
Pattern Recognition 151 (2024) 110378

0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Neural Knitworks: Patched neural implicit representation networks
Mikolaj Czerkawski a,∗, Javier Cardona b, Robert Atkinson a, Craig Michie a, Ivan Andonovic a,
Carmine Clemente a, Christos Tachtatzis a

a Department of Electronic and Electrical Engineering, University of Strathclyde, UK
b Department of Chemical Engineering, University of Strathclyde, UK

A R T I C L E I N F O

Dataset link: https://github.com/cidcom/neura
l-knitworks

Keywords:
Generative models
Image denoising
Image inpainting
Image super-resolution
Image synthesis
Internal learning
Zero-shot learning

A B S T R A C T

Optimizing images as output of a neural network has been shown to introduce a powerful prior for image
inverse tasks, capable of producing solutions of reasonable quality in a fully internal learning context, where no
external datasets are involved. Two potential technical approaches involve fitting a coordinate-based Multilayer
Perceptron (MLP), or a Convolutional Neural Network to produce the result image as output. The aim of this
work is to evaluate the two counterparts, as well as a new framework proposed here, named Neural Knitwork,
which maps pixel coordinates to local texture patches rather than singular pixel values. The utility of the
proposed technique is demonstrated on the tasks of image inpainting, super-resolution, and denoising. It is
shown that the Neural Knitwork can outperform the standard coordinate-based MLP baseline for the tasks of
inpainting and denoising, and perform comparably for the super-resolution task.
1. Introduction

The research on utilizing coordinate-based Multilayer Perceptron
(MLP) networks for image synthesis has developed significantly, yield-
ing a range of impressive results [1–8]. However, the approaches for
encoding images using coordinate-based MLPs proposed to date do not
explore the potential of introducing additional patch-based constraints.
This work attempts to fill this gap, by introducing Neural Knitworks,
an extension of coordinate-based MLP that maps coordinates to local
texture patches, rather than singular RGB values. Learning a neural
field of patches, rather than colors, allows for introducing some addi-
tional losses that can narrow the space of solutions for image inverse
tasks. This design is based on the intuition that local patches and the
relationships between them, are an important and relevant factor for
solving internal image inverse problems.

The idea of operating on patches is also inspired by the advance-
ments made using models that focus on patch distributions like In-
GAN [9], SinGAN [10], and the Swapping Autoencoder [11]. The
proposed framework can be treated as an extension of a conventional
coordinate MLP architecture, where instead of a single color value
the network predicts a color patch (or a multi-scale stack thereof)
with additional constraints imposed. The purpose of these constraints
is to match the distributions of predicted and reference patches and
encourage spatial consistency between the predictions. The resulting
method can be applied to several image inverse problems, such as
image inpainting, super-resolution and denoising, as shown in Fig. 1.
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The motivation of this work is to explore the feasibility of the 2D
coordinate-based MLPs for the internal image inverse problems, such
as inpainting, super-resolution, and denoising, and further compare
that to the patch-oriented Neural Knitwork extension proposed. Both
of these approaches are also evaluated against the established internal
learning techniques for solving image inverse problems that are based
on Convolutional Neural Network (CNN) architectures.

It is shown that the Neural Knitwork improves the performance of
a coordinate-based MLP solution for the tasks of inpainting and denois-
ing, and results in comparable performance for the super-resolution
task. Furthermore, it is found that on the inpainting task, the CNN-
based baseline performs better than the coordinate-based approaches.
The source code is available at https://github.com/cidcom/neural-
knitworks.

2. Related work

The potential of applying an MLP network as an encoding of a signal
has been explored in a number of works [1–4,6,12–25]. The learned
signals can be of any dimensionality, however, MLP encoding of spatial
coordinates is a particularly popular theme, involving a network that
learns to produce given scalar values based on the input coordinates.
This allows for considerable flexibility and leads to applications such
as self-supervised learning of natural images or videos.

