between 0 and 1, that has
a length equal to the number of virtual nodes Nv defined in the reservoir [8]. The duration of
each mask value is equal to the temporal separation of the virtual nodes θv = bw/Nv. The mask
pattern is repetitive for all encoded pulses and is encoded here offline. However, physical systems
could be incorporated to create this pattern in an analog form [39,40].
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Fig. 1. Time delay RC based on microring resonator with external optical feedback.
The microring is integrated in a silicon-on-insulator chip and accessed by a fiber array.
The feedback delay line is realized externally, via a single-mode optical fiber. It includes
a series of instruments that allow to control and monitor the phase 𝜙𝐹 , the strength [𝐹 ,
and the polarization of the feedback signal.

Fig. 1. Time delay RC based on microring resonator with external optical feedback. The
microring is integrated in a silicon-on-insulator chip and accessed by a fiber array. The
feedback delay line is realized externally, via a single-mode optical fiber. It includes a series
of instruments that allow to control and monitor the phase ϕF , the strength ηF , and the
polarization of the feedback signal.

The resulting masked optical information is introduced at the input port of the silicon microring
resonator, while the photodetected signal at the drop port provides the responses of the virtual
nodes sequentially. A linear, weighted combination of these responses within the duration bw of
an encoded piece of information xi results in the predicted value oi. The latter is computed as
oi =

∑︁(wj · Nj,i), with Nj,i being the response of the virtual node j to the input i. wj represents
the output weights of the different virtual nodes that apply to the linear classifier and that are
computed during the training phase. A linear regression algorithm minimizes the normalized
mean square error (NMSE) between the predicted (oi) and target (yi) values of the processed
task, defined as:
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where σy indicates the standard deviation of the target series, and Nd the dataset dimension. The
lower the NMSE is, the better the system predicts the target series.

The feedback connectivity is physically provided by a fiber loop which connects the microring’s
through and add ports. To control the strength (ηF) and the phase (ϕF) of the feedback signal, a
semiconductor optical amplifier (SOA) and a phase shifter are included in the fiber loop.

Multiple characteristic times are present in the dynamical operation of the microring resonator.
The photon lifetime τph (typically in the ps range) determines the speed at which light is coupled
in and out of the microring cavity. In contrast, the free carrier lifetime τfc (typically in the ns
or tens of ns range) and the thermal relaxation time τth (typically in the hundreds ns range)
govern the free carrier and temperature nonlinear dynamics that generate from TPA-processes
within the microring [33]. Thus, several possibilities emerge from these time scales that can
trigger transient dynamical operations. The latter can be obtained by introducing masking
sequences with appropriate timing. For example, the duration of each mask value can be set
to θv<τph to introduce transient dynamics based on the photon lifetime, while stretching the
optical bit xi to bw ≈ τfc, thus exciting an appreciable free carrier population and obtain the
nonlinear transformation of xi, as done in our previous work [27]. Otherwise, the duration of
each mask value can be set as τph<θv<τfc to generate transient dynamics based on the free carrier
nonlinearity inertia, while setting bw>τfc to obtain a nonlinear transformation shaped from the
free carrier and eventually the thermal dynamics. In the present work, we will consider this last
scenario.

2.1. Feedback echo memory

The presence of a feedback line provides the system with optical memory, which can be useful
for computing memory-demanding tasks in a time delay RC scheme. This memory mechanism
can be understood by introducing a test optical pulse at the microring input port (Fig. 2). In this
consideration, the test pulse has a duration τph<<bw<<τF , where τF is the fiber loop transit time.
Depending on the operating frequency detuning of the microring ∆νs = νp − ν0, with νp and ν0
being the optical input and the microring resonance frequencies, three possible operations exist:
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Fig. 2. Operation of a microring resonator coupled to an external optical feedback.
a) An input optical pulse can be directly dropped by the microring resonator if
Δa𝑠 = 0 (red path), or it can iterate the microring-feedback loop system several times if
Δa𝑠 ∼ 𝐹𝑊𝐻𝑀 (blue path). b) Fading memory effect, when considering Δa𝑠 = 6 GHz
(𝐹𝑊𝐻𝑀 = 4.52 GHz). The inset reports the drop transmission 𝐷, in the absence of
feedback.

Fig. 2. Operation of a microring resonator coupled to an external optical feedback. a) An
input optical pulse can be directly dropped by the microring resonator if ∆νs = 0 (red path),
or it can iterate the microring-feedback loop system several times if ∆νs ∼ FWHM (blue
path). b) Fading memory effect, when considering ∆νs = 6 GHz (FWHM = 4.52 GHz). The
inset reports the drop transmission D, in the absence of feedback.

(i) ∆νs = 0: the optical input signal is resonant with the microring resonator and is ideally
completely dropped (Fig. 2(a, red path)). In this case, the input pulse is directly transmitted to
the drop port with 0.25 ps delay, which is our microring transit time.

(ii) ∆νs>>FWHM: the optical input signal is out of resonance and bypasses the microring
propagating to the external feedback loop and then to the drop port. In this case, the system acts
just as a delay line;
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(iii) ∆νs ∼ FWHM: the optical input signal is partially resonant. In this scenario, a fraction of
the optical power is dropped following path (i), thus resulting in the first pulse detected in Fig. 2(b,
red dot). The remaining optical power is transmitted to the through port and then coupled to
the external feedback loop. It propagates along the fiber loop until reaching the add port, with a
delay τF. At this point, the delayed signal is partially obtained at the drop port, thus generating
the second detected pulse in Fig. 2(b, first blue dot). The rest is coupled back to the microring
and then to the through port, thus reiterating the previous optical path. This results in a fading
memory sequence of delayed pulses at the drop port separated by a time τF , which are indicated
in Fig. 2(b, rest blue dots). The number of output pulse echoes obtained at the drop port, and
thus the roundtrips that the optical pulse remains in the external loop depends on both ∆νs and
the amplification introduced in the external loop to reduce the losses. A maximum of five echoes
were measured with our system when operating the systems with an amplification SOA gain of
ηF=350 mA. Note that in real case scenarios, the condition i) (∆ν = 0) is not completely satisfied,
since part of the input signal is partially transmitted to the through port, following the microring’s
extinction ratio. However, this does not change the final performance, as this operating condition
is not the optimal to solve the tasks that will be presented when using the feedback.

