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ABSTRACT
We develop a nonparametric multivariate time series model that remains agnostic on the precise rela-
tionship between a (possibly) large set of macroeconomic time series and their lagged values. The main
building block of our model is a Gaussian process prior on the functional relationship that determines
the conditional mean of the model, hence, the name of Gaussian process vector autoregression (GP-
VAR). A flexible stochastic volatility specification is used to provide additional flexibility and control for
heteroscedasticity. Markov chain Monte Carlo (MCMC) estimation is carried out through an efficient and
scalable algorithm which can handle large models. The GP-VAR is used to analyze the effects of macroe-
conomic uncertainty, with a particular emphasis on time variation and asymmetries in the transmission
mechanisms.
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1. Introduction

Economic relations can change over time for a variety of reasons,
such as technological progress, institutional changes, major pol-
icy interventions, but also wars, terrorist attacks, stock market
crashes and pandemics. Standard econometric models, such as
linear single and multivariate regressions assume instead sta-
bility of the parameters characterizing the conditional first and
second moments of the dependent variables. When stability is
formally tested, it is often rejected (see, e.g., Stock and Watson
1996). This has led to the development of a variety of methods
to handle structural change in econometric models.

Parameter evolution is assumed to be either observable (i.e.,
driven by the behavior of observable economic variables) or
unobservable, and either discrete and abrupt or continuous
and smooth. Examples include threshold and smooth transition
models (see, e.g., Tong 1990; Teräsvirta 1994), Markov switch-
ing models (see, e.g., Hamilton 1989), and double stochastic
models (see, e.g., Nyblom 1989). Examples of economic appli-
cations of these methods include Koop and Korobilis (2013),
Aastveit, et al. (2017), Caggiano, Castelnuovo, and Pellegrino
(2017), Alessandri and Mumtaz (2019), Caggiano, Castelnuovo,
and Pellegrino (2021), and Barnichon, Debortoli, and Matthes
(2022).1 Another recent strand of the literature, pioneered in
Barnichon and Matthes (2018), approximates impulse responses
through a number of Gaussian basis functions. These models
are fully parametric and therefore specify the type of parameter
nonlinearities a priori.

Assuming a specific type of parameter evolution increases
estimation efficiency but can lead to mis-specification. A more

1A special mention is due to Primiceri (2005) who popularized the use of time-
varying parameters and stochastic volatility in macroeconometrics.
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flexible alternative allows for a smooth evolution of parameters
without specifying the form of parameter time variation. In
a classical context, the evolution can be either deterministic
(see, e.g., Robinson 1991; Chen and Hong 2012), or stochastic
(see, e.g., Giraitis, Kapetanios, and Yates 2014, 2018; Kapetanios,
Marcellino, and Venditti 2019, for the specific case of (possibly
large) vector autoregressive models (VARs)). Kernel estimators
are the main tool used in this literature. Alternative approaches
are, for example, based on using functional-coefficient regres-
sions (Cai, Fan, and Yao 2000; Kowal, Matteson, and Ruppert
2017), Gaussian random fields (Hamilton 2001), regression trees
(Chipman, George, and McCulloch 2010; Huber et al. 2023),
neural networks (Hornik, Stinchcombe, and White 1989; Gu,
Kelly, and Xiu 2021; Coulombe 2022) or Bayesian nonpara-
metrics (BNP) based on infinite mixtures (Hirano 2002; Bas-
setti, Casarin, and Leisen 2014; Kalli and Griffin 2018; Bas-
setti, Casarin, and Rossini 2020; Jin, Maheu, and Yang 2022).
These popular machine learning methods, however, are dif-
ficult to interpret and need substantial tuning to work well
on comparatively short macroeconomic time series such as
the ones considered in this article. Moreover, some of these
techniques do not scale well into high dimensions and are
thus not particularly suited for large panels nowadays used in
macroeconomics.

In this article, we propose a new model that belongs to the
nonparametric class and is capable of capturing, in a flexible
way, general nonlinear relationships. We combine the statistical
literature on Gaussian process (GP) regressions (see, e.g., Craw-
ford et al. 2019), with that on VARs to obtain a GP-VAR model.
Borrowing ideas from the literature on Bayesian Minnesota-
type VARs, we assume, for each endogenous variable, a different
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nonlinear relationship with its own lags and with the lags of all
the other variables (and possibly of additional exogenous regres-
sors). Gaussian processes are used to model nonlinearities in a
flexible but efficient way and are related to popular techniques
such as neural networks.2 Another related approach is the BNP-
VAR of Billio, Casarin, and Rossini (2019). Similarly to the GP-
VAR the object of interest is the posterior distribution over a
functional space which requires the specification of a suitable
prior process. Our model assumes that the shocks are Gaussian.
To add flexibility we introduce a novel stochastic volatility (SV)
specification to allow for smoothly varying error variances. The
use of SV in the GP-VAR adds flexibility, and prevents overfitting
as it avoids that large realizations of the shocks are interpreted as
changes in the conditional mean.

We develop an efficient Bayesian estimation procedure, based
on the structural form of the GP-VAR, which has the additional
benefit that its complexity is linear in the number of endogenous
variables and does not depend on the number of lags. Hence,
estimation can be parallelized and, in addition, introducing
conditionally conjugate priors allows for pre-computing various
matrix multiplications and kernel operations, which further
speeds up computation. As a result, estimation is feasible also
for very large models.