Coordinate-Based MLP Networks. The interest in using fully con-
nected networks to represent signals in an implicit manner (also known
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Fig. 1. The introduced model trained on a single sample can perform a number of different image synthesis tasks with very low memory requirements.
as Neural Fields [23]) has grown over the last few years, which can be
attributed to the potential of such methods to be used for 3D shape
representations [3,4,6,15–17].

An important issue for learning coordinate-based representations
is the tendency of neural networks to interpolate and attenuate high-
frequency changes in the output [1,2,26]. Two effective solutions to
this problem are to either map the input coordinates (known as posi-
tional encoding) [1] or use sinusoidal activation functions [2]. How-
ever, neither of the two approaches does address the challenge of
synthesizing new regions. As demonstrated in a subsequent section
(Fig. 3), a standard MLP encoding input with random Fourier features
mapping does not synthesize new outputs in a convincing manner.

The novel techniques of random Fourier feature encoding of spatial
coordinates gave rise to Neural Radiance Field (NeRF) networks, which
can synthesize high fidelity novel views of 3D scenes in an efficient
manner [3]. This contribution was soon followed by further developing
works, focusing on aspects such as unbounded 3D scenes [4], synthe-
sizing based on few (or only one) images [5], taking advantage of
compositionality of 3D scenes [6], concept grounding [18], or applying
a similar approach in other domains such as acoustics [19]. Lastly,
the work of NeRFusion [20] is an extension of NeRF that derives the
radiance and volume density based not only on coordinates but also on
estimated per-voxel features.

There have been some works where coordinate-based MLP networks
are used as a core for a generative model using techniques such as a
hypernetwork predicting the weights of a sample coordinate MLP [13],
or by modulating the weights of a base coordinate MLP [14]. These
approaches are fundamentally different as they attempt to create a
wide generative model based on a large-scale dataset, while the pro-
posed approach focuses on data-agnostic internal learning tasks and
uses a disparate architecture. Finally, Local Implicit Image Functions
introduced in [27] are trained in a self-supervised manner and are
based on latent feature maps used to synthesize an image at different
resolutions. However, the architecture relies on a convolutional feature
encoder, applies a fixed downsampling operation, and is trained to
generate images based on a selected dataset. The proposed architecture
is purely based on MLP networks, requires no pretraining, and directly
maximizes self-similarity between the synthesized and known patches.

Finally, there exists a line of work, where spatial coordinates are
translated into coordinates in texture space, such as Neutex [21], or
Neural Atlases for Video [22], but they do not make use of coordinate-
to-patch mapping like Neural Knitwork.

Internal Learning for Image Inverse Problems. Patches have
been identified as crucial representation features of image in various
works [10,28–40]. The introduction of Generative Adversarial Network
(GAN)s [41] made it possible to learn patch distributions of images
in an adversarial manner [10,11]. Additionally, internal learning ap-
proaches relying on the priors contained in convolutional architectures
2

have been proposed [37,42]. To the best of the authors’ knowledge,
no attempt of introducing these techniques to coordinate-based MLP
networks has been made until now.

External Learning for Image Inverse Problems. Many of the re-
cent state-of-the art techniques for image inverse tasks rely on training
on external datasets, with well-performing solutions to the problems
such as inpainting [43–49] or super-resolution [50–58]. Solutions based
on external learning enable the introduction of domain knowledge for
solving the task, which is an important source of prior. Yet, there is
a significant amount of information often existing in the sole input
image, which is where internal learning approaches prove to be useful.
Ultimately, a robust and performing model for solving an image inverse
task should use both internal and external sources of information to
produce the desired output. The scope of this work is focused on the
internal learning context, meaning that the core question deals with
how well can various models extract information from the input sample
alone to solve several synthesis problems. For this reason, the externally
learned solutions are not considered relevant in the exact context of this
work.