3. Experimental implementation

The configuration of the input layer, the real node, and the output layer of our experimental
implementation are shown in Fig. 3. At the input layer, an optical carrier is generated by a CW
tunable laser source (Pure Photonics) operating in C-band wavelengths. The optical carrier is
amplitude-modulated with the input information using a Mach Zehnder modulator (MXAN-LN-
10). The modulator is driven by a 500MHz arbitrary waveform generator (AWG, Teledyne model
T3AFG500), and operated in the quadrature point using a bias controller (MBC-AN-LAB). The
optical signal is amplified using an erbium-doped fiber amplifier (EDFA), while a variable optical
attenuator (VOA) allows for tuning the input power before entering the reservoir. A polarization
controller (PC) is used to match the TE polarization that is required by the microring resonator.
Before entering the reservoir, 1 % of the signal is directed to a monitor detector PMi, to measure
the average input optical power.
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Fig. 3. Schematic of the experimental setup of time delay RC based on a microring
resonator coupled to an external optical fiber loop. Red and blue lines correspond
respectively to optical fiber and electrical connections.
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The reservoir is based on a silicon microring resonator in an add-drop filter configuration
fabricated on a SOI chip, coupled to an external optical fiber. The microring has a waveguide
cross-section of 220×500 nm2, a radius r = 6.75 µm, and equal gaps with the two bus waveguides
of 238 nm. From its drop channel, we can measure its spectral profile and deduce a FWHM = 4.52
GHz (FWHM = 36.4 pm), and a quality factor Q = 4.2 × 104, at a resonance cold position
ν0 = 193.16 THz (λ0 = 1553.11 nm). The four ports of the microring, as shown in Fig. 1,
are accessible by grating couplers which are aligned and separated by 127 µm. An optical
fiber-array made of 4 optical fibers is coupled to the 4 ports of the microring, with 5 dB optical
losses per grating. The two fibers that are coupled to the microring’s through and add ports
are connected and act as an external optical feedback loop. An SOA (Thorlabs S7FC1013S), a
piezo-driven phase shifter (Luna FPS-001), a polarizer and a photodetector (PMF) are included
in this fiber loop. With the latter, we monitor and ensure that the SOA always operates in a linear
regime. The SOA controls the strength (ηF) of the feedback signal via partial compensation of
the optical grating losses, and the phase shifter controls the phase (ϕF) of the feedback signal,
two critical parameters for the reservoir operation [27]. The total transit time of the external loop
is τF = 88ns.

The drop port provides the dynamical response of the photonic reservoir to the output layer.
The output signal is spectrally filtered to suppress the amplified spontaneous emission (ASE)
noise of the SOA, while a second attenuation stage (VOA) ensures that the output optical power
will not saturate the photodetection stage. 90% of the optical signal is photodetected (PMt,
Menlosystem, FPD610-FC-NIR, 600 MHz) and read out with an oscilloscope (Picoscope 6000,
500 MHz). The obtained values are stored and used for offline training and evaluation of the
investigated tasks. The rest 10 % of the optical signal is used for optical monitoring (optical
spectrum analyzer, OSA), but also for feeding a phase-locked loop controller that is used to
stabilize the phase conditions within the feedback loop of the reservoir. For this operation, a
slower photodetector (PMc, Thorlabs, PDA10CS2, 3 KHz) is employed. However, the bandwidth
of PMc is fast enough to monitor environmental phase noise fluctuations but slow enough to filter
out the input encoded information. In this way, the obtained electrical signal provides information
regarding environmental phase noise and is fed to an electronic controller for its compensation.
The controller includes an Arduino Mega, a voltage amplifier (200 Hz), and a piezo-driven fiber
stretcher along the optical fiber loop. More information regarding the phase stabilization with this
system is provided in the appendix. The microring stability was also ensured by automatizing the
measures overnight, where the temperature in the lab and the mechanical vibrations of the optical
table that holds the setup were minimal. The resonance position was continuously monitored,
with fluctuations within 1 GHz during the entire night.

3.1. Operating configuration

The tested silicon microring can exhibit self-pulsation dynamics, a phenomenon that relies on
free carrier concentration and temperature variations within the silicon waveguide [33]. To
operate it in the linear regime, an input optical power around or below 100 µW has to be used.
Higher optical power activates nonlinear dynamics, mainly affected by the free carrier dynamics
and by self-pulsations. Our microring has a free carrier lifetime of τfc = 45 ns, which is much
higher than the typical one of a few ns reported in literature [33]. The photonic reservoir system
is operated in the following way. The input information xi is optically encoded in a sequence of
masked pulses having a proportional amplitude, duration bw = 77 ns, and zero separation time
bs = 0. Each optical pulse in this way has the necessary time to trigger a measurable free carrier
variation within the microring waveguide (bw>τfc), and therefore is nonlinearly transformed
by the internal microring dynamics. The mask values duration is set to θv = 11 ns, and thus,
Nv = bw/θv = 7 virtual nodes are defined within a duration of bw. The feedback delay (τF = 88
ns) is therefore larger than the optical input pulse duration (bw = 77 ns) by one mask value
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duration (θv = 11 ns), i.e. τF = bw + kθv, with k = 1. This asynchronous encoding, initially
proposed in [10], allows coupling every virtual node to a delayed state of the previous neighbor
node, thus defining a ring topology connection which can turn out beneficial for computation [41].
In this work, the asynchronous encoding will be compared to the synchronous one, where the
feedback delay is equal to the encoded pulse duration (τF = b′

w = 88 ns), by defining an additional
virtual node (N′

v = 8). In parallel, another connectivity occurs in the reservoir whenever the TPA
microring nonlinearities are activated. For the given θv, the mask modulation time θv ≈ τfc/4,
introduces nonlinear free carrier transients dynamics that couple neighboring virtual nodes.