Our GP-based model has a vast range of applicability, for both
reduced form and structural analysis. This mirrors the possi-
ble applications of standard VARs but allows for more general
dynamic relationships across the variables. As an example of a
structural economic analysis, and to gather new insights on a
topic that has recently attracted considerable attention (see, e.g.,
Bloom 2014), we use the GP-VAR to investigate the effects of
uncertainty shocks on U.S. macroeconomic and financial indica-
tors. First, we show that applying our approach to data simulated
from the structural model by Basu and Bundick (2017) delivers
impulse response functions closer to the true ones than a linear
BVAR. Then, by using real data, we compare the responses of
the GP-VAR with those of a standard linear BVAR. Differences
relate to the shape and magnitudes, with the GP-VAR producing
stronger reactions for selected macro quantities.

Our proposed framework naturally allows for analyzing
potential asymmetries in transmission channels. The responses
to a positive uncertainty shock (higher unexpected uncertainty)
are typically much stronger than those to a negative shock.
Interestingly, the shape of the IRFs also differ, with positive
shocks leading to responses that peak later. In addition, our
findings suggest that the relationship between real activity and
uncertainty becomes proportionally slightly smaller for large
shocks, while financial markets react relatively more strongly
to larger increases in uncertainty. Our framework also permits
to investigate whether transmission mechanisms have changed
over time. Doing so indicates that the effects of uncertainty
have been increasing up to 2007Q1 before turning more muted
afterwards. Finally, we find that asymmetry moves with variables
closely related to the business cycle.

The article is structured as follows. Section 2 provides an
introduction to Gaussian process regression. Section 3 develops

2In fact, specific choices of the kernels underlying Gaussian processes can
produce a variety of neural network models, see Novak et al. (2018) for
details.

the GP-VAR model. It also provides details on the prior setup
and posterior computation. Section 4 deals with the macroe-
cononomic effects of uncertainty shocks through the lens of our
flexible nonparametric model. The final section briefly summa-
rizes and concludes the article. The Online Appendix contains
technical details on the specification, estimation and use of
the GP-VAR model and additional empirical results such as
simulation findings, forecasting results using U.S. data and in-
sample model features.

2. A Brief Introduction to Gaussian Processes

In this section we briefly discuss Gaussian process (GP) regres-
sions, focusing on time series data.3 GP regressions are a non-
parametric technique to establish a flexible relationship between
a scalar time series yt and a set of K predictors xt in period
t = 1, . . . , T where T marks the end of the sample. Their key
advantage is that they do not rely on parametric assumptions on
the precise functional relationship between yt and xt .

In general, a nonparametric regression is given by
yt = f (xt) + εt , εt ∼ N (0, σ 2),

with f being some unknown regression function f : R
K →

R and εt denoting an independent Gaussian shock with zero
mean and constant variance σ 2. We relax this assumption in
Section 3.1 to allow for heteroscedastic shocks. An assumption
on the error distribution is needed in a Bayesian context and
Gaussianity is the most common one, though different distribu-
tions can be easily accommodated by exploiting a scale-location
mixture of Gaussians representation (see, e.g., Escobar and West
1995).

In standard regression models, the function f is assumed to
be linear with f (xt) = β ′xt where β is a K × 1 vector of linear
coefficients. If mean relations are nonlinear, this assumption
might be too restrictive. To gain more flexibility one can embed
the covariates in xt into a higher dimensional space such as
the space of powers xt → ψ(xt) = (x′

t , (x2
t )

′, . . . , (xR
t )′)′,

with x2
t = (xt � xt) and higher orders defined recursively.

Conditional on choosing a sufficiently large integer R, this would
provide substantial flexibility to approximate any smooth func-
tion f . However, adequately selecting R is key and the mapping,
moreover, is ad-hoc in the sense that there exist infinitely many
nonlinear mappings ψ .

Standard Bayesian methods place a prior on the coefficients
associated with the covariates (and possible nonlinear transfor-
mations thereof) and thus control for uncertainty with respect
to these basis functions but at the cost of remaining within a
class of functions (such as linear, polynomial or trigonometric).
By contrast, GP regressions treat the function f as an unknown
quantity and let the data decide about the appropriate form (and
degree) of nonlinearity.

2.1. Estimating Unknown Functions: The Function Space
View

The key inferential goal in GP regression is to infer the func-
tion f from the data under relatively mild assumptions. This is

3For a textbook treatment, see Williams and Rasmussen (2006).
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achieved by specifying a prior on f (xt). A typical assumption is
to assume that f (xt) follows a Gaussian process prior:

f (xt) ∼ GP (μ(xt), kϑ (xt , xt)) ,

with μ(xt) = E[f (xt)] being the mean function and

kϑ (xt , xτ ) = E[(f (xt) − μ(xt))(f (xτ ) − μ(xτ ))]
denoting a kernel (or covariance) function that relates f (xt) and
f (xτ ) for periods t and τ . The kernel is typically parameterized
by a low dimensional vector of hyperparameters ϑ and controls
the behavior of the function f . This kernel needs to be positive
semidefinite and symmetric.

We set the function μ(xt) = 0 for all t, without loss of
generality, since any explicit basis function for μ(xt) can be
used to model the mean process. If the focus is on modeling
stationary data, μ(xt) = 0 implies that a priori the process
is centered around a white-noise process. If one would like to
model persistent or nonstationary data, it would be straight-
forward to implement a prior that forces the system toward
a set of random walk processes.4 A common choice in GP
regressions is the Gaussian (or squared exponential) kernel
function:

kϑ (xt , xτ ) = ξ × exp
(
−κ

2
‖xt − xτ‖2

)
,

with ξ denoting a scaling parameter and κ the (inverse) length
scale and thus ϑ = (ξ , κ)′. Larger values of κ lead to a GP
which displays more high frequency variation whereas lower
values imply a slowly varying mean function. The parameter ξ

controls the prior variance of the function f . To see this, note
that if xt = xτ , we obtain var[f (xt)] = ξ .