3. Method

The core structure of the proposed network is presented in Fig. 2. It
consists of three small networks: (i) Patch MLP for translating from the
original coordinate domain to the patch domain (ii) the discriminator
responsible for assessing patch likelihoods, and (iii) Pixel MLP for
mapping the patch domain to individual pixel color.

The resulting architecture performs the equivalent operation to
a conventional coordinate-based MLP since the network ultimately
predicts a single pixel value. However, the intermediate patch-based
representation of the proposed architecture forces the model to estab-
lish the natural relationship between the encoded coordinates. This
property can also be used as a useful prior for internal learning sce-
narios, similar to using convolutional kernels in CNN architectures.
Further, the patch representation allows the proposed model to be
trained with an adversarial patch loss to match the internal patch
distribution with that of the reference image.

3.1. Patch synthesis

The Patch MLP is a network of 4 ReLU layers with 256 units,
identical to the one used in [1]. The role of this component is to map
each coordinate vector to an appropriate pixel patch. The coordinate
input is mapped using random Fourier features before passing to the
network. This processing step is known as positional encoding and has
been described in detail in [1].

The output of this network approximates the implicit representation
function 𝜙 for a query coordinate vector 𝐱 along with values of
(𝐱)
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Fig. 2. Neural Knitwork architecture consists of 3 shallow MLPs. The network knits patches for related coordinates by enforcing consistency of predictions and optimizing likelihoods
of individual patches. Each patch stack is translated back to a single color by the Pixel MLP. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
neighboring coordinates. The required receptive field depends on the
spectral content of the image and can be adjusted by either increasing
the patch size to provide more spatial bandwidth or using multi-scale
patches. Here, the latter approach is applied as it is more efficient for
large spatial spans, allowing for easily configurable scope covered by
the output patches at low computational cost. Patches of fixed size 3
by 3 are used for all experiments. For extraction of the patches with
scales larger than one, a Gaussian filter is applied to the image to reduce
aliasing.

Patch Reconstruction Loss Since the core module is an MLP with
multi-scale patch output, a direct way of computing the error is taking
the difference of the predicted patches �̂�(𝐱) and ground truth reference
𝜙(𝐱). For inpainting tasks, not all pixel values for the patch stack are
known and, hence, an appropriate mask 𝐦(𝐱) is applied to this loss. For
other tasks, the mask will be an identity tensor. This loss is referred to
as patch reconstruction loss 𝑅𝑒𝑐𝑜𝑛, which is effectively a masked Mean
Squared Error (MSE) computed for patches at 𝑁 sampling coordinates.

𝑅𝑒𝑐𝑜𝑛 =
𝑁
∑

𝐱

(𝜙(𝐱) − �̂�(𝐱))2 ∗ 𝐦(𝐱)

|𝜙(𝐱)|
(1)

The effect of learning patch-based representation rather than direct
pixel values has been illustrated in Fig. 3 as part of the ablation
study included in the experiments. It becomes quite clear that patch-
based representation alone (third column), while helpful, may not yield
satisfactory results for challenging synthesis tasks. Instead, additional
constraints must be applied to control the relationships between the
synthesized values.

Cross-Patch Consistency Loss The ability to produce likely pixels
or patches does not necessarily lead to consistent network output when
the entire learned image is considered. By default, all patches for
which ground truth is available, are optimized to be close to that
reference, but this does not guarantee that all patches contribute to a
single coherent image for coordinates with no ground truth. For new
synthesized regions, the output patches may be convincing on their own
(due to the bias component learned by the network from the known
region) but display limited coherence between each other.

To encourage consistency, a cross-patch consistency loss is designed
that computes the difference between predictions for each pixel from
all patches and for the entire image scope. In practice, a way to enforce
this, is to use the predictions from the central element of the lowest-
scale patch as a reference. The following notation is defined: �̂�(𝐱)[𝐢]
represents the value of a patch element 𝐢 predicted for coordinate 𝐱
where 𝐢 belongs to the set of 𝐼 elements across all scales. In a similar
fashion, the �̂�(𝐱)[𝐨], represents the value of the central element (con-
stant index of 𝐨) of the lowest scale patch predicted from coordinate
𝐱.