4. Results

The computing capabilities of the investigated photonic reservoir are tested on different benchmark
tasks, such as delayed boolean digital tasks and the Santa Fe and Mackey Glass analog prediction
tasks. The dataset size for all tasks considered is Nd = 4200. The first 200 elements are used to
drive the system in an operating regime, eliminating dependencies from the initial conditions.
The next 3000 data samples are used to train the network and the rest 1000 data samples are used
for testing the system on previously unseen entries. The linear classifier applied at the output of
the analog hardware system uses a ridge regression parameter of 10−4. We always provide the
classifier with virtual node states that are sampled from only the present input bit response. This
ensures that the memory acquired originates from the response of the physical system. Other
approaches extend the sampling region of virtual nodes to previous bits responses, introducing
external memory to the classifier which is not provided by the physical system [17,22,23]. Our
approach reduces the size and therefore the latency of the classifier to provide the output result.
Finally, the same mask vector M is used in all experiments unless the number of virtual nodes is
varied.

We study the performance of the photonic system on the selected tasks, for different configura-
tions, by tuning the critical operational parameters. These are: the initial frequency detuning
between the optical carrier and the resonance frequency of the microring ∆νs, the average injected
input optical power Pin, the feedback phase ∆ϕF at the drop port that is tuned via the phase
controller (see Appendix), and the feedback strength ηF that is controlled by the SOA current. The
ensemble of the above parameters determines the optical power circulating within the microring
and thus its way of operation, linear or nonlinear, as well as the optical memory provided by
the external loop. The dynamical system response during a task is acquired three times for each
system configuration that is studied, and the corresponding performances are then averaged.

4.1. Delayed-boolean tasks

In delayed binary tasks the encoded input information xi consists of a pseudo-random binary
sequence (PRBS) of bits. The corresponding target sequence yi = B(xi, xi−d) is the result of a
generic boolean operation (B) on the current bit xi and a previously encoded bit xi−d, with d ∈ Z+0 .
The tasks we consider here are the standard AND, NAND, OR, and XOR logical operations
reported in Table 1, including a memory capacity task (MC), which is defined as the capability
of the system to recall the past bit value xi−d. The value of d is a parameter that is varied to test
the memory depth of the system. These operations are preliminary tasks that unveil some of the
physics mechanisms of our photonic system. In particular, the XOR operation is in principle a
difficult computational task, as it requires a nonlinear transformation to be solved [26].

Once the predicted values from oi are computed, they are digitized to be compared with the
digital target series yi. To do so, the predicted values oi are first normalized and then digitized
according to a threshold comparator. The threshold value θBER is scanned in the range [0-1], with
steps of 0.01, and the optimal chosen value minimizes the bit error rate (BER), defined as the
ratio between the erroneously processed bits over the total number of bits.
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Table 1. Delayed-boolean tasks operations
between the actual bit xi and a bit that has been

previously seen by the network xi−d .

xi xi−d
MC AND NAND OR XOR

yi yi yi yi yi

0 0 0 0 1 0 0

0 1 1 0 1 1 1

1 0 0 0 1 1 1

1 1 1 1 0 1 0

The experiment is carried out for different system configurations. We use here an input average
power equal to Pin = 78 µW. This value ensures that the microring operates in the linear regime,
extending the linear memory of the system as shown in our previous work [27]. According to
[42], a worse performance is expected when the microring operates in a nonlinear regime since
it progressively distorts the iteration of the delayed information. We tune the strength of the
optical feedback via the SOA current in its entire operating regime [0, 500] mA. The frequency
detuning ∆νs is studied in the range of [−24, 24] GHz, which allows capturing the effects of the
various dynamical regimes described in section 2.1. Finally, we study different phase conditions
of the feedback loop ∆ϕF . For ∆ϕF = π/6 we obtain a constructive interference at the drop port,
between the optical feedback signal and the internal microring optical signal. For ∆ϕF = 5π/6
we obtain a destructive interference (see Appendix).

In Fig. 4(a) we show the overall computing performance of the photonic reservoir for the
boolean tasks and the memory capacity task described in Table 1, for different memory depths,
from d = 0 up to d = 10. The provided BER values correspond to the lowest error obtained,
after testing all possible parametrizations (∆νs, ηF, ∆ϕF) of our system. From the performance
of the MC task, we see that the reservoir can recall correctly up to two bits in the past, while the
third bit (d = 3) can be recalled with a BER ≈ 0.04. The boolean AND and NAND task results
overlap completely, similarly to what was reported in [43]. They can be solved correctly up to
d = 3. For d = 4, the obtained BER is 0.02. The OR and XOR tasks are solved correctly for
up to two bits in the past. Figure 4(b) shows how the previous performance deteriorates when
switching from an asynchronous to a synchronous encoding (bw = τF = 88 ns) with Nv = 8. As
discussed in section 3.1, the ring connectivity of the asynchronous encoding is broken and the
virtual nodes are no longer coupled within the reservoir. The only connectivity left is for each
virtual node with its previous state, through the feedback loop.

