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Critical states and anomalous mobility edges in two-dimensional diagonal quasicrystals
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We study the single-particle properties of two-dimensional quasicrystals where the underlying geometry
of the tight-binding lattice is crystalline but the on-site potential is quasicrystalline. We will focus on the
two-dimensional (2D) generalized Aubry-André model which has a varying form to its quasiperiodic potential,
through a deformation parameter and varied irrational periods of cosine terms, which allows a continuous
family of on-site quasicrystalline models to be studied. We show that the 2D generalized Aubry-André model
exhibits many single-particle mobility edges which we confirm for finite systems and supports critical states
across large parameter regions. Critical states are neither fully localized nor extended. We observe that diagonal
quasicrystalline models can support many energy intervals of critical states in the spectrum while stabilizing both
localized and extended states in other energy intervals; we refer to these as anomalous mobility edges. We show
that critical states are present independent of system size through a scaling analysis of the inverse participation
ratio and that they are present in spectra that also contain extended and localized states, confirming that at
least one anomalous mobility edge is present. Due to this, these models exhibit anomalous diffusion of initially
localized states across the majority of parameter regions, including deep in the normally localized regime. The
presence of critical states in large parameter regimes and throughout the spectrum will have consequences for
the many-body properties of quasicrystals, including the formation of the Bose glass and the potential to host a
many-body localized phase.
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I. INTRODUCTION

Quasicrystalline systems are an intriguing intermediary
between periodic crystalline and amorphous disordered sys-
tems [1–3], characterized by the presence of long-range order
and short-range disorder. There has been extensive study of
their electronic properties by considering one-dimensional
quasiperiodic models including interactions [4,5], where the
quasiperiodic nature of the system is included within the pa-
rameters and vertex models of aperiodic tilings [6–9], which
largely probe the physics due to their quasicrystalline geome-
try. One of the most intriguing properties of quasicrystals is
their potential to host a many-body localized phase in two
dimensions (2D), due to the conjecture that there is an absence
of rare regions [10–14].

The physical properties of many-body quasicrystalline
systems is an open question, especially beyond one di-
mension, due to the complexity of theoretically simulating
two-dimensional many-body systems. The quasicrystalline
nature of the system often leads to the presence of frus-
tration due to short-range disorder, while long-range order
means that large system sizes are required to probe physical
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properties. This is potentially an area where quantum sim-
ulators with cold atoms, as have been pursued for 2D
quasicrystals [15–18], could have a significant impact. This
has inspired a number of recent works both looking at
Hubbard-type lattice models [19–23] and looking at contin-
uous quantum Monte Carlo methods [24–26] for ultracold
atoms in optical quasicrystalline lattices. However, in order
to fully understand the physical interplay of quasiperiodicity
and interactions, we first need to further develop our under-
standing of single-particle quasicrystalline models in 2D.

A typical example of a tight-binding quasicrystal is the
one-dimensional Aubry-André (AA) model, which has a tran-
sition between extended and localized states and is described
by the sampling of a cosine term of irrational period with the
spacing of a tight-binding model [27–29]. It is known that the
one-dimensional AA model does not have a mobility edge
but modified versions of the AA model can exhibit mobility
edges. An example of this is the 1D generalized AA (GAA)
model, which exhibits a mobility edge and a mixed intermedi-
ary regime between extended and localized states in a related
family of quasiperiodic potentials by introducing a deforma-
tion of the AA potential [30–37]; we will introduce this model
in detail in Sec. II A. Recently, the 1D GAA model has been
explored in experimental realizations utilizing ultracold atoms
[38,39] which included the interplay of interactions and qua-
sicrystalline order. A related realization of the 1D AA model
was also recently studied using cavity polaritons [40]; in this
case the experimental potential was mapped between the AA
and Fibonacci chains to explore a family of quasicrystalline
models.
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An interesting property of quasicrystals is that they can
host critical states away from transition regions. Critical states
are characterized by being neither fully localized nor extended
in the space that supports them and are multifractal in the
Hilbert space. When moving to two-dimensional models, the
role of critical states becomes important. This has been well
studied in vertex models of quasicrystals [41–45], which are
quasiperiodic through a variation of the local coordination
number with the on-site term normally set to zero. It is known
that two-dimensional generalizations of the AA model can
host partially extended states, which are critical states, due to
weak modulation lines in the potential [46]. Weak modulation
refers to a relatively low disorder in regions of the potential in
comparison to the strength of the quasiperiodic potential. Note
that it does not mean that the potential itself is weak in this
region, but that the disorder is relatively low across the region.
It has also recently been observed that some one-dimensional
quasicrystals can exhibit so-called anomalous mobility edges
between energy intervals of localized and critical states in the
spectrum [47–49]. The main motivation of this work is to
extend upon these prior observations and build a picture of the
single-particle behavior of 2D quasicrystalline models, where
the quasiperiodic term is from the on-site component of a
tight-binding Hamiltonian, with a particular focus on the role
of critical states. While we will focus on the single-particle
picture, some of the impact of the critical states in the many-
body regime has already been probed by the consideration of
superfluid and transport properties that are supported by the
weak modulation of the potential in certain regions [21,22,50].