The central reference �̂�(𝐱)[𝐨] is compared with element �̂�(𝐱+𝐬)[𝐢]
that corresponds to the same pixel of the output image evaluated at
coordinates 𝐱 + 𝐬, where 𝐬 indicates the appropriate shift, dependent on
3

𝐢. The terms with values 𝐱 + 𝐬 outside of the image bounds are naturally
excluded from the summation.

X-patch =
𝑁
∑

𝐱

𝐼
∑

𝐢
(�̂�(𝐱+𝐬)[𝐢] − �̂�(𝐱)[𝐨])2 (2)

Reconstructed Pixel Loss The transition from predicting isolated
pixel colors to patches introduces a new trade-off between imposing
spatial relationships of the pixel colors and obtaining a high fidelity
image with accurate detail. In practice, there will be some disagreement
between the predictions for the same pixel from different patches and
scales. The naive approach of averaging all predictions for a given
coordinate value leads to blurring. To avoid this, a separate Pixel MLP
network is used to translate from a multi-scale patch representation
to a single color value, by approximating the color extraction function
𝜌(�̂�(𝐱)), as shown in Fig. 2. The error made by this final output network
constitutes the reconstructed pixel loss, encouraging the entire model
to produce accurate pixel colors based on a stack of patches.

The pixel reconstruction loss is computed as a 𝓁1 loss between the
network pixel color output �̂�(�̂�(𝐱)) and the color ground truth 𝐜(𝐱)

Pixel =
𝑁
∑

𝐱
|�̂�(�̂�(𝐱)) − 𝐜(𝐱)| (3)

3.2. Patch discriminator

Another important property to enforce, especially when some parts
of the signal need to be synthesized, is for all predicted patches to
come from a distribution of likely patches, derived from the available
information in the source image. This is achieved with the aid of a
discriminator tasked to predict which patches come from the original
distribution and which do not. The approach is partly inspired by a
number of existing works that take advantage of self-similarity between
patches in natural images [10,11,31,36,37]. In this case, the discrimi-
nator is another MLP consisting of 3 Leaky ReLU layers and taking a
flattened patch representation as input.

Discriminator Loss The discriminator network takes a single multi-
scale patch and outputs a confidence score. At each training step of the
discriminator, all real and all synthesized patches are fed into it and
compute the output confidence for them. Furthermore, one-sided label
smoothing [59] of the real labels is applied with a factor of 0.1 when
computing the discriminator loss in order to penalize over-confidence
of this network module. A standard binary cross-entropy loss is used on
the discrimination scores.

3.3. Complete objective function

The objective function is a minimax loss where the generator loss
term is composed of the four losses contained parameterized by weights
𝛼, 𝛽, and 𝛾.

𝑇 𝑜𝑡𝑎𝑙,𝐺 = 𝑅𝑒𝑐𝑜𝑛 + 𝛼X-patch + 𝛽Pixel + 𝛾BCE,G (4)

The discriminator term only includes a single binary-cross entropy loss.
Further details about the implementation and the hyperparameters can
be found in the appendix.
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Fig. 3. Ablation study of Neural Knitwork components. Conventional MLP does not produce coherent inpainted region and this is improved with the introduction of patches.
Further, imposing cross-patch consistency constraint increases the quality of the synthesized region while employing a GAN approach ensures patches of high likelihood.
4. Experiments

The capabilities of Neural Knitworks are demonstrated by utiliz-
ing a similar model with only minor adjustments for several tasks
commonly investigated in the field of computer vision: (1) image
inpainting (2) super-resolution and (3) denoising. The following section
describes the key implementation details for each task and presents
corresponding qualitative results. Quantitative measures are provided
by applying each method to Set5 [60], Set14 [61], BSD100 [62], and
Urban100 [63]. The key objectives of the following experiments is to
estimate the potential benefits of the Neural Knitwork framework over
a coordinate-based MLP, as well as compare the two to other internal
learning techniques that utilize CNN architectures for the same tasks
(Deep Image Prior and SinGAN).