By looking at the reservoir performance in the parameter space, it is possible to infer the reason
behind the obtained best performance values shown in Fig. 4(a). Specifically, boolean tasks B and
delay d combinations are shown in Fig. 5(a-d): MC0, XOR1, XOR2, and AND3, for their optimal
feedback phases conditions ∆ϕF which are indicated at the top of each panel. In the MC0 task
(Fig. 5(a)), the target of the network is the input bit value xi itself and is used as a "calibration"
task. The input signal is partially transmitted to the drop port and provides the virtual nodes’
response to the encoded information, while a delayed signal provided from the feedback is not
necessary. We see in Fig. 5(a) that MC0 is solved for zero SOA current, which corresponds to a
strongly attenuated external optical feedback, and for a wide range of ∆νs around zero, where
the input signal is mostly dropped. Configurations with even larger SOA currents also reach
error-free operation, up to 350 mA. For even larger SOA current, lasing dynamics appear in the
feedback loop due to the re-circulation of the optical signal by the microring. The lasing destroys
the consistency required for computations. The rest of the tasks reported in Fig. 5(b-d) refer to
d ≥ 1, thus requiring memory of the previous information that can only be accessible through
the feedback signal. As a result, the input optical signal needs to be slightly off-resonance to be
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𝑥𝑖 𝑥𝑖−𝑑
MC

𝑦𝑖

AND

𝑦𝑖

NAND

𝑦𝑖

OR

𝑦𝑖

XOR

𝑦𝑖

0 0 0 0 1 0 0

0 1 1 0 1 1 1

1 0 0 0 1 1 1

1 1 1 1 0 1 0

Table 1. Delayed-boolean tasks operations between the actual bit 𝑥𝑖 and a bit that has
been previously seen by the network 𝑥𝑖−𝑑 .
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Fig. 4. Best BER obtained by the microring with feedback system in memory
capacity and delayed boolean tasks 𝐵(𝑥𝑖 , 𝑥𝑖−𝑑), for different memory length values
𝑑. a) Asynchronous processing schemes (k=1): \𝑣 = 11 ns, 𝑁𝑣 = 7, 𝜏𝐹 = 88𝑛𝑠 b)
synchronous processing schemes (k=0): \𝑣 = 11 ns, 𝑁𝑣 = 8, 𝜏𝐹 = 88𝑛𝑠.
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Fig. 4. Best BER obtained by the microring with feedback system in memory capacity and
delayed boolean tasks B(xi, xi−d), for different memory length values d. a) Asynchronous
processing schemes (k=1): θv = 11 ns, Nv = 7, τF = 88 ns, b) synchronous processing
schemes (k=0): θv = 11 ns, Nv = 8, τF = 88 ns.

transmitted along the feedback loop, and the task is no more solved for ∆νs = 0. Still, the shift
from resonance should not be too large and bypass the microring.

AND3 -
F
: /6

0 100 200 300 400 500
10

-3

10
-2

10
-1

1

XOR1 -
F
:5 /6MC0 -

F
: /6

-24

-8

8

24

SOA current (mA)

B
E

R

s
(G

H
z
)

XOR2 -
F
:5 /6

B
E

R

10
-3

10
-2

10
-1

1

-24

-8

8

24

s
(G

H
z
)

0 100 200 300 400 500
SOA current (mA)

c) d)

b)a)

Fig. 5. Error rate performance for various memory capacity and boolean tasks: (a)
MC with 𝑑 = 0, (b) XOR with 𝑑 = 1, (c) XOR with 𝑑 = 2, and (d) AND with 𝑑 = 3,
in the Δa𝑠-SOA current parameter space, and for optimized Δ𝜙𝐹 values which are
reported on top of each panel, using asynchronous encoding (k=1). \𝑣 = 11 ns, 𝑁𝑣 = 7,
𝜏𝐹 = 88𝑛𝑠. The type of the task is annotated by the acronym presented in Table 1,
accompanied by the value of the length 𝑑.
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Fig. 5. Error rate performance for various memory capacity and boolean tasks: a) MC with
d = 0, b) XOR with d = 1, c) XOR with d = 2, and d) AND with d = 3, in the ∆νs-SOA
current parameter space, and for optimized ∆ϕF values which are reported on top of each
panel, using asynchronous encoding (k=1). θv = 11 ns, Nv = 7, τF = 88 ns. The type of
the task is annotated by the acronym presented in Table 1, accompanied by the value of the
length d.

The feedback phase ∆ϕF is another important parameter. This is shown in Fig. 6, where the
BER for the XOR1 and AND3 tasks are studied in the ∆νs-SOA current parameter space, for
different ∆ϕF values. Specifically, we show the results for ∆ϕF = π/6 (top panel), π/2 (middle
panel), 5π/6 (bottom panel). In the XOR1 task, the system exploits the destructive interference
(∆ϕF = 5π/6) between the direct drop transmission of the present bit xi = 1 and the delayed
information relative to the previous input bit xi−1 = 1 as provided by the feedback loop. This
results in low output power at the drop port. Thus, the virtual node states corresponding to
the XOR input combinations [1,1] and [0,0] are low in power and can be separated from the
combinations [0,1] and [1,0]. Similarly, in the AND3 task (Fig. 6(b)), the system exploits the
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constructive interference (∆ϕF = π/6) between the drop response of the present input bit xi = 1,
and the delayed information relative to the previous input bit xi−3 = 1, to obtain the highest output
power at the drop port. For all the other combinations of xi and xi−3 the output power will be
lower. The above attributes result in a final correct output classification.
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Fig. 6. Impact of the feedback phase Δ𝜙𝐹 on the a) XOR1 and b) AND3 delayed
boolean task performance, for the Δa𝑠-SOA current parameter space. Constructive
interference at the drop port is obtained for Δ𝜙𝐹 = 𝜋/6, while destructive interference
is obtained for Δ𝜙𝐹 = 5𝜋/6. Here, an asynchronous encoding (k=1) is used. \𝑣 = 11
ns, 𝑁𝑣 = 7, 𝜏𝐹 = 88𝑛𝑠.
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The Mackey-Glass input series [45] [46] is obtained by integrating in time the following equation:349
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=
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Fig. 6. Impact of the feedback phase ∆ϕF on the a) XOR1 and b) AND3 delayed boolean
task performance, for the ∆νs-SOA current parameter space. Constructive interference
at the drop port is obtained for ∆ϕF = π/6, while destructive interference is obtained
for ∆ϕF = 5π/6. Here, an asynchronous encoding (k=1) is used. θv = 11 ns, Nv = 7,
τF = 88ns.