This specification is quite flexible and fulfills several conve-
nient conditions. For instance, Williams and Rasmussen (2006)
show that the use of the Gaussian kernel implies that f (xt)
is mean square continuous and differentiable. Moreover, this
kernel function represents a positive semidefinite and symmet-
ric covariance function. Furthermore, Mercer’s theorem (Mer-
cer 1909), under this kernel, states that the GP regression
can be written in terms of an infinite number of basis func-
tions. These basis functions are Gaussians with different means
and variances. This suggests a connection to the literature on
Bayesian nonparametrics (Escobar and West 1995; Neal 2000;
Kalli and Griffin 2018; Frühwirth-Schnatter and Malsiner-Walli
2019) that relies on infinite mixtures of Gaussians to estimate
unknown densities.

The GP prior is an infinite dimensional prior over the space
of functions. This implies that the estimation problem is infinite
dimensional as well. Yet, since we sample data in a discrete
manner, the GP prior becomes a multivariate Gaussian prior on
f = (f (x1), . . . , f (xT))′:

f ∼ N (0T , Kϑ (X, X)),

with 0T being a T × 1 vector of zeros, Kϑ (X, X) a T × T kernel
matrix with typical element kϑ (xt , xτ ) and X = (x1, . . . , xT)′.

4This can be achieved by setting μ(yt−1) = ρyt−1, where ρ denotes a
persistence parameter with prior mean E[ρ] = 1. Alternatively, one could
specify the prior on f to imply persistence in yt . This possibility is discussed
in much more detail in Section A.1 of the Online Appendix.

Hence, in terms of full data matrices, the GP regression is

y = f + ε, f ∼ N (0T , Kϑ (X, X)), ε ∼ N (0T , σ 2IT),

where IT denotes a T × T identity matrix.
Assuming for now that σ 2 is known, the posterior of f is

multivariate Gaussian:

f |y ∼ N (f , Vf ),

with variance-covariance matrix Vf and posterior mean vector
f :

Vf = Kϑ (X, X) − Kϑ (X, X)
(
Kϑ (X, X) + σ 2IT

)−1 Kϑ (X, X),

f = Kϑ (X, X)
(
Kϑ (X, X) + σ 2IT

)−1 y.

The mean function f can be interpreted as a weighted average of
the values of y:

f =
T∑

t=1
αtKϑ (X, xt),

where α = (α1, . . . , αT)′ = (Kϑ (X, X) + σ 2IT)−1y. This
(finite dimensional) representation shows how one moves from
an infinite dimensional problem to a finite dimensional one.

The expression for the variance-covariance matrix Vf also
has an intuitive interpretation. The first term is the prior vari-
ance (i.e., the kernel matrix). The second term measures how
much of the variance is expressed through the covariates in X
and thus the posterior covariance indicates how much the model
learns from X.

The predictive distribution of f (xT+h) can be easily derived
by exploiting basic properties of the multivariate Gaussian:

f (xT+h)|y ∼ N (f T+h, VT+h), whereby (1)

VT+h = kϑ (xT+h, xT+h) − Kϑ (xT+h, X)
(
Kϑ (X, X) + σ 2IT

)−1

Kϑ (X, xT+h),

f T+h = Kϑ (xT+h, X)
(
Kϑ (X, X) + σ 2IT

)−1 y.

Similar to the posterior mean f , the predictive mean f T+h is a
weighted average of the values of the endogenous variables y
with the weights depending on the relationship between X and a
realization of the vector of covariates xT+h related to the h-step-
ahead horizon. The predictive variance VT+h, again, depends on
a term that is purely driven by the prior evaluated at xT+h minus
a term that measures the informational content in the covariates.

Before discussing how to set the kernel, it is worth noting that
what we have discussed above is often labeled the function-space
view of the GP. This is because the prior is elicited directly on f .
Another way of analyzing GPs is based on the weight-space view.
Under the weight-space view one can rewrite the GP regression
as a standard regression model as follows:

y = Wϑη + ε, η ∼ N (0T , IT),

with Kϑ (X, X) = Wϑ W ′
ϑ and η is a Gaussian shock vector

with zero mean and unit variance. This is a standard regression
model with T regressors, a coefficient vector η and a Gaussian
prior on η. Standard textbook formulas for the Bayesian linear
regression model (see, e.g., Koop 2003, chap. 4) can be used
to carry out posterior inference. This also shows that if we set
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Figure 1. Effect of different values of κ on the prior of f and the posterior f|y: GDP growth and macroeconomic uncertainty.
NOTE: We showcase the GP regression with U.S. GDP growth data using the first lag of macroeconomic uncertainty as the only regressor. The top panels report, for different
values of κ , the 5th and 95th prior percentiles (with the area in between shaded in light red), three draws from the prior (dashed red lines), and the actual values of GDP
growth (black dots). The bottom panels report the 90% posterior credible sets (shaded in light red), the posterior medians (solid red lines), and actual GDP growth (black
dots).

Kϑ (X, X) = XVϑX′, we obtain a linear regression model that
features a Gaussian prior with zero mean and a typical prior
variance-covariance matrix Vϑ .

2.2. Choosing a Kernel and the Role of the
Hyperparameters

In the previous section the quantities for the posterior of f and
the predictive density for future values of f (xT+h) suggest that
the kernel and its hyperparameters play an important role. In
this Section, we discuss this issue in more detail.