In this paper we will first define the 2D GAA model and
the measures that will be utilized to distinguish localized,
extended, and critical states. We will then show in Sec. III
that the 2D GAA model exhibits many mobility edges instead
of a single mobility edge and an intermediate regime between
localized and extended states. We next show in Sec. III D that
the presence of many mobility edges and critical states is not
unique to our choice of parameters in the 2D GAA model,
with an example of a bichromatic potential. We then consider
a few example cases to study the presence of mobility edges
in the spectrum and show that there are anomalous mobility
edges in the 2D GAA model between both localized and
critical states and extended and critical states. In Sec. IV B,
we consider the impact of the presence of critical states and
mobility edges on the dynamical properties of initially local-
ized states. Finally, we summarize our findings and key open
questions in Sec. V.

II. THE 2D GENERALIZED AUBRY-ANDRÉ MODEL
AND PROPERTIES

A. Model

We consider the single-particle physics of a family of
2D on-site quasiperiodic tight-binding models given by the
Hamiltonian

H = −J
∑
〈i, j〉

(b̂†
i b̂ j + H.c.) − λ

∑
i

Vβ (i)n̂i, (1)

with tunneling coefficient J , on-site modulation strength λ,
on-site potential deformation parameter β, b̂†

i (b̂i) being the
creation (annihilation) operator of a particle at the ith site, n̂i

being the number operator, and 〈i, j〉 denoting nearest neigh-
bors. We define the state of the system |�〉 as

|�〉 =
∑

i

ψ (xi, yi )|i〉, (2)

where |i〉 labels the state with a single particle occupying the
site labeled by (xi, yi ) with ψ (xi, yi ) being the coefficients that
fully define the single-particle state, and which we will refer to
as the wave function or state. We will consider the geometry
of the lattice to be a standard 2D square lattice, though the
general results do not rely on this choice of geometry.

We will consider the family of quasiperiodic models de-
fined by an extension of the 1D GAA model [30] to 2D giving
an on-site potential of

Vβ (i) = VAA(xi, yi )

1 − βVAA(xi, yi )
, (3)

with the 2D AA potential being

VAA(xi, yi ) = cos (2π (xi + yi )/τ1) + cos (2π (xi − yi )/τ2).
(4)

Moving forward, we will drop the i label for each site and
simply label sites via their (x, y) coordinates in the lattice.
By varying β ∈ (−0.5, 0.5) in Eq. (3), a family of quasiperi-
odic potentials is explored as long as the periods τ1 and τ2

are irrational. We will consider an L × L lattice with open
boundary conditions and by default take τ1 = τ2 = √

2 with
other irrational τ expected to explore similar physics. We
will consider lattices of length L = 60 sites unless otherwise
stated. The 2D AA model is given at β = 0 and is self-dual at
λ = 2J as is shown in the Appendix of Ref. [46]. However, the
states do not all localize at the self-dual point, as is the case
for the 1D AA model, due to the two-dimensional nature of
this model. The 2D GAA potential contains divergences for
β = ±0.5, which we will not consider or closely approach,
with the largest we will consider being β = 0.4. Note that it is
also possible to couple different one-dimensional chains of the
AA potential in order to build a 2D generalization of the AA
model [51]. This approach of “stacking” AA chains can be
considered both with and without quasicrystalline order in the
stacking dimension, with the results presented here expected
to be similar to those of stacking AA chains with each chain
being deformed according to a quasiperiodic distribution.

Examples of the 2D GAA model for τ1 = τ2 and an ex-
ample for τ1 �= τ2 are shown in Fig. 1. In the case of τ1 = τ2

in Figs. 1(a)–1(c), weak modulation lines can be clearly ob-
served, where the potential varies little across a line through
the lattice. We also observe that in the case of τ1 �= τ2 in
Fig. 1(d) there are still weak modulation regions that percolate
through the lattice. However, when the symmetry of τ1 = τ2

is removed, the weak modulation does not appear along lines
which match the geometry of the underlying square lattice. We
will show that critical states rely on the presence of these weak
modulation regions but do not fundamentally require these
regions to appear in the form of lines along the square lattice.
An approximate condition for weak modulation to occur can
be found by considering Vβ (i) ≈ 0. For τ1 = τ2, Vβ (i) ≈ 0 is
met for

x − k

4τ
≈ 0
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FIG. 1. The potential of the 2D GAA model on a square lattice
for λ/J = 2. The case of equal irrational periods of τ1 = τ2 = √

2
with a deformation of (a) β = 0, (b) β = 0.2, and (c) β = 0.4. The
case of unequal irrational periods of τ1 = √

2 and τ2 = (1 + √
5)/2

is shown in (d) with a deformation of β = 0.

and

y − k

4τ
≈ 0,

with k being an odd integer [22]. For τ1 �= τ2, approximate
conditions can also be derived; however, these are rather more
complicated and are not separate in x and y, which is why
weak modulation does not occur along lines in this case, an
example of which is shown in Fig. 1(d).

We briefly note that the 2D GAA model can be imple-
mented in current cold atom setups in a similar way to the
1D GAA model [32], i.e., by considering the limit of β � 1
as expanding Vβ (x, y) around β = 0 gives

Vβ (x, y) ≈ VAA(x, y) + β[VAA(x, y)]2 + O(β2). (5)

The additional term proportional to β can be realized through
the introduction of an additional lattice field along the direc-
tion of the square lattice and the AA modulation. There have
also been proposals to realize the 1D GAA model via photonic
lattices [52], and the 2D GAA model could be considered in a
similar setting.