4.1. Ablation study

The analysis begins with an ablation study of the proposed archi-
tecture to demonstrate the utility of each introduced loss component.
Fig. 3 illustrates the effect of the following adjustments to the con-
ventional coordinate MLP network (second column): (i) patch output
(third column), (ii) cross-patch consistency loss (fourth column), (iii)
patch discrimination (fifth column). It can be observed that the intro-
duction of patch output alone can lead to a more convincing synthesis.
However, some distortion can be observed in the synthesized region,
which is reduced when cross-patch consistency loss is used. Finally, the
addition of a GAN loss leads to improved region consistency.

4.2. Image inpainting

For the image inpainting task, a rectangular section is cut out from
the source image to be used as the inpainted region. The coordinates of
the cutout are used for producing a mask indicating whether the source
signal exists for a given pixel. The mask is used to backpropagate the
reconstruction losses only from the pixels outside the inpainted region.
The specific configuration used for this task is shown in Table 2.

The results of the inpainting for the Neural Knitwork are compared
to a conventional coordinate MLP model and to DIP [42], a CNN-
based internal learning approach. Fig. 4 contains the resulting output
for the three tested models. The reconstruction quality of the whole
image is comparable for the three tested methods. However, when
inpainted region is concerned, a significant improvement of over 4 dB
can be identified for the Neural Knitwork compared to the conventional
coordinate MLP and 2 dB less than the CNN-based technique. For some
of the results, the Neural Knitwork was, in fact, able to outperform
DIP. Table 1 contains the evaluation across the entire datasets for
different fill ratios, which supports that the Neural Knitwork will most
often outperform the conventional approach and but generally achieves
lower performance than the DIP. More examples can be found in the
appendix.
4

Table 1
Comparison of inpainting performance for different fill ratios. The three approaches
appear comparable PSNR (↑) and SSIM (↑) for whole images. For the inpainted region,
the Neural Knitwork comes close to the level of performance of Deep Image Prior (DIP),
while conventional MLP is inferior.

Dataset Fill ratio MLP DIP [42] Ours

1% 32.99/0.98 32.53/0.95 32.00/0.96
Set5 2% 28.65/0.97 29.35/0.92 29.81/0.94
Whole image 4% 25.85/0.96 26.22/0.88 27.96/0.95

1% 13.96/0.36 20.66/0.68 18.28/0.58
Set5 2% 11.89/0.28 18.50/0.57 17.79/0.57
Inpainted region 4% 11.89/0.32 15.89/0.52 14.95/0.48

1% 28.97/0.95 28.22/0.90 27.65/0.91
Set14 2% 26.38/0.94 27.08/0.89 26.03/0.91
Whole image 4% 24.00/0.93 25.53/0.89 24.44/0.89

1% 11.85/0.23 16.32/0.41 15.50/0.40
Set14 2% 10.79/0.23 15.32/0.40 13.94/0.39
Inpainted region 4% 10.67/0.24 14.08/0.37 12.35/0.36

1% 30.04/0.97 29.60/0.92 28.25/0.94
BSD100 2% 27.61/0.96 28.46/0.92 26.70/0.93
Whole image 4% 24.34/0.94 26.72/0.91 24.62/0.92

1% 12.62/0.25 16.87/0.36 12.71/0.26
BSD100 2% 11.84/0.24 15.88/0.36 12.48/0.27
Inpainted region 4% 11.03/0.23 15.16/0.35 12.09/0.28

1% 28.79/0.96 28.60/0.92 27.32/0.93
Urban100 2% 26.64/0.96 27.84/0.93 26.12/0.93
Whole image 4% 23.74/0.94 25.93/0.92 23.71/0.91

1% 11.38/0.20 16.86/0.43 12.36/0.25
Urban100 2% 10.81/0.19 15.69/0.38 11.96/0.25
Inpainted region 4% 10.23/0.17 14.33/0.33 11.39/0.24

Parameters 263K 2400K 512K

Table 2
Configuration of the inpainting Neural Knitwork.