One of the key advantages of GPs is that by constructing suit-
able kernels, one can determine the space of possible functions.
This gives rise to substantial flexibility and allows for captur-
ing a large range of competing models within a single econo-
metric model. For instance, Williams and Rasmussen (2006,
chap. 6) discuss how kernels can be constructed to mimic the
behavior of neural networks, regression splines, polynomial and
linear regressions. Tree-based techniques such as Bayesian addi-
tive regression trees (BART, Chipman, George, and McCulloch
2010) can be cast in this framework by exploiting the ANOVA-
representation of the model and then the weight-space view
of the GP. In principle, and we will build on this feature later,
summing over the corresponding kernels gives rise to another
kernel and suitable weights could be constructed to select, in a
data-driven way, which model summarizes the data best.

As stated in the previous section, our focus will be on the
Gaussian kernel due to its excellent empirical properties and
analytical tractability. The two hyperparameters κ and ξ control
the curvature and the marginal variance of the function, respec-
tively. We illustrate the effect of κ on the prior and posterior
of f in Figure 1 by means of a simple univariate example. We

model U.S. GDP growth as a function of the first lag of a
macroeconomic uncertainty measure for the same sub-sample.5
The figure shows (for both the prior and posterior) the value
of the function f (xt) on the y-axis and xt on the x-axis. The
top (bottom) panel depicts the 5th and 95th prior (posterior)
percentiles (with the area, the 90% credible set, in between
shaded in light red) as well as three random draws from the prior
(dashed red lines, only in the top panel). The solid red line in the
bottom panel is the posterior median.

To see how a GP regression captures a possibly nonlinear
relationship between yt and xt , Figure 1 shows the functional
relationship between output growth and lagged macroeconomic
uncertainty. If κ = 0.01, the regression relationship is almost
linear and suggests that high levels of (lagged) macroeconomic
uncertainty are accompanied by negative output growth rates.
When we set κ = 0.1 we observe much more curvature (both in
the prior and the posterior) in the relationship, indicating that if
uncertainty is between 0 and around 1.7, GDP growth is between
2.3% and 2.5%. However, once a certain threshold in the first
lag of uncertainty is reached, the relationship becomes strongly
negative until it becomes essentially flat for very high levels of
uncertainty. A similar finding, but slightly more pronounced,
arises if we set κ = 4. In this case GDP growth does not change
much as long as lagged uncertainty is between 0 and 1.7 and then
the relationship becomes, again, strongly negative.

5Throughout the article, we use the macroeconomic uncertainty measure
of Jurado, Ludvigson, and Ng (2015) provided (and regularly updated) on
the web page of Sydney C. Ludvigson (available online via https://www.
sydneyludvigson.com/macro-and-financial-uncertainty-indexes). Detailed
information on this index and the econometric techniques used to obtain
this measure can be found in Jurado, Ludvigson, and Ng (2015).

https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
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As is clear from this stylized example, the role of the kernel
and its hyperparameters crucially impacts the posterior esti-
mates of the function f . Setting κ too small leads to a model
which might miss important (higher frequency) information
whereas a κ set too large translates into an overfitting model
which might yield a very strong in-sample fit but poor ouf-
of-sample predictions. Setting κ is thus of crucial importance
and in all our empirical work we will infer it through Bayesian
updating. More information is provided in Section 3.3. After
having provided the necessary foundations on Gaussian process
regression, we will now focus on developing a model that is
suitable for macroeconomic analysis.

3. Large-Dimensional Gaussian Process VARs

3.1. The Gaussian Process VAR

In the following discussion, let yt = (y1t , . . . , yMt)′ denote
an M × 1 vector of macroeconomic and financial variables.6
Moreover, xt = (x′

1t , . . . , x′
Mt)

′ denotes an Mp × 1 vector
with xjt = (yjt−1, . . . , yjt−p)′ storing the “own” lags of the jth
endogenous variable and zt = (z′

1t , . . . , z′
Mt)

′ an (M −1)Mp×1
vector of “other” lags. Hence, zjt = (y′−jt−1, . . . , y′−jt−p)

′, where
y−jt denotes the vector yt with the jth element excluded.

We discriminate between own and other lags of yt because we
assume that lags of other endogenous variables impact a given
endogenous variable differently from its own lags. As opposed
to the literature on Bayesian VARs (see Bańbura, Giannone,
and Reichlin 2010; Koop 2013; Huber and Feldkircher 2019;
Chan 2021) that shrink coefficients related to own and other lags
differently, we introduce more flexibility by allowing for different
properties of the functions relating own and other lags to the
respective outcomes.

This is achieved through two latent processes: one driven by
xt and one by zt . The structural form of the resulting GP-VAR is
then given by

yt = F(xt) + G(zt) + Qyt + εt , εt ∼ N (0M , Ht), (2)

with F(xt) = (f1(x1t), . . . , fM(xMt))′ and G(zt) =
(g1(z1t), . . . , gM(zMt))′ and fj and gj being equation-specific
functions. The function fj controls how yjt depends on its own
lags while gj encodes the relationship between yjt and the lags
of the other endogenous variables. The functions fj and gj, and
hence F and G, differ because we construct different kernels
with distinct hyperparameters.7 This specification allows us to
capture situations where the relationship between yjt and its lags
might be smooth but elements in zjt could, for example, trigger
a more abrupt effect on the mean of yjt . Or cases where there
might be a linear effect between the response and its own lags
but nonlinear effects induced through other lags.