B. Participation ratios

The inverse participation ratio is a measure of the local-
ization of a quantum state within its Hilbert space. We will
consider the inverse participation ratio,

IPRn =
∑
x,y

|ψ (x, y)|4, (6)

and the normalized participation ratio,

NPRn =
⎛
⎝L2

∑
x,y

|ψ (x, y)|4
⎞
⎠

−1

, (7)

of each state. We will also average over all states to gain an
insight into the overall behavior of the system, and we will
denote this by 〈IPR〉 and 〈NPR〉, with 〈·〉 denoting the aver-
age over all states. We can utilize the participation ratios to
qualitatively determine how localized the states are within the
Hilbert space, with localized states defined by 〈IPR〉 ∼ O(1)
and 〈NPR〉 ∼ 0 and extended states defined by 〈IPR〉 ∼ 0
and 〈NPR〉 ∼ O(1). A third intermediate regime where the
spectrum is partially localized or extended can be defined
when both 〈IPR〉 ∼ O(1) and 〈NPR〉 ∼ O(1). Note that this
intermediate regime does not immediately imply the presence
of critical states and will occur when you have a mobility edge
between localized and extended states in the spectrum. The
average IPR and NPR also only give a qualitative picture of
the localization of the states with the numerical values being
sensitive to the finite size of the system. We will consider
this dependence on system size in more detail in Sec. III C,
including a scaling analysis.

C. Fractal dimensions

Multifractal analysis of the wave function can dis-
tinguish between critical, localized, and extended states.
This has been useful in characterizing the states at the
metal-insulator transition of Anderson localization [53–57],
one-dimensional quasiperiodic models [58–61], and two-
dimensional quasiperiodic tilings [62,63].

To calculate a system’s fractal dimensions, we first split
the probability density into Nl boxes of linear size l with
the system being of linear size L and d dimensional. The
probability of finding the particle in the kth box is given by

μk (l ) =
∑
i∈ld

|ψ (xi, yi )|2, (8)

where i runs over all sites within the box. The qth moment of
the probability measure is

Pq(l ) =
Nl∑

k=1

μ
q
k (l ). (9)

Within a certain range of the box scaling κ = l/L the mo-
ments will show a power-law scaling with an exponent η(q),
that is,

Pq(κ ) ∝ (κ )η(q). (10)

This exponent (often called the mass exponent) is defined as

η(q) =
⎧⎨
⎩

d (q − 1) extended
0 localized
Dq(q − 1) critical,

(11)

where d is the physical space dimension. For a critical state,
the exponent is dependent on the fractal dimension Dq.

We will utilize the fractal dimension to characterize the
critical states of the 2D GAA model by focusing on measur-
ing the q = 2 fractal dimension, as this is equivalent to the
box-counting dimension often used for fractal structures and
measures the spread of the wave function over the supporting
Hilbert space. In this case, the Hilbert space is the physical
lattice, meaning that D2 is a measure of locality in space, with
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FIG. 2. The mean over all states of the inverse and normalized
participation ratios for the 2D GAA model. Shown are the cases of
(a) β = 0 (the 2D Aubry-André model), (b) β = 0.2, (c) β = 0.3,
and (d) β = 0.4. The intermediate regime, where both 〈IPR〉 and
〈NPR〉 are larger than zero, is shown to grow with increasing β.

D2 = 0 for localized states, D2 = d for extended states, and
0 < D2 < d for critical states.

III. LOCALIZATION, MOBILITY EDGES,
AND CRITICAL STATES

A. The intermediate regime

We will now consider the localization properties of the 2D
GAA model. It has been shown that the 1D GAA and other
1D quasiperiodic models have an intermediate regime where
localized and extended states coexist [34]. In 1D, this interme-
diate regime is related to the presence of at least one mobility
edge in the spectrum between localized and extended states
and is identified by both the mean inverse and normalized
participation ratios being nonzero.

It is known that the 2D Aubry-André model (the case of
β = 0) is self-dual [46] and that this occurs at λ = 2J . The
model then has mostly extended states for λ < 2J , localized
states for λ > 2J , and critical states at the transition point
λ = 2J . However, it was observed recently that this model
also exhibits states that are partially extended, i.e., critical,
over a large range of λ away from the transition at λ = 2J
[46]. However, the presence of partially extended or critical
states does not guarantee that there is a mobility edge between
localized and extended states or that there is a mix of localized
and extended states at any given λ.

We observe in Fig. 2(a) that the 2D AA model has only a
small region λ > 2J (the self-dual point [46]) where there is
both a finite 〈IPR〉 and a finite 〈NPR〉 and there is unlikely
to be a significant mobility edge across a range of λ between
localized and extended states. As we increase the deformation
parameter β in Figs. 2(b)–2(d) we observe a broadening of the
intermediate regime. This eventually reaches a point where the
intermediate regime extends across a large range of modula-
tion strengths for β � 0.3, as seen in Figs. 2(c) and 2(d). With

FIG. 3. The mean scaling fractal dimension, D2, of the 2D GAA
model. Shown are the cases of β = 0 (gray circles), β = 0.2 (red
squares), β = 0.3 (green diamonds), and β = 0.4 (blue triangles).
There is no clear signature of the intermediate regime changing in
size as a function of λ, and the different quasiperiodic models show
little difference in mean D2.

such a large region of mixed localized and extended states, it
is expected that the system will contain at least one mobility
edge that is being tuned with the deformation of the potential
and stable with respect to λ. The 1D GAA model exhibits a
similar tuning of the intermediate regime with β.