These results prove the importance of a proper feedback strength and interference condition at
the drop port (through the ∆ϕF parameter) for computing. When coupled to the linear microring
regime, these conditions allow for useful echoes of the optical signal as a source of memory while
exploiting the photodetection square law as the only nonlinearity of the system. Moreover, the use
of a small number of virtual nodes is sufficient to account for up to 5 bits of memory. However,
as it is known in reservoir computing, the increase in the dimensionality of the output for a given
input is beneficial for computing tasks, including memory retrieval tasks. Thus, a higher number
of virtual nodes is expected to slightly improve the performance. But, for a given sampling time
between the virtual nodes, increasing their number will also reduce the computational speed of
the reservoir. Under this compromise, it is common to minimize the number of virtual nodes
needed down to a level that the reservoir provides an acceptable computing performance.

4.2. Prediction tasks

Other tasks may benefit from the microring’s nonlinearity. Here, we discuss two examples. In
the Santa Fe and Mackey Glass benchmark prediction tasks, the system is trained to predict
future values xi+p of the input series, from the current value xi, with p ≥ 1 indicating the number
of steps ahead. The Santa Fe dataset is derived by experimental measures of the optical power
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emitted by a far-infrared laser that operates in a chaotic regime [44], and is publicly available.
The Mackey-Glass input series [45,46] is obtained by integrating in time the following equation:

dx(t)
dt
=
αx(t − τ)

1 + x(t − τ)β − γx(t), (2)

with an integration step of 0.1, and the following parameter values: α = 0.2, β = 10, γ = 0.1,
and τ = 17. The solution of Eq. (2) describes a weakly chaotic behavior, from which we apply
an oversampling of a factor of 3 to make the task more difficult. The continuous range of values
covered by the input series of both the Santa Fe and Mackey Glass tasks requires a linear encoding
in the optical domain. To this aim, we reduce the AWG voltage to drive the MZ modulator in the
linear regime of its transfer function.

The system is initially tested on these benchmark prediction tasks with the same asynchronous
processing scheme described in section 3.1, incorporating only Nv = 7 virtual nodes. We scan
the parameters ∆νs, ηF, ∆ϕF, and the input optical power Pin in a multidimensional setting to
find the optimal system configuration for these tasks. We also restrict the frequency detuning to
∆νs ∈ [−12, 12] GHz, excluding the conditions where ∆νs>>FWHM in which the signal mostly
bypasses the microring. The SOA current is evaluated in the range [0, 500] mA, with steps of
100 mA, while the interference condition at the drop port is still tuned by the ∆ϕF parameter.
Finally, the input optical power is increased from 0.11 mW up to 1.5 mW. By doing so, we can
operate the microring in a linear regime, for Pin = 0.11 mW. Then, by increasing the optical
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Fig. 7. Summary of the best NMSE performances obtained when varying the input
optical power, in the a) Santa Fe, and b) Mackley Glass prediction tasks, respectively.
Mapping of the Δa𝑠-SOA current parameter space where the best NMSE performance
is found for a) the Santa Fe, and b) the Mackey Glass task, respectively. Here, an
asynchronous encoding (k=1) is used. \𝑣 = 11 ns, 𝑁𝑣 = 7, 𝜏𝐹 = 88𝑛𝑠. The dotted
arrows point to the points in the map where the best NMSE values are achieved. Note
that the NMSE is shown in a logarithmic scale in all figures.
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Fig. 7. Summary of the best NMSE performances obtained when varying the input optical
power, in the a) Santa Fe, and b) Mackley Glass prediction tasks, respectively. Mapping of
the ∆νs-SOA current parameter space where the best NMSE performance is found for a) the
Santa Fe, and b) the Mackey Glass task, respectively. Here, an asynchronous encoding (k=1)
is used. θv = 11 ns, Nv = 7, τF = 88ns. The dotted arrows point to the points in the map
where the best NMSE values are achieved. Note that the NMSE is shown in a logarithmic
scale in all figures.
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Fig. 8. Summary of the best NMSE performances obtained when varying the input optical
power, in the absence of the feedback loop. The results refer to the a) Santa Fe and b)
Mackley Glass prediction tasks, and are obtained using a much larger reservoir, with θv = 30
ns, bw = 1140 ns, and Nv = 38.

power, the system response becomes gradually shaped by the free carrier nonlinear dynamics,
until self-pulsation dynamics appear for the highest optical power values [25].

An overview of the obtained performance for the Santa Fe and Mackey Glass prediction tasks
are shown in Fig. 7(a-b), respectively, reporting the lowest NMSE in the parameter space (∆νs,
ηF, ∆ϕF) when varying the input optical power. Both 1-step (p = 1) and 2-step (p = 2) ahead
prediction tasks are evaluated. In these tasks, we also compute the NMSE by averaging first the
three optical trace repetitions and then estimating a unique NMSE (with no error, and labeled
with ’mean’ in the corresponding graphs). In general, increasing the input optical power turns
out to be critical for both tasks, leading to the lowest NMSE = 0.094 in the Santa Fe task, and
NMSE = 0.03 in the Mackey Glass task, when predicting the 1-step ahead value. The best results
are obtained at the same input optical power Pin = 0.44 mW. The impact of the optical feedback
contribution is critical, as we can observe from the corresponding parameter space ∆νs-SOA
current for which we obtain this best performance (Fig. 7(c-d)). An SOA current around 300 mA
and a phase condition of ∆ϕF = 2π/3 are required for the Santa Fe task, while an SOA current
around 200 mA and a phase condition of ∆ϕF = π/2 are required to reach this performance
for the Mackey Glass task. In both cases, the nonlinearly operating microring is coupled to a
properly tuned optical feedback to provide the best performance on these tasks.