The matrix Q is an M ×M lower triangular matrix with zeros
along its main diagonal. This matrix defines the contemporane-
ous relations across the elements in yt . Finally, εt is an M × 1

6We assume that the elements in yt are demeaned. In our empirical applica-
tion we include a constant term with an uninformative prior.

7It is worth stressing that one could also think of our decomposition in terms
of a new function with a kernel that is given by the sum of the kernels of the
functions fj and gj . For a discussion on identification and more details, see
Section A.2 of the Online Appendix.

vector of Gaussian shocks with zero mean and an M × M time-
varying variance-covariance matrix Ht = diag(ω1t , . . . , ωMt).
We will assume that hjt = log ωjt evolves according to an
AR(1) process. Allowing for time variation in the shock vari-
ances provides additional flexibility and enables to capture non-
Gaussian features in the shocks (not only, but also since hjt
enters the model nonlinearly).8 In the Online Appendix, we
show that adding SV tends to improve forecasts for U.S. macro
data, whereas for the structural analysis in this article, dropping
SV only has small effects on the estimated impulse response
functions.

In principle, we could also allow for unknown functional rela-
tions between the contemporaneous terms of the preceding j−1
equations and the response of equation j. However, this would
lead to a complicated nonlinear covariance structure. Since we
are interested in carrying out structural identification based
on zero impact restrictions we opt for choosing this simpler
approach which implies multivariate Gaussian reduced form
shocks, but with a time-varying covariance matrix. Given that
the literature on GPs typically assumes the shocks to be Gaus-
sian and homoscedastic, this is already a substantial increase in
flexibility.9

The model in (2) assumes that the shocks in εt are, condi-
tional on Qyt , orthogonal and hence estimation can be carried
out equation-by-equation. We will exploit this representation for
simplicity and computational tractability. The jth equation, in
terms of full-data matrices, is given by

Y j = f j + g j +
j−1∑
k=1

qjkYk + εj, εj ∼ N
(
0T , �j

)
,

with Y j = (yj1, . . . , yjT)′, f j = (fj(xj1), . . . , fj(xjT))′, g j =
(gj(zj1), . . . , gj(zjT))′, qjk denoting the (j, k)th element of Q, εj =
(εj1, . . . , εjT)′ and �j = diag(ωj1, . . . , ωjT). We will use this
form to carry out inference about the unknown functions fj and
gj as well as the remaining parameters and latent states of the
model. 10

3.2. Conjugate Gaussian Process Priors

In this section, our focus will be on the priors on fj and gj. The
priors on the remaining, linear quantities are standard and thus
not discussed in depth. We use a Horseshoe prior (Carvalho,
Polson, and Scott 2010) on the free elements in Q, while for
the AR(1) process of the log-volatilities hjt a Beta prior on the
(transformed) persistence parameter (ρhj + 1)/2 ∼ B(25, 5),
and an inverse Gamma prior on the state innovation variances
σ 2

hj. This prior is specified to have mean 0.1 and variance 0.01.
For equation-specific functions fj and gj, we specify two GPs

with one conditional on Xj = (xj1, . . . , xjT)′ and one conditional

8One could also introduce additional scaling factors that arise from inverse
Gamma distributions to obtain a model with t-distributed shocks.

9A rare exception is Jylänki, Vanhatalo, and Vehtari (2011), who propose a
GP regression with heavy tailed errors and mainly focus on fast and robust
approximate inference of a posterior that is analytically intractable due to a
t-distributed likelihood.

10Notice that our estimation strategy is not invariant with respect to reorder-
ing the elements in yt , a common problem if this orthogonalization strategy
is used. In Section E.3 of the Online Appendix, we show that different
orderings have only a small impact on the estimated impulse responses.
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on Zj = (zj1, . . . , zjT)′:

f j ∼ N
(

0T ,
√

�jKϑ j1(Xj, Xj)
√

�j
)

,

g j ∼ N
(

0T ,
√

�jKϑ j2(Zj, Zj)
√

�j
)

.
(3)

We let
√

�j = diag(√ωj1, . . . , √ωjT) while Kϑ j1(Xj, Xj) and
Kϑ j2(Zj, Zj) denote two suitable kernels with typical elements
given by

kϑ j1(xjt , xjτ ) = ξj1 × exp
(
−κj1

2
(xjt − xjτ )

′D−1
Xj

(xjt − xjτ )
)

,

ϑ j1 = (ξj1, κj1)
′,

kϑ j2(zjt , zjτ ) = ξj2 × exp
(
−κj2

2
(zjt − zjτ )

′D−1
Zj

(zjt − zjτ )
)

,

ϑ j2 = (ξj2, κj2)
′.

For j = 1, . . . , M, ϑ j1 and ϑ j2 are equation and kernel-specific
hyperparameters and the matrices DXj , DZj are diagonal matri-
ces with typical ith element σ̂ 2

Xji, σ̂
2
Zji. These are set equal to the

empirical variances of the ith column of Xj and Zj, respectively.
Inclusion of the diagonal scaling matrices DXj and DZj serves to
control for differences in the scaling of the explanatory variables.
Notice that since the hyperparameters are allowed to differ, we
essentially treat own and other lags asymmetrically through
different functional approximations fj and gj.

The kernel is scaled with the error variances in �j. A typical
diagonal element of the corresponding rescaled kernel is given
by ωjt × kϑ j1(xjt , xjt) = ωjtξj1 and ωjt × kϑ j2(zjt , zjt) =
ωjtξj2. Typical off-diagonal elements are given by √

ωjt
√

ωjτ ×
kϑ j1(xjt , xjτ ) and √

ωjt
√

ωjτ × kϑ j2(zjt , zjτ ). The interaction
between the kernel and the error variances gives rise to conve-
nient statistical and computational properties.