We also consider in Fig. 3 the mean scaling fractal di-
mension given by 〈D2〉 for a range of deformations β. If the
majority of the states are either localized or extended, then
we would expect to see a clear transition in the mean fractal
dimension. Then as we tune the modulation β we would
expect the transition to be “smoothed” due to the presence of
a mix of extended and localized states with a corresponding
mobility edge. We do observe in Fig. 3 the expected smooth-
ing of the transition in 〈D2〉 due to the presence of at least
one mobility edge as β increases. However, we note that the
transition in 〈D2〉 is already rather smooth and not sharp for
the 2D AA model but this model has been shown to have
only a small intermediate regime in Fig. 2(a). The smoothing
of the transition in 〈D2〉 with increasing deformation β is
also relatively minor compared with the large intermediate
regions observed in Figs. 2(b)–2(d). The fact that there are
narrow and broad intermediate regimes but always a relatively
smooth interpolation in 〈D2〉 may appear contradictory, but the
reasons behind this apparent discrepancy will become clear as
we consider the critical states that are present in Sec. III C.

B. Mobility edges

We have shown that there exists a third intermediate mixed
regime between localized and extended states for the 2D
GAA model. The presence of such a regime has normally
been expected to reflect a mixture of localized and extended
states in the spectrum and, hence, the presence of at least one
mobility edge. We investigate the presence of mobility edges
in the system by considering the individual NPRn of each
individual nth energy ordered state for a range of β and across
the localization transition in λ, as is shown for four cases in
Fig. 4. Note that similar results are obtained when considering
the inverse participation ratio. First, we observe that the 2D
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FIG. 4. The NPR of all states for the 2D GAA model as a func-
tion of the potential strength λ. Shown are the cases for a deformation
of the potential of (a) β = 0, (b) β = 0.2, (c) β = 0.3, and (d) β =
0.4. The deformation of the potential allows for the formation of at
least one mobility edge between localized and extended states in the
spectrum for some λ.

AA model (β = 0) has no clear single-particle mobility edge
between localized and extended states, with the majority of
states NPR → 0 as we approach λ/J = 2. As we turn on the
deformation, we observe that single-particle mobility edges
are introduced, as shown in Figs. 4(b)–4(c) with NPR → 0
faster for lower energy states.

However, in all cases of β in Fig. 4 there appear to be
some moderately extended states with a finite NPRn for even
large λ centered around E ∼ 0. These states are considerably
localized in the 2D system, with NPRn being not only small
compared with the values in the extended regime but also
noticeably resistant to converging to NPRn = 0 as would be
expected for a localized state far into the localized regime. We
propose that what is being observed in the normalized partici-
pation ratio for large λ is in part the presence of critical states
in the system with intermediate NPR as well as extended
states. However, the normalized participation ratio alone is
not sufficient to confirm this; therefore we consider in Fig. 5
the scaling fractal dimension D2 of each state again in energy
ordering and across the extended-to-localized transition in λ

for the same β as in Fig. 4. With this we observe in all sce-
narios the presence of states with D2 being consistent with the
state being critical, i.e., neither D2 → d nor D2 → 0. We note
that finite-size effects impact the ideal convergence of D2, and
we have checked for individual states that it converges with
increasing system size to d and 0 for extended and localized
states, respectively. We will also discuss a scaling analysis of
the IPR in Sec. III C which confirms that the critical states
observed are present across a set of large systems. We note
also that for some λ that would be expected to be in the
localized regime, critical states dominate the central portion
of the spectrum. Such regions could be expected to effectively
remain in the extended or thermalizing phase, as the presence
of many critical states will support the delocalization of a

FIG. 5. Same as Fig. 4 but for the fractal scaling dimension D2.

quantum state through the system; we will investigate this
further in Sec. IV.

C. Critical states

We will briefly consider some examples of critical states
on both sides of the localization transition. From the pre-
vious consideration of the scaling fractal dimension D2, it
can be seen that there are many states with intermediate D2.
Starting with the extended side of the localization transition,
we consider the case of λ/J = 1. In the considered 60 × 60
system, there are far too many states to consider all of them,
and we focus on two typical examples from each side of the
transition. We first show a typical extended state in Fig. 6(a)
with its corresponding fractal dimensions in Fig. 6(e). From
inspection, the state is homogeneous and extended through-
out the lattice. The fractal dimensions are also all Dq ∼ 2,
with deviations coming from the finite size of the system. A
typical critical state for λ < 2J is shown in Fig. 6(b) with
its corresponding fractal dimensions in Fig. 6(f). The fractal
dimensions make the nature of this state clear, with it varying
across the moments q, which is a signature of a critical state.