For the investigated tasks, it is unconventional to solve them with such low-dimensional
expansion of the encoded sequence. Typically, other physical architectures that employ time delay
RC use hundreds of virtual nodes [8]. For this reason, we consider now a longer external feedback
loop and investigate what improvement this could bring to our previous results. To accommodate
this larger number of virtual nodes, the feedback optical fiber is extended to provide a new delay
time τ′F = 1170 ns (previously τF = 88 ns). An asynchronous encoding is again applied with
the input bit and the delayed bit mismatched by one virtual node separation time (τ′F − bw = θv).
Specifically, we set bw = 1140 ns and θv = 30 ns, resulting in Nv = bw/θv = 38 virtual nodes.

The condition θv<τfc still holds, which means that the microring nonlinear dynamics is still
exploited as a coupling mechanism of neighboring virtual nodes. The NMSE values obtained
for these new conditions and Nv = 38 virtual nodes are plotted versus the input optical power in
Fig. 8(a-b) for the Santa Fe and Mackey Glass prediction tasks, respectively. The input optical
power plays a critical role in both tasks also in this case. Note that, all the best performances
obtained are for zero biasing currents of the SOA, thus in the absence of optical feedback.
This is attributed to experimental issues related to the control of the phase in the long fiber
loop. Therefore, the results in Fig. 8(a-b) show the performances of the microring resonator
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without the feedback loop. The best performance achieved in the Santa Fe task (Fig. 8(a)) is
NMSE = 0.04 when the target is one step ahead and at Pin = 0.85 mW. This value is lower than
the one previously obtained with Nv = 7 virtual nodes (Fig. 7(a)). The best performance in the
Mackey Glass task (Fig. 8(b)) is NMSE = 0.036, when the target is one step ahead and Pin = 0.45
mW. This error is instead larger than the one obtained with Nv = 7 virtual nodes (Fig. 7(b)),
showing that the feedback loop is more critical for this task than for the Santa Fe one as already
theoretically found in [27].

5. Discussion

5.1. Microring nonlinear memory

The results presented in the previous section show that a single microring without the external
optical feedback can solve the Santa Fe and Mackey Glass prediction tasks. The memory needed
to solve the task no longer relies on feedback echoes, but rather on the microring nonlinearity
inertia. To validate this, we performed the following study. We set the microring operation
with the optimal configurations found in the absence of feedback, and repeat the task by setting
different separation times bs between neighboring input optical pulses. If the separation time is
large enough, the free carrier and temperature variations induced in the microring waveguide,
when encoding the optical input xi, will relax completely before the next optical pulse xi+1 is
injected. Thus no trace of the previous information is stored in the microring when the next
optical pulse propagates through it. Two examples of optical input pulses separated by bs = 0.21
µs and bs = 0.6 µs are considered and shown in Fig. 9(a). The red curves show the encoded
pulses (without showing here the masking pre-processing) and the blue curves show the response
of the microring at the drop port. For this study, we use the Santa Fe one-step-ahead (p = 1)
prediction task. The system is first configured with the parametrization that leads to the best
performance in Fig. 8(a): Pin = 0.85 mW, ∆νs = 0 GHz (not shown), no optical feedback. The
virtual node separation time is θv = 30 ns and the bit width is bw = 1140 ns. Then, we solve the
task for different input separation times bs, as shown in Fig. 9(a).

The correspondent NMSE results versus bs are shown in Fig. 9(b). We observe that the lowest
NMSE value is preserved as long as two input optical pulses are close enough in time. For
example, these are the cases of bs = 0 and bs = 0.21 µs. The performance is strongly degraded
for larger bs values. This time may be linked to both the slow decay rate of the free carrier
population, and the longer thermal lifetime τth [33]. Indeed, the system’s parameters (∆νs = 0
GHz, Pin = 0.85 mW) used in the experiment excite self-pulsation dynamics (Fig. 9(a, blue
curve)), which involves a competition of both free carrier and thermal effects. This dynamics
is exploited to successfully obtain the lowest error (when bs<0.21 µs). Under such dynamics,
neighboring virtual nodes responses Nj,i and Nj+1,i, for an input encoding xi, are coupled using
the spiking dynamics. In contrast, the responses of the same virtual node for neighboring input
bits Nj,i and Nj,i+1 are also coupled by a long-term memory given by the slow decay rate of the
free carrier population and the longer thermal lifetime. Notably, this memory mechanism works
only when an optical signal is propagating in the microring. This is ensured by operating the
Mach Zehnder modulator in the linear regime of its transfer function, therefore having input
information xi ≈ 0 encoded in a positive optical signal.

5.2. Variation of the number of virtual nodes

Without the limitation imposed by the external feedback loop length, we can select the input
information duration bw, and the number of virtual nodes Nv = bw/θv in a more relaxed condition.
Here, we investigate the impact of different reservoir sizes on the performance of the Santa Fe
one-step-ahead prediction task. The number of virtual nodes Nv is tuned by keeping the same
virtual node separation and stretching the bit width according to bw = θvNv. In this case, the
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Fig. 9. Computation of the Santa Fe one step ahead prediction task, when considering
(a) two different separation times between encoded information 𝑏𝑠 = 0.21`s and
𝑏𝑠 = 0.6`s (red line, mask not shown). The corresponding output spiking dynamics
are shown with blue lines. (b) NMSE dependence on the input bit separation 𝑏𝑠 , when
considering 𝑁𝑣 = 38 and \𝑣 = 30 ns. (c) NMSE dependence on the number of virtual
nodes 𝑁𝑣 = 𝑏𝑤/\𝑣 , which is tuned by changing the bit width 𝑏𝑤 and keeping the same
\𝑣 .
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Fig. 9. Computation of the Santa Fe one step ahead prediction task, when considering a)
two different separation times between encoded information bs = 0.21 µs and bs = 0.6 µs
(red line, mask not shown). The corresponding output spiking dynamics are shown with
blue lines. b) NMSE dependence on the input bit separation bs, when considering Nv = 38
and θv = 30 ns. c) NMSE dependence on the number of virtual nodes Nv = bw/θv, which is
tuned by changing the bit width bw and keeping the same θv.