First, note that if ωjt is large, the corresponding prior on the
unknown functions is more spread out. In macroeconomic data,
ωjt is typically elevated in crisis periods when xjt and zjt are far
away from their previous values. Since the diagonal elements
of the kernels are effectively determined by ξ j = (ξj1, ξj2)′ the
presence of ωjt allows for larger values in the marginal prior
variance and thus makes large shifts in the unknown func-
tions more likely. Second, the interaction between ωjt and ωjt−1
implies that the covariances are scaled down if ωjt � ωjt−1,
suggesting that the informational content decreases if increases
in uncertainty are substantial (i.e., �ωjt is large). If ωjt ≈ ωjτ
and both are large, the corresponding covariance will be scaled
upwards. This implies that our model learns from previous crisis
episodes as well. Third, as we will show in Section 3.4, interacting
the kernel with the error variances leads to a conjugate Gaussian
process structure which implies that we can factor out the error
volatilities and do not need to update several quantities during
MCMC sampling. This speeds up computation enormously and
allows for estimating large models.

3.3. Selecting the Hyperparameters Associated with the
Kernel

So far, we always conditioned on the hyperparameters that deter-
mine the shape of the Gaussian kernel. A simple way of speci-
fying ϑ j1 and ϑ j2 is the median heuristic approach stipulated in

Chaudhuri et al. (2017). This choice works well in a wide range of
applications featuring many covariates (see, e.g., Crawford et al.
2019). The median heuristic fixes ξj1 = ξj2 = 1 and defines the
inverse of the bandwidth parameter as

κj1 = κ̄j1 = mediantτ

(
1

‖xjt − xjτ‖
)

,

κj2 = κ̄j2 = mediantτ

(
1

‖zjt − zjτ‖
)

,

for j = 1, . . . , M. This simple approach has the convenient prop-
erty that it automatically selects a bandwidth which is consistent
with the time series behavior of the elements in yt . To illustrate
this, suppose that yjt is a highly persistent process (e.g., inflation
or short-term interest rates). In this case, for τ = t − 1, the
Euclidean distance ‖xjt − xjτ‖ will be quite small and, hence,
the mean function f j smoothly adjusts. If yjt is less persistent
and displays large fluctuations (e.g., stock market or exchange
rate returns), the Euclidean distance ‖xjt − xjτ‖ will be large
and, thus, f j allows for capturing this behavior. The dispersion
in zjt might have important implications for yjt if the aim is to
model a trend in yjt that depends on other covariates. This could
arise in a situation where the prior on f j is set very tight (i.e.,
the posterior of f j will be centered on zero) and information
not coming from xjt would then determine the behavior of yjt .
This discussion highlights how the median heuristic allows for
flexibly discriminating between signal and noise and thus acts
as a nonlinear filter which purges the time series from high
frequency variation, if necessary.

Given that we work with potentially large panels of time
series, it is questionable that the median heuristic works equally
well for all elements in yt . As a solution, we propose to use the
median heuristic to set up a discrete grid for both ξj1 (ξj2) and
κj1 (κj2). For each element in this grid we specify a hyperprior.
We use Gamma priors on all elements. For j = 1, . . . , M, that is,

ξj1 ∼ G
(

1
2

,
1

2cξ1

)
and ξj2 ∼ G

(
1
2

,
1

2cξ2

)
,

for the linear shrinkage hyperparameters and

κj1 ∼ G
(

1
2

,
1

2cκ1

)
and κj2 ∼ G

(
1
2

,
1

2cκ2

)
,

for the bandwidth parameters. Here, cξ1, cξ2, cκ1 and cκ2 are
scalars defining the tightness of the hyperprior. In the empirical
application, we set cξ1 = cξ2 = cξ and cκ1 = cκ2 = cκ . These
parameters strongly influence the shape of the conditional mean
and are crucial modeling choices: we set them through cross-
validation. In our empirical application, we find that small values
of cκ work well, yielding an informative prior that forces κj1 and
κj2 toward zero.

Based on this set of priors we can derive the conditional
posterior distribution. Since ξj1 (ξj2) and κj1 (κj2) are placed
on a grid, we can pre-compute several quantities related to the
kernel (such as inverses and Cholesky factors) while at the same
time infer them from the data with sufficient accuracy, which
is crucial for precise inference. We center these grids around
the median heuristic and additionally take into account the
considerations of the informative Gamma priors:

κjk ∈ [0.1κ̄jk, 2κ̄jk] and ξjk ∈ [0.04, 4],
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for j = 1, . . . , M and k = 1, 2.

Here, the intervals indicate the minimum (maximum) value
supported for each hyperparameter. Within this two dimen-
sional range, we define a discrete grid of around 1,000 combi-
nations with equally sized increments along each dimension.11

The corresponding posterior is discrete and we can use inverse
transform sampling to carry out posterior inference. Further
details are provided in Section 3.4.

3.4. Posterior Computation

Posterior inference for the GP-VAR is carried out using a novel
yet conceptually simple MCMC algorithm which cycles between
several steps. In this section we will focus on how to sample
from the posterior of f j, p(f j|•), with • denoting conditioning
on everything else, and ϑ j1. Sampling from p(g j|•) and p(ϑ j2|•)
works analogously with some adjustments. These relate to the
fact that we introduce a linear restriction that (ι′ι)−1ι′g j = 0,
with ι denoting a T×1 vector of ones. The corresponding condi-
tional posterior distribution is a hyperplane truncated Gaussian
where efficient sampling algorithms are available (see Cong,
Chen, and Zhou 2017). Further details can be found in Section
A.3 of the Online Appendix.