Moving to the localized side of the transition, we consider
the case of λ/J = 4. First, we show a typical localized state
in Fig. 6(c); this is heavily localized, and its corresponding
fractal dimensions tend to zero for positive moments and
effectively a numerical infinity (� 2) for negative moments
as shown in Fig. 6(g). A typical critical state on the localized
side of the transition is shown in Fig. 6(d), and it has a
far more clear multifractal nature than that for the extended
regime. There are regions of the state that are extended along
some directions and localized along others. When looking
at the fractal dimension for this critical state in Fig. 6(h),
it is large for negative q and is nonzero but small for posi-
tive q; this reflects the localized but extended nature of this
critical state.

We now want to ensure that the observed critical states
are not a finite-size effect and will probe the scaling of the
mean IPR of all states within specific small energy windows
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FIG. 6. Examples of localized and extended states and critical
states [(a) and (b)] on both sides of the localization transition. We
also plot the fractal dimensions [(e)–(h)] of the qth moment. On the
extended side of the transition we consider (a) and (e) an extended
state and (b) and (f) a critical state. On the localized side of the
transition we consider (c) and (g) a localized state and (d) and (h)
a critical state.

for increasing system size. The expected value of the IPR will
scale with system size as IPR ∼ Lγ , with γ = 0 for localized
states, γ = −d for extended states, and intermediate values
being a signature of critical states [59]. We show examples of
the scaling of the IPR for various energy windows for both
the extended λ = J and localized λ = 3J regimes in Fig. 7 by
varying the system size from 102 to 103 sites. This includes
clear examples of critical states for the extended regime in
Fig. 7(c), with γ = −0.71 ± 0.12 in the energy window of
E/|max(E )| ∈ [−0.0571,−0.0548], and the localized regime
in Fig. 7(f), with γ = −0.58 ± 0.09 in the energy window of
E/|max(E )| ∈ [−0.1542,−0.1527]. We have also confirmed
that at least one anomalous mobility edge must exist inde-
pendent of system size as this scaling analysis confirms that
critical states exist in the same spectrum as localized states
for λ = 3J and extended states for λ = J .

To confirm that the scaling analysis above is probing the
properties of similar states in a small energy window, and not
the average of a large variation in IPR, we plot the variance of
the IPR in the given energy windows in Fig. 8. From Fig. 8, we

FIG. 7. Scaling of the mean IPR over all states within dif-
ferent energy windows for (a)–(c) λ = J and (d)–(f) λ = 3J for
systems of linear size between L = 100 (log 100 = 4.6) and 1000
(log 1000 = 6.9). Linear fits to obtain γ are shown by a dashed
red line in each plot. Energy windows are as follows: (a) Ē =
E/|max(E )| ∈ [−1, −0.9976] with γ = −1.98 ± 0.004, (b) Ē ∈
[−0.0024, 0] with γ = −1.72 ± 0.24, (c) Ē ∈ [−0.0571, −0.0548]
with γ = −0.71 ± 0.12, (d) Ē ∈ [−0.0015, 0] with γ = −1.49 ±
0.31, (e) Ē ∈ [−1, −0.9985] with γ = −0.12 ± 0.03, and (f) Ē ∈
[−0.1542, −0.1527] with γ = −0.58 ± 0.09.

can see that we are indeed probing the properties of states with
IPR similar to the mean, as the maximum variance across all
windows and sizes is ∼5% of the average IPR in that energy
window, with the majority being far lower than this. This
confirms that we have chosen small enough energy windows
and have observed the presence of critical states in the spectra
of large systems.

D. Bichromatic potential

The observation of critical states in the 2D GAA model
with τ1 = τ2 poses an important question: Are the critical
states present a direct result of the weak modulation lines
matching the geometry of the tight-binding model (i.e., is
the weak modulation along a direction which is connected

FIG. 8. (a)–(f) Same as Fig. 7 but for the variance of the IPR in
each energy window. We plot in each example the variance in the
IPR divided by the average IPR in that energy window for each size
of the system. The relatively small variance in the IPR confirms that
the majority of states within the energy window have an IPR close to
the mean.
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FIG. 9. Mean properties of a bichromatic potential with τ1 =√
2 and τ2 = (1 + √

5)/2 in the 2D GAA model with deformation
β = 0. (a) The mean over all states of the inverse and normalized
participation ratios. (b) The mean over all states of the scaling fractal
dimension, D2.

by tunneling)? As shown in Fig. 1, when τ1 �= τ2, the weak
modulation lines do not follow the geometry of the underlying
lattice. We now consider the case of τ1 = √

2 and τ2 = (1 +√
5)/2 to show that the exact form of the weak modulation

lines does not change the presence of critical states. As the 2D
GAA potential is now defined by two periods (or frequencies)
we will refer to the potential as being bichromatic. We will
consider only the case of β = 0, with nonzero β resulting in
similar effects to what has already been observed, e.g., the in-
troduction of mobility edges between extended and localized
states and a larger intermediate regime as a result.