Parameter Value

Patch size 5 × 5
Patch scales [1,8]
𝑋−𝑝𝑎𝑡𝑐ℎ weight (𝛼) 10−5

𝑃 𝑖𝑥𝑒𝑙 weight (𝛽) 1.0
𝐺𝐴𝑁 weight (𝛾) 10−4

Learning rate 4 ⋅ 10−3

Steps 4000

4.3. Super-resolution

To perform super-resolution, a Neural Knitwork has to generate a
new image consisting of patches of finer scale, based on the information
available in the image of original resolution. This can be done by opti-
mizing the probability distributions of patches across scales, as done in
several earlier works [10,35,36,39]. For blind super-resolution, where
the underlying downsampling operation is not known, the default
model of a Neural Knitwork is utilized with adjusted losses as illustrated
in Fig. 5 (see Table 3 for network parameters). The queried coordinates
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Fig. 4. Image inpainting results for a fill ratio of 2%. For the inpainted region Neural Knitworks and DIP perform comparably, and both outperform conventional MLP.
Fig. 5. The blind super-resolution framework utilizes the core module with the addition of a linear network to blindly infer the downsampling kernel. In this case the patch
reconstruction loss cannot be computed.
for a patch MLP network include all high-resolution coordinates, which
means that it is not possible to compute the patch reconstruction
loss in this mode, since the high-resolution image is not available.
However, it is possible to compute the cross-patch consistency loss as
well as discriminate the patches to match the source image distribution.
This alone could yield an output image resembling the low-resolution
source without guaranteed structural coherence. To enforce coherence,
spatially-aware supervision is applied by downsampling the output of
the network and computing the downsampling loss with the reference
to the low-resolution source image.

The downsampling operation can be implemented in several ways.
If the downsampling kernel is known, then the best approach is to sim-
ply backpropagate through that kernel (assuming it is differentiable).
Otherwise, a trainable downsampling module representing the kernel
can be created with its weights optimized in an end-to-end manner.
The technique introduced in [39] is revisited by using an identical deep
5

Table 3
Configuration of the super-resolution Neural Knitwork.

Parameter Value

Patch size 3 × 3
Patch scales [1,2,4]
𝑋−𝑝𝑎𝑡𝑐ℎ weight (𝛼) 10−2

𝑃 𝑖𝑥𝑒𝑙 weight (𝛽) 1.0
𝐺𝐴𝑁 weight (𝛾) 10−2

Learning rate 10−3

Steps 4000

linear network to approximate the kernel. Their method relies on the
assumption that a satisfactory kernel should preserve the distribution
of patches in the image. For Neural Knitworks, there is no need to
introduce a new loss term accommodating this since the core module
objective imposes matching patch distribution by default.
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Fig. 6. The method approximates the downsampling kernel depending on the source image.
Fig. 7. Comparison of blind image super-resolution for a diagonal Gaussian kernel and upscaling factor of 4×. Neural Knitwork can outperform conventional coordinate MLP
network and achieve higher PSNR. SinGAN, while generating a considerable amount of high frequency details, results in significant artifacts.
Table 4
The blind super-resolution performance achieved by a conventional coordinate MLP, a
CNN-based internal learning framework of SinGAN and Neural Knitwork. PSNR (↑) and
SSIM (↑) are computed for a number of upscaling factors and downsampling kernels
(Delta, Diagonal - Diagonal Gaussian, Round - Round Gaussian).