It is worth stressing that we sample f j and g j separately. This
increases the computational burden slightly but allows us to
consider both latent processes separately from each other. The
posterior of f j is Gaussian for all j:

f j|• ∼ N (f j, Vf j), with posterior moments given by

Vf j =
√

�j

(
Kϑ j1(Xj, Xj) − Kϑ j1(Xj, Xj)

(
Kϑ j1(Xj, Xj) + IT

)−1

Kϑ j1(Xj, Xj)
) √

�j,

f j =
√

�jKϑ j1(Xj, Xj)
(

Kϑ j1(Xj, Xj) + IT
)−1

√
�j

−1
⎛
⎝Y j − g j −

j−1∑
k=1

qjkYk

⎞
⎠ ,

where for j = 1, the term
∑j−1

k=1 qjkYk is excluded.
In principle, computing the inverse and the Cholesky factor

of V−1
f j

constitutes the main bottleneck when sampling from
p(f j|•). This is especially so if T is large. But, in common
macroeconomic applications which use quarterly data, T is
moderate and thus computation is feasible. In our case, even if
interest centers on using monthly data or even higher frequen-
cies, we can exploit the convenient fact that, conditional on the
hyperparameters ξj1 and κj1,

Bf j B
′
f j

=
(

Kϑ j1(Xj, Xj) − Kϑ j1(Xj, Xj)
(

Kϑ j1(Xj, Xj) + IT
)−1

Kϑ j1(Xj, Xj)
)

11Implicitly, this two dimensional grid results in a prior view in which any
hyperparameter combination not included in the grid has zero support.

as well as its Cholesky factor Bf j can be pre-computed. In addi-
tion, notice that

Vf j = Cf j C
′
f j

=
(√

�jBf j

) (√
�jBf j

)′
.

These practical properties (due to the conjugate structure) sub-
stantially speed up computation in terms of sampling from
p(f j|•).

These results are conditional on the hyperparameters. As out-
lined in the previous section, we will estimate them by defining
a discrete two dimensional grid of 1,000 combinations. For each
hyperparameter combination on this grid, we compute the cor-
responding kernel Kϑ j1(Xj, Xj) as well as all relevant quantities
(i.e., Cf j ). Based on these values we jointly evaluate the con-
ditional posterior by applying Bayes’ theorem. The conditional
likelihood is proportional to

p(f j|ϑ j1, �j) ∝ det
(√

�jKϑ j1(Xj, Xj)
√

�j
)− 1

2

× exp
{
−1

2

(
f ′

j

(√
�jKϑ j1(Xj, Xj)

√
�j

)−1
f j

)}
.

Note that the shape of Kϑ j1(Xj, Xj) depends on the hyperpa-
rameters ϑ j1 = (ξj1, κj1)′, which we want to update. For each
pair of values ϑ

(s)
j1 on our two dimensional grid (with s denot-

ing a specific combination), we compute the corresponding

kernel K
ϑ j1=ϑ

(s)
j1

(Xj, Xj) as well as det
(

K
ϑ j1=ϑ

(s)
j1

(Xj, Xj)

)
and

(
K

ϑ j1=ϑ
(s)
j1

(Xj, Xj)

)−1
prior to MCMC sampling. Hence, within

our sampler evaluating the likelihood is straightforward and
computationally efficient. All that remains is to multiply the like-
lihood with the prior. The corresponding posterior ordinates for
each ϑ

(s)
j1 are used to compute probabilities to perform inverse

transform sampling to sample from p(ϑ j1|•).
Conditional on f j and g j, the remaining parameters (i.e., the

free elements in Q, the log-volatilities and the associated coef-
ficients in the corresponding state equations) can be sampled
through (mostly) standard steps. One modification relates to
how we sample the volatilities in �j. The main difference stems
from the fact that the volatilities in �j also show up in the
prior on f j and g j. To circumvent this issue we integrate out
the latent processes f j and g j. This calls for a minor adjustment
of the original sampler by integrating out the latent processes
f j and g j first and then sampling the log-volatilities using an
independent Metropolis Hastings update similar to the one
proposed in Chan (2017). We provide additional details and the
full posterior simulator in Section A of the Online Appendix. In
our empirical work, we focus on generalized impulse response
functions (GIRFs) and we show in Sections A.6 and A.7 of the
Online Appendix how we compute them.

We now illustrate that our approach is computationally effi-
cient and scalable to large datasets. Figure 2 shows the time
required to generate 1,000 draws from the joint posterior for
a particular equation across different values of K and for T =
200.12 We show the computation times for our GP-VAR and
a linear BVAR with SV. To ensure comparability between both

12In a VAR, typically K = Mp for each individual equation.
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Figure 2. Computation time for 1,000 draws from the joint posterior distribution.
NOTE: Computation times for 1,000 draws from the joint posterior distribution of
a standard BVAR (black) and the GP-VAR (orange), across a varying number of
regressors, K . In a VAR, typically K = Mp for each individual equation, where
M represents the number of included endogenous variables, and p denotes the
number of lags. Since we can parallelize this system of multiple equations for both
approaches, the actual times for generating 1,000 draws from the joint posterior of
the full system is approximately M times the run times reported in this figure for both
the GP-VAR and the BVAR. Computation times are based on a desktop machine with
an AMD Ryzen 7 5800X 8-Core processor.