NMSE variations are dependent only on the number of virtual nodes Nv. The number of virtual
nodes could also be tuned by keeping the same bw and varying θv. Nevertheless, this last strategy
would modify the nonlinear microring dynamics, thus the coupling between the virtual nodes. We
operate the microring in the best-found configuration when defining 38 virtual nodes: ∆νs = 0,
Pin = 0.85 mW, with an input encoded at θv = 30 ns, and bs = 0 ns. This configuration, as it
was shown in section 5.1, introduces memory in the system via the microring nonlinearity. We
show the results in Fig. 9(c, red line), where we plot the NMSE obtained versus the number of
virtual nodes Nv. A larger number of virtual nodes leads to NMSE reduction, until a saturation
point. In Fig. 9(c, blue line), we show also the results achieved by turning off the input mask
modulation. This is done since the microring undergoes self-pulsation dynamics (Fig. 9(a, blue
curve)) when in a nonlinear regime. Thus, the virtual nodes Nj,i response to an input pulse xi
are coupled by the microring spiking dynamics, which allows their state to experience a wide
dynamical range: from a maximum value (spike’s maximum peak) to a minimum value (valley
between two spikes during the microring refractory period). Thus the masking procedure, which
also aims at enriching the variability between virtual node states, may be not necessary, leading
to a consequent simplification of the computing system. Experiments show that the masking
is critical when using a small number of virtual nodes, and allows reaching the lowest NMSE
already at Nv = 40. On the other hand, the benefit of masking becomes less relevant for a large
number of virtual nodes. Due to hardware limitations in our system, related to the encoding
of information and the memory of the instrumentation, we could not increase further Nv and
verify the impact of the mask omission on the NSME values. Nevertheless, these observations
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suggest that the mask could be replaced by the self-pulsation dynamics at the cost of a lower
computational speed.

5.3. Performance comparison

Other works that consider a microring without optical feedback have reported error-free operation
in delayed boolean tasks, but only considering up to 1 past bit (d = 1), relying on the information
carried by the inertia of the free carrier [25,26] and thermal [47] nonlinearities. Here, we have
shown experimentally that a linearly operating microring coupled with external optical feedback
can solve delayed boolean tasks with up to d = 3 bits of memory. In particular, the XOR
task is solved here for up to d = 2 bits, while it was shown in the literature to be solved with
d = 1. For example, the XOR-1 task is solved in [48] using an integrated reservoir made of 16
microring resonators coupled in a swirl topology, in [43] using an integrated reservoir made
only of combiners and splitters, and in [23] with an integrated SOA coupled to a feedback loop
operated in a time delay RC approach. The XOR-2 is solved only in [43] using a parallel readout
from several nodes in the network.

For solving analog prediction tasks, such as the Santa Fe and Mackey Glass time series
prediction tasks, the contribution of the microring nonlinearities becomes important. The
dynamical responses obtained at the output are shaped by the free carrier nonlinearity, or its
interaction with the temperature nonlinearity (self-pulsations). In Table 2 we compare the
performance obtained for the Santa Fe one-step ahead prediction task with other experimental
time delay RC implementations. Our system in this table is classified as an optoelectronic (OE)
implementation, due to the phase controller system, which also allows us to indirectly set the
interference condition at the drop port by adjusting the feedback phase.

Table 2. Experimental time delay RC implementations tested on the Santa Fe benchmark
task.a

Type node asynch. feedback NV θv R NMSE-1 NMSE-2 Ref.

OE MZ k=0 SMF 400 52.18ns 1 0.124 / [11]

AO DBF k=0 WG + EM 6 40ps 1 0.423 / [22]

AO DBF k=0 WG + EM 124 10ps 5 0.086 0.3 [22]

AO SL k=0 SMF 388 200ps 1 0.106 / [20]

AO SL k=0 WG 23 50ps 1 0.135 / [23]

AO SL k=0 WG 92 25ps 2 0.049 / [23]

OE SMR k=1 SMF 7 11ns 1 0.094 0.249 our work

AO SMR / / 38 30ns 1 0.04 0.14 our work

aOE: Optoelectronic; AO: All-optical; MZ: Mack Zehnder interferometer; DBF: Distributed feedback
semiconductor laser; SL: Semiconductor laser; SMF: Single Mode Fiber; WG: Waveguide; EM: External
mirror; SMR: Silicon microring; R: number of bit responses from which virtual nodes are sampled; NMSE-1(2):
performance error when predicting the 1(2) step ahead time series value.

In some of the works of Table 2 [22,23], an increased number of virtual nodes is defined
via post-processing techniques. This can be easily done by sampling in a time interval R · bw,
with R ∈ Z+. Thus, instead of considering the response to only the present bit (R = 1, like it
was done in this work), the virtual nodes sampling extends to more past responses (R>1), while
keeping the same virtual node separation θv. This strategy introduces external memory to the
classifier, by introducing some latency, which is not provided by the physical system. The value
of R is also reported in Table 2. Many implementations report an NMSE calculated from the
average optical response over several measurements, while in this work we estimate its mean
value over only three repetitions. Nevertheless, the performances obtained by our configuration
with only Nv = 7 virtual nodes and an optical feedback can be compared with implementations
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that employ hundreds of nodes or that exploit external memory (R>1). Thus our results argue the
common assumption that such prediction tasks require a large number of nodes to be solved. In
the absence of optical feedback, the single microring with Nv = 38 virtual nodes, when operating
in a self-pulsation dynamical regime, is able to provide the lowest prediction error compared to
the implementations reported in Table 2.