We first confirm that the bichromatic potential has an
extended-to-localized transition, as shown by the 〈IPR〉 and
〈NPR〉 in Fig. 9(a). We also see the same behavior as the
chromatic case for the mean fractal scaling dimension 〈D2〉
in Fig. 9(b). As shown in Fig. 10(a), there is an extended-
to-localized transition of all states with no obvious mobility
edge in the spectrum. However, if β �= 0, single-particle mo-
bility edges between extended and localized states are still
observed. Importantly, we show that the bichromatic potential
still supports critical states, as shown by the large region of
0 < 〈D2〉 < 2 in Fig. 10(b).

IV. ANOMALOUS MOBILITY EDGES AND DIFFUSION

A. Mobility edges

We will now consider in more detail the nature of the mo-
bility edges present and show that there are multiple mobility
edges for all spectra of the 2D GAA model. This is due to the
presence of anomalous mobility edges between extended or

FIG. 10. Properties of a bichromatic potential with τ1 = √
2 and

τ2 = (1 + √
5)/2 in the 2D GAA model with deformation β = 0.

(a) The normalized participation ratios. (b) The scaling fractal di-
mension, D2.

localized and critical states in the spectrum, even deep into the
extended or localized regime. To see this, we plot the scaling
fractal dimension as a function of the eigenenergies for the full
spectrum for a number of different values of λ. As a reference
point for the influence of the finite size and underlying tight-
binding model without a quasicrystalline potential, we plot the
case of λ = 0 in Fig. 11(a). Here we observe that the majority
of the states have D2 ≈ 2, with deviations being evident for
the lowest and highest energy states where the finite size of
the system is particularly impactful. There is also a noticeable
deviation from D2 ≈ 2 at the center of the spectrum; this is
due to the properties of states in the central flat band and is
typical in 2D noninteracting tight-binding models.

First, we consider the case of equal irrational periods in the
2D GAA potential, with τ1 = τ2 = √

2 in Figs. 11(b)–11(e).
For λ = J as shown in Fig. 11(b), the potential causes the
states in the central portion of the spectrum and elsewhere to
localize with D2 ≈ 1, i.e., their support is effectively that of
a one-dimensional system. Therefore for λ < 2J there are at
least two mobility edges between critical and extended states.
Past the localization transition the edges of the spectrum show
the presence of localized states with D2 ≈ 0, but the central
portion of the spectrum remains critical. The complexity of
defining mobility edges and when states are extended, critical,
or localized becomes evident in Figs. 11(c) and 11(d), as states
of similar energy can be characterized by vastly different D2.
It is clear that anomalous mobility edges between localized
and critical states will be present and there could even also
be some between extended and critical states for modulations
close to the critical point, as in Fig. 11(c). When the modu-
lation becomes strong, as is shown in Fig. 11(e) for λ = 10J ,
then the majority of states become localized. However, it is
clear that a large portion of the states in the central region
of the spectrum remain critical and there will still be at least
an anomalous mobility edge between localized and critical
states. We can confirm that while this central region of critical
states does get narrower in energy, it is present even for large
modulations up to and including λ = 100J; see Sec. IV B.

We now consider the case of unequal irrational periods in
the 2D GAA potential, with τ1 = √

2 and τ2 = (1 + √
5)/2 in

Figs. 11(f)–11(i). The results are very similar to those of the
equal periods already considered, especially for modulation
strengths around the transition, as shown in Figs. 11(g) and
11(h). This shows again that the presence of critical states and
anomalous mobility edges in the spectrum is not reliant on
there being weak modulation lines formed that match the ge-
ometry of the tunneling in the tight-binding model. However,
the extreme cases of D2 for both low and high modulation
strengths are not present as shown in Figs. 11(f) and 11(i).
We also consider the case of fixed τ1 = √

2 with τ2 = √
3 and

τ2 = √
10 in Figs. 12(b) and 12(d), respectively. In both cases,

we again observe a similar structure in the distribution in D2

to the cases already discussed in Fig. 11.
We now consider two examples to illustrate the origins

of the critical states by having one of the periods be ra-
tional. In these examples the model is quasiperiodic only
in one direction [that of (x + y) in our case] and periodic
or crystalline in the other. We take the case of τ1 = √

2
with τ2 = √

1 and τ2 = √
9 in Figs. 12(a) and 12(c), respec-

tively. We again observe a range of different scaling fractal
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FIG. 11. Examples of the fractal scaling dimension D2 for each eigenstate of energy E in the 2D GAA model. (a) The trivial case of
λ/J = 0; this gives a reference for the effect of the finite size of the system on D2. (b)–(e) The case of τ1 = τ2 = √

2, and (f)–(i) the case
of τ1 = √

2 and τ2 = (1 + √
5)/2. From left to right are shown increasing modulation strengths of (b) and (f) λ/J = 1, (c) and (g) λ/J = 3,

(d) and (h) λ/J = 5, and (e) and (i) λ/J = 10. For all cases of λ �= 0 at this system size the spectrum includes critical states, i.e., 0 < D2 < 2,
and there are many anomalous mobility edges with no single clear mobility edge.

dimensions for states throughout the spectrum. The origin of
the critical states for the superlattice setting is particularly
clear in Figs. 12(a) and 12(c) with a large number of states
having D2 ≈ 1, i.e., they are one-dimensional states, and this
is due to the system now being effectively a set of coupled
1D chains of tight-binding models with weak modulation or
variation in the disorder in one of the dimensions, as was used
to build the 2D AA model from stacking AA chains [51].
Interestingly, we observe similar properties of the states for
both τ1 = τ2 = √

2 and the bichromatic quasiperiodic case at
the same value of λ = 3J as shown in Figs. 11(c) and 11(g),
respectively.