Dataset Kernel MLP SinGAN [10] Ours

Delta 31.58/0.95 19.22/0.65 27.39/0.88
Set5 (2×) Diagonal 23.78/0.83 19.95/0.72 24.62/0.82

Round 24.95/0.86 21.59/0.75 25.48/0.84

Delta 25.38/0.85 17.16/0.53 23.81/0.81
Set5 (4×) Diagonal 23.47/0.81 19.15/0.66 24.22/0.82

Round 24.61/0.84 20.75/0.72 25.36/0.84

Delta 27.22/0.89 14.21/0.41 24.31/0.82
Set14 (2×) Diagonal 22.09/0.75 16.96/0.56 22.08/0.74

Round 22.96/0.78 17.21/0.57 22.35/0.75

Delta 22.45/0.76 14.32/0.33 21.72/0.75
Set14 (4×) Diagonal 21.90/0.73 17.75/0.56 22.05/0.73

Round 22.52/0.76 18.65/0.62 21.56/0.71

Delta 26.83/0.88 18.77/0.58 23.84/0.80
BSD100 (2×) Diagonal 22.02/0.73 21.67/0.69 22.06/0.73

Round 22.70/0.76 22.94/0.74 23.07/0.77

Delta 22.46/0.73 17.70/0.45 21.39/0.70
BSD100 (4×) Diagonal 21.81/0.71 19.88/0.60 21.69/0.71

Round 22.33/0.73 20.67/0.64 22.37/0.74

Delta 24.77/0.87 13.32/0.32 20.84/0.73
Urban100 (2×) Diagonal 19.79/0.66 15.03/0.40 19.76/0.65

Round 20.59/0.70 15.07/0.42 20.86/0.71

Delta 19.61/0.69 14.34/0.37 18.38/0.62
Urban100 (4×) Diagonal 19.60/0.64 16.76/0.50 19.70/0.64

Round 20.19/0.67 17.55/0.55 20.23/0.68

Parameters 263K 2381K 608K

In Fig. 6, the downsampling effect is demonstrated for two non-
standard kernels: (i) delta function (leading to aliasing) and (ii) di-
agonal Gaussian kernel. Different types of artifacts can be observed
depending on the kernel. During training, Neural Knitwork blindly
6

approximates the downsampling kernel based on the image content.
The true and learned kernels are illustrated in the figure.

In the case of blind super-resolution, the selected CNN baseline is
SinGAN [10]. The rationale for selecting SinGAN is based on the fact,
that just like the proposed Neural Knitwork, the images are produced
by discriminating patches in the network output to increase similarity
between them and the source image. Hence, the framework allows for
modeling a variety of potential downsampling operations, just like the
Neural Knitwork.

Fig. 7 contains results for a diagonal kernel and upscaling factor
of 4, for the proposed Neural Knitwork, the conventional MLP and
SinGAN, another image super-resolution method based on internal
learning. The results show that SinGAN has the lowest performance
in terms of PSNR but it also creates distinguishable artifacts. Table 4
shows how Neural Knitwork compares to counterparts along with the
model sizes. Interpolation with conventional MLP directly implies delta
kernel and hence, they perform best in this instance. For other kernels,
a Neural Knitwork can boost the performance in some instances by
adjusting to the kernel. The SinGAN method performs worse than either
neural implicit representation method in nearly every case.

In this case, the extensions introduced as part of the Neural Knit-
work framework do not provide a consistent advantage over the MLP
baseline, which performs very well on the super-resolution task given
its simplicity, efficiency, and narrow assumptions about the downsam-
pling operation.

4.4. Denoising

Denoising is the final tested use case for the internal learning
techniques explored in this work. In this case, the configuration of the
Neural Knitwork is adjusted with the values shown in Table 5. In this
case, similarly to the inpainting tests, the CNN baseline used for the
task is the Deep Image Prior [42].