Our implementation requires a dedicated phase controller to handle environmental noise, like
in the case of [24]. Additionally, our current implementation has a processing speed limitation
(Br = 1/(θvNv)) that originates from the microring’s free carrier nonlinearity (τfc = 45 ns). The
time delay RC approach requires thus to define virtual node separation times of the same order,
to effectively operate the reservoir under transient dynamics. Thus, the θv values used in our
work are relatively high, even more than two orders of magnitude longer when compared to
other implementations (Table 2). Nevertheless, the free carrier nonlinearity can be reduced
to the ps scale with other fabrication approaches that exploit reversed bias pn junction [49],
or graphene-on-silicon microrings for passive spiking emission up to 40 GHz [50]. In those
cases, the feedback loop can be integrated to overcome the active control of the environmental
phase noise that is needed for fiber-based configurations. It would also increase the overall
computational speed of the system. Considering the benefit of using such a reduced number of
virtual nodes, the overall trade-off enables us to believe that this concept for reservoir computing
can have competitive attributes against the existing demonstrations.

6. Conclusions

Silicon microrings, with their passive dynamics, offer promising prospects for time-delay reservoir
computing and neuromorphic computation, making them strong candidates for future integrated
photonic implementations that can synergize with other strategic elements. Our experimental
study demonstrates their versatility in extending the system’s memory by introducing external
optical feedback. We reveal the computational potential of microring resonators in such a
configuration by achieving error-free operation for delayed boolean tasks up to 3 bits in the past.
We also show competitive results in complex tasks like the Mackey Glass and Santa Fe tasks
when defining a photonic reservoir with a very small number (7) of virtual nodes. This finding
promotes the usefulness of working with small-scale networks, such as an integrated version of
our system, for solving prediction tasks. It extends even further to various hardware architectures
with different real nodes, and complements similar findings recently reported on classification
tasks [51]. Furthermore, we report best-in-class performance in the Santa Fe task by leveraging
self-pulsation dynamics. This approach, not previously explored for these applications, offers
new insights into memory dynamics.

Appendix: Operation of the phase controller

The successful implementation of the system for time delay RC relies on the phase controller
developed to compensate for environmental thermal, phonic, and vibrational noise. The drop
signal, is the result of the interference between the optical field from the microring (R) and the
field from the feedback loop (F), as represented in Fig. 10(a). These two fields can be expressed
in a simple way that highlights their relative phase as R = A and F = Bei∆φF . As a result, the
optical power at the drop port is:

|R + F |2 = A2 + B2 + 2ABcos(∆ϕF), (3)

and ranges between maximum and minimum identified by A2 + B2 ± 2AB. The amplitude of the
two field components defines the interference range, while the relative phase states the interference
condition at the drop port: constructive (∆ϕF = 0), destructive (∆ϕF = π), or intermediate, with
a π-periodicity. Environmental noise randomly changes the phase of the delayed signal and is
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Fig. 10. a) An Arduino-based controller stabilizes the system against environmental
noise accumulated along the feedback loop (𝜏𝐹 = 88 ns). ’R’ and ’F’ refer to the
optical components from the ring and the feedback, respectively, that contribute to the
drop signal. b) The microring’s drop response to a CW input, as monitored by the slow
photodetector PM𝑐 . The deep-blue curve in the background is the interference signal
without any phase stabilization. The rest colored lines represent the stabilized signal
via the Arduino-based controller, for different phase conditions.

For the operation of the Arduino Mega, we initially set a reference target value (𝑣𝑡𝑎𝑟 ). The555
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Fig. 10. a) An Arduino-based controller stabilizes the system against environmental
noise accumulated along the feedback loop (τF = 88 ns). ’R’ and ’F’ refer to the optical
components from the ring and the feedback, respectively, that contribute to the drop signal.
b) The microring’s drop response to a CW input, as monitored by the slow photodetector
PMc. The deep-blue curve in the background is the interference signal without any phase
stabilization. The rest colored lines represent the stabilized signal via the Arduino-based
controller, for different phase conditions.

thus included in Eq. (3), as fluctuations of the ∆ϕF values over time. As a result, the drop signal,
which is driven by this noise, randomly varies within the interference intensity range, even when
a continuous wave (CW) input signal is injected into the system, as shown in Fig. 10(b, blue
background line). This noise is compensated by properly driving the piezo phase shifter that is
incorporated in the feedback line. To do so while performing the task, we detect the interference
signal with a 3-kHz bandwidth photodetector at the drop port (PMc). Then, we set the desired
phase condition at the drop port, ∆ϕF , by computing the corresponding optical power via Eq. (3).
A phase target close to the interference limits (∆ϕF = 0 and ∆ϕF = π) is not optimal, since noisy
shifts of the interference can easily bring the correspondent optical target out of range and cause
correction fails. For this reason, ∆ϕF has been slightly restricted in the range [π/6 − 5π/6] when
performing the tasks, limiting correction fails to only strong perturbations, like vibrations of the
optical table, as shown in Fig. 10(b) (see the ∆ϕF = 5π/6 curve).

For the operation of the Arduino Mega, we initially set a reference target value (vtar). The
Arduino controller in each iteration step compares vtar with the signal obtained by the slow
photodetector PMc (vc) and estimates an error err = vtar−vc. Finally, similarly to a PID controller,
it elaborates a correction signal vcorr = (vcorr + (kp ∗ err)), by changing the proportional term,
with constant kp. This signal is sent to a voltage amplifier and then used to drive the phase
shifter. The Arduino controller updates the correction every 55 µs approximately, thus at 18
kbps. However, the voltage amplifier used in this setup has only 200 Hz bandwidth, limiting the
effective speed of the control system. Still, the controller is able to suppress almost entirely the
environment noise, as shown by the stabilized traces of the output at the drop port, for different
∆ϕF values (Fig. 10(b)). The stabilization is achieved without any further isolation of the system
from the environment.
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