FIG. 12. Examples of the fractal scaling dimension D2 for each
eigenstate of energy E in the 2D GAA model for fixed τ1 = √

2
and λ/J = 3 with varying τ2. Shown are examples of (a) τ2 = √

1,
(b) τ2 = √

3, (c) τ2 = √
9, and (d)

√
10. The examples in (a) and

(c) are therefore crystalline in a single direction as the potential is a
set of repeating 1D quasiperiodic chains, and this is reflected in the
number of states with D2 ≈ 1 shown in each case.

B. Diffusion

We have so far shown that critical states play a central
role in the spectral properties of the 2D GAA model and
that this results in the presence of many anomalous mobility
edges between critical states and localized or extended states
in the spectrum. We will now investigate how this impacts the
physical properties of the 2D GAA model by considering the
diffusion properties of initially localized states. The state will
be initialized at a single site, and as the model is quasiperi-
odic through the on-site potential, this means that starting at
different initial sites will be equivalent to starting at different
energies. By changing the initial site that is populated we can
then sweep through the spectrum, allowing us to probe the
impact of the mobility edges present on the diffusion of an
initially localized state. The initial state will be propagated
under the time-independent Hamiltonian described in Eq. (1)
for a fixed total duration of time in the first instance. We
will specifically study the same 60 × 60 system with open
boundaries that we have focused on to this point and evolve
for a time t = 100J−1. In order to measure the diffusion of the
particle through the system we will measure the mean-square
deviation

σx =
√

〈x2〉 − 〈x〉2, (12)

where 〈x〉 is the expectation in x of the state. Note that we will
consider the case of β = 0 in detail and focus on the spread in
a single dimension σx with similar results observed for σy.

In Fig. 13(a) we show the maximum mean-square dis-
placement across λ for states that probe different parts of
the spectrum. As expected, we observe that for all parts of
the spectrum, the maximum mean-square displacement starts
off large for small λ, as the system is fully described by
extended states. As λ is tuned to higher values the extent
of the state after propagation decreases, with a transition at
the AA delocalized-to-localized transition point of λ = 2J .
After this point, the different energy states begin to behave
differently. The state initialized close to the ground state en-
ergy is converging to a small mean-square deviation, a clear
sign that the states around this energy are becoming more
and more localized as has been reflected for the ground state
in results throughout this paper. However, states initialized
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FIG. 13. Anomalous diffusion in the 2D GAA model for β = 0
and τ1 = τ2 = √

2. (a) and (b) The maximum mean-square dis-
placement across potential strengths λ/J after t = 100J−1 for states
initially localized to a single site. Initial states of different energy
are shown, with squares (red) showing a state with energy near the
ground state, diamonds (blue) showing a state at approximately half
of the ground state, and circles (gray) showing a state with Ē ≈ 0.
(c) The distribution of maximum mean-square displacement at var-
ious λ after t = 100J−1, with circles (gray) being λ = J , squares
(red) being λ = 3J , and diamonds (blue) being λ = 5J . (d) Scaling
of the maximum mean-square displacement as a function of the side
length L with λ = 4J after t = 100J−1 and the points as described
for (a) and (b).

close to the center of the spectrum at E ≈ 0 at first follow
this trend towards small mean-square displacement but con-
verge to a nonzero value for large λ due to the presence of
transport-supporting critical states. States between the ground
state and center of the spectrum largely follow the qualitative
form of the ground state trend but with a clear extended
transition in going to small σx due to the presence of critical
states.

The middle and E ≈ 0 states both converge to the small
mean-square displacement obtained for the ground state for
large λ as shown in Fig. 13(b). How this happens for the E ≈ 0
states is particularly interesting; the critical states supporting
the nonzero mean-square displacement are stable well into
large λ. However, this diffusion is eventually destabilized for
dominating λ of order 102J , and then at 103J the eigenstates
are simply the Hilbert space, i.e., the occupation of each
individual site, as the Hamiltonian is effectively only the on-
site potential. As the potential takes values throughout the
range between −λ and λ, the eigenstates will be increasingly
zero dimensional, and the starting state will have significant
overlap with a single eigenstate resulting in no diffusion as is
observed for λ = 103J .

The exhibited diffusion properties for the states are not
unique to the three examples shown in Figs. 13(a) and 13(b),
with Fig. 13(c) showing the spread of the maximum mean-
square displacement across the range of energies in the central
portion of the spectrum for various λ. We also confirm that

FIG. 14. Expansion of localized states in the 2D GAA model
with τ1 = τ2 = √

2. The mean-square displacement is shown at each
point in time as an initially localized state is propagated in time
with the 2D GAA Hamiltonian. (a) and (b) The cases of λ = J
(solid black curve), λ = 3J (dash-dotted blue curve), and λ = 4J
(dashed red curve) for an initial localized state with Ē ≈ 0 for β = 0
(a) and β = 0.3 (b). (c) The case of λ = 4J and β = 0 for long-time
dynamics for large systems of size L = 250 (dash-dotted blue curve),
L = 500 (dashed red curve), L = 750 (dash-dotted green curve), and
L = 1000 (solid black curve).

this is not a finite-size effect by considering the scaling of
the maximum mean-square displacement up to L = 1000 in
Fig. 13(d), with a clear convergence for large systems giving
a propagation limit in this fixed total time of propagation. We
show an example of the long-time dynamics in Fig. 14(c),
showing that for 2D lattices of up to 106 sites, critical states
can host diffusion of an initially localized state. Note that σx/L
decreases with increasing system size but that even after t =
103J−1, the dynamical state is still slowly diffusing and the
maximum σx is not yet necessarily reached. Also, the number
of possible starting sites for an initially localized particle to
have similar energy and hence to reach this maximum σx is
also increasing.