As demonstrated in Fig. 8, a standard MLP network has limited
denoising capability because it attempts to fit all pixel color values with



Pattern Recognition 151 (2024) 110378M. Czerkawski et al.
Fig. 8. Neural Knitwork demonstrates superior performance for severe levels of noise, in this case 𝜎 = 40. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 5
Configuration of the denoising Neural Knitwork.

Parameter Value

Patch size 5 × 5
Patch scales [1,4]
𝑋−𝑝𝑎𝑡𝑐ℎ weight (𝛼) 10−1

𝑃 𝑖𝑥𝑒𝑙 weight (𝛽) 1.0
𝐺𝐴𝑁 weight (𝛾) 10−2

Learning rate 10−3

Steps 4000

Table 6
Comparison of achieved denoising performance. For higher power levels, the Neural
Knitwork achieves higher PSNR (↑) and SSIM (↑) than a conventional MLP and DIP.

Dataset 𝜎 MLP DIP [42] Neural Knitwork (ours)

10 23.58/0.70 27.56/0.85 26.69/0.83
Set5 20 17.76/0.42 19.15/0.49 21.69/0.63

40 12.43/0.19 11.6/0.15 15.91/0.37

10 24.94/0.77 26.95/0.84 26.15/0.85
Set14 20 19.56/0.55 19.70/0.53 23.08/0.73

40 14.55/0.30 12.62/0.19 18.75/0.56

10 24.66/0.76 26.63/0.84 25.83/0.84
BSD100 20 18.85/0.48 18.68/0.46 21.43/0.64

40 13.83/0.24 11.92/0.15 16.23/0.37

10 25.02/0.83 26.75/0.88 25.33/0.87
Urban100 20 19.69/0.61 20.07/0.62 21.81/0.73

40 14.51/0.35 12.70/0.26 16.63/0.49

Parameters 263K 2400K 512K

no additional constraints. In contrast, a Neural Knitwork aims to recon-
struct both patches and pixel colors reliably while imposing additional
consistency constraint on the derived solution. In the illustrated result
with severe noise levels of 𝜎 = 40, PSNR approximately 4 dB higher
than in the case of a conventional coordinate MLP is achieved.

Table 6 confirms that the Neural Knitwork model strongly outper-
forms both other methods for higher noise levels, by a wide margin.
The only exception is the low level of 𝜎 = 10, where Deep Image
Prior achieves the highest score. Still, in every single case, the conven-
tional coordinate-based MLP achieves much lower performance than
the Neural Knitwork extension framework.

5. Conclusion

Neural Knitworks constitute a hybrid architectural approach for
internal learning applications, where a coordinate-based model is opti-
mized with a patch context.
7

For the inpainting task, the coordinate-based solutions do not match
the performance of the CNN baseline (DIP), but the proposed Neu-
ral Knitwork technique results in a considerable improvement over
a standard coordinate-based MLP. For the super-resolution task, the
performance of the coordinate-based MLP is comparable to the Neu-
ral Knitwork, while the CNN baseline (SinGAN) is consistently much
worse than the two. Finally, the Neural Knitwork outperforms both
coordinate-based MLP and CNN baseline for the denoising of images
at high levels of noise, with quite a wide margin.

In the conducted experiments, the Neural Knitwork used in the
experiments is 5× smaller than CNN internal learning counterparts
with an additional benefit of being fully parallelizable; that is, all
coordinate outputs can be computed independently. Apart from the
significant potential for speed up, Neural Knitworks have the advantage
of precise control over the output image size by adjusting the set of
input coordinates.

In the conducted experiments, the following limitations have been
identified. The Neural Knitworks are able to outperform the standard
coordinate-based MLP for the task of inpainting and denoising, but
achieve quite comparable performance on the task of blind super-
resolution. This indicates a potential for improving the techniques
based on implicit neural representation by introducing the context
of local patches. At present, the experimentation shows that Neural
Knitworks can be sensitive to hyperparameters such as individual loss
weights, patch sizes, and learning rates, however, the configuration
used in the experiments has been shown to offer stable performance.
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