Finally, we show the mean-square displacement as time
evolves for an initial state at E ≈ 0 and localized to a single
site in Fig. 14 for both the case of β = 0 as discussed so far
and the case of β = 0.3. For zero or nonzero β the displace-
ment for states at small λ, i.e., λ = J , is shown; there is a
clear linear transport regime, reflecting the ballistic expansion
of the initially localized state into the space, followed by a
saturation as the state has spread through the majority of the
lattice. However, if we consider λ across the standard AA
localization transition point, where λ = 3J and 4J are shown,
then there is a departure from the ballistic transport in favor of
a subdiffusion regime where the particle spreads more slowly
through the lattice. To observe this, we consider in Fig. 14(c)
the long-time properties of the displacement for large systems
of various sizes L = 250, 500, 750, and 1000, remembering
that the system has L × L sites, with λ = 4J . We observe
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straight lines on this log-log plot for all sizes confirming that
the displacement as a function of time is a power function
and that the displacement has different regimes. The power
function t̃α , with t̃ = log10(t ), can be fitted for, and we find
that in the region t̃ ∈ [1.8, 2.8], α = 0.713 ± 0.002 for L =
1000 and α = 0.682 ± 0.004 for L = 750, which is indicative
of subdiffusion as α < 1. At late times, e.g., t̃ ∈ [3, 4], we find
that α = 0.120 ± 0.001 for L = 1000 and α = 0.137 ± 0.001
for L = 750, which is subdiffusive and could be consistent
with saturation of the displacement as the wave function ex-
pands across the full finite system. This reflects the results
of Fig. 13 and shows that the nonzero mean-square displace-
ments observed across the central portion of the spectra and
for a broad range of λ are impacted by the presence of critical
states. We leave a more extensive study of this subdiffusion
regime for a later work including the consideration of more
values of the quasiperiodic potential strength and the energy
of the initial state for systems of large size.

V. CONCLUSIONS

We have investigated the single-particle properties of
two-dimensional models with quasicrystalline on-site terms
through the 2D GAA model. It has been shown that similar
physics to the 1D GAA model can be observed, with there
being an intermediate regime and the deformation property
of the potential introducing at least one mobility edge be-
tween extended and localized states. We have also shown
that critical states are a general property of single-particle
diagonal quasicrystalline models. This includes the support of
critical states within both the localized and extended regimes
of the lattice and for a range of deformations β and different
combinations of the irrational periods τ . These models also
host many anomalous mobility edges in their spectra both
between localized and critical states and between extended
and critical states, which we have confirmed for systems of
size L = 60 and through a scaling analysis of the IPR. This
especially impacts the transport properties of the microscopic
model, with it being possible to observe expansion through
the presence of critical states.

There are a number of open questions that arise from this
work, with the key one being how the critical states impact the
behavior of many-body quasicrystalline models. In particular,

how does the presence of critical states impact the formation
of phases such as the Bose glass, contribute to glassy dynam-
ics, and alter the prospects of many-body localization? In the
latter case, it can be speculated that the critical states would
thermalize any localized state in the long-time limit. Initial
results have shown promise of a stable many-body localized
phase [50], but these are limited by relatively small system
sizes for quasicrystalline systems with ∼100 total sites.

With the current difficulty in pursuing full-spectrum results
or long-time dynamics in many-body numerical calculations,
a route forward could be to study this system in a controlled
experimental setting, e.g., with ultracold atoms in optical
lattices [64–66]. The 2D quasicrystalline optical potential re-
alized in Ref. [16] will contain critical states, and this has been
investigated via numerics at the single-particle level [23,67].
The geometry of the 2D GAA model considered in this paper
is a crystalline square lattice which can be realized through the
generation of an optical lattice. The on-site modulation can
then be realized either by a second rotated and weaker optical
lattice or through the manipulation of the individual lattice
sites through digital mirror devices or spatial light modulators.
The interaction of the atoms can then be controlled through
Feshbach resonances and tuning the depth of the confining
optical lattice [64–66], allowing for the realization of the
Bose-Hubbard model in the 2D GAA model. The interactions
can be tuned to zero, and the physics discussed here could
be observed. One can then envisage looking at increasing the
interactions to attempt to observe the impact of the critical
states on both the ground state and transport properties of
the many-body system. While currently ambitious, this would
be a similar experiment to that recently conducted to observe
delocalization mechanisms for 1D disordered systems with a
quantum gas microscope [68].

The data for this manuscript is available in open access at
[69].
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