models, we estimate the linear BVAR model on an equation-
by-equation basis as well. Since we can parallelize this system
of multiple equations for both approaches, the actual times for
generating 1,000 draws from the joint posterior of the full system
are approximately M times the run times reported in the figure
for both the GP-VAR and the BVAR.13

The figure strikingly shows that the computation time of the
GP-VAR does not depend on K. By contrast, the time necessary
to generate a draw from the joint posterior of the VAR rises
rapidly in K. Hence, our approach can be used if K is large. To
provide a rough gauge on gross estimation times (i.e., compu-
tation times that include pre-computation of certain quantities
and without using parallel computing): it takes around 30 min
to estimate a GP-VAR with eight endogenous variables and five
lags on a standard desktop computer (for 10,000 MCMC draws).
Estimating larger models (such as the 64 variable GP-VAR) takes
around four hours.

4. The Macroeconomic Effects of Uncertainty Shocks

4.1. Monte Carlo Exercise

Before we deal with real data, we examine whether our GP-
VAR recovers the responses of the economy to an uncertainty
shock within a controlled environment. To this end, we use
the dynamic stochastic general equilibrium (DSGE) model pro-
posed in Basu and Bundick (2017) to simulate time series of
length T = 120 and use these to back out the responses of
the model economy to unexpected shocks in uncertainty. The
Basu and Bundick (2017) model is a dynamic DSGE model
that features optimizing households and companies and assumes
that the central bank sets interest rates according to a Tay-
lor rule. The observed variables are output (GDP), consump-
tion (CONS), investment (INV), hours worked (HWORK),
inflation, M2 money stock, and the implied stock market
volatility (VXO).

13Since we need to augment the jth equation with the contemporaneous
values of the preceding j−1 equations, this statement is only approximately
valid.

We simulate 50 realizations from the theoretical DSGE data-
generating process (DGP). For each realization, we estimate our
nonparametric GP-VAR model and compare its responses not
only to the true underlying DSGE responses but also with those
obtained from a classical linear BVAR. The uncertainty shock is
identified by ordering the stock market volatility (our measure
of uncertainty) first, implying an immediate reaction of all real
economic quantities in the system following an uncertainty
shock. This identification scheme is fully supported by the DSGE
model (see sec. 7.5 in Basu and Bundick 2017, for a discussion).

We start by illustrating that our model produces dynamic
reactions consistent with the DSGE-based IRFs. In Figure 3
we plot the theoretical IRFs (in red), the GP-VAR GIRFs (in
orange) and the BVAR IRFs (in gray) for four variables (GDP,
CONS, INV, HWORK). The solid lines are averages of posterior
medians of the (G)IRFs, while the bounds denote the 16th and
84th percentiles of the posterior medians over the 50 replications
from the DGP. In terms of qualitative statements, the GP-VAR
produces GIRFs that are consistent with the theoretical predic-
tions from the structural model. In response to an uncertainty
shock, real activity (and its components) declines. However,
both the GP-VAR and the BVAR produce impulse responses
which are less persistent than the ones of the DSGE model.
Notice that the GP-VAR produces immediate reactions which
are much closer to the model-implied responses for all variables
except for investments.

To obtain a better quantitative feeling on whether our pro-
posed model improves upon the linear BVAR, we report root
mean squared errors (RMSEs) between the posterior median
of the IRFs of a given model and the DSGE-based IRFs for
each horizon in Figure 4. These RMSE curves are, again, aver-
ages over the 50 simulations from the theoretical Basu and
Bundick (2017) model. From this figure we learn that the GP-
VAR produces lower RMSEs for almost all forecast horizons for
output and investments. For consumption our model sharply
improves upon the linear VAR on impact and for horizons
greater than seven quarters but is outperformed in between.
Finally, for hours worked we find that in terms of RMSEs, both
models produce similar IRFs that only differ in their short-run
reactions. After showing that our model works reasonably well
within a controlled environment, we now turn to the real data
application.

4.2. Data Overview and Model Specification

We use the quarterly version of the dataset in McCracken and
Ng (2016) for the period 1960Q1 to 2019Q4. We exclude the
years of the Covid-19 pandemic to make the comparison with
a linear VAR similar to that used in Jurado, Ludvigson, and Ng
(2015) (JLN) sensible. We consider four different specifications
that differ in the number of endogenous variables used. These
specifications are:

GP-VAR-8: This dataset is patterned after the original JLN
dataset. It includes the JLN macroeconomic uncertainty index
(labeled asUNC), real GDP (RGDP), civilian employment (EMP),
average weekly working hours in manufacturing (AWH), con-
sumer price index (CPI), average hourly earnings in manufac-
turing (AHE), Fed funds rate (FFR), and the S&P 500 (SP500).
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Figure 3. Summary of posterior median responses across 50 simulations from the DSGE model proposed in Basu and Bundick (2017).
NOTE: Average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive one standard deviation shock in implied stock market
volatility. The responses estimated with our nonparameteric GP-VAR model are shown in orange, while responses estimated with a BVAR model are shown in gray. The
theoretical responses implied by the DSGE model proposed in Basu and Bundick (2017) are shown in red. Solid lines are averages of posterior medians of the responses,
while shaded areas denote the range between the 16th and 84th percentiles of the posterior medians over the 50 replications from the DGP.

Figure 4. Root mean squared errors (RMSEs) across 50 simulations relative to the theoretical Basu and Bundick (2017) responses over the impulse response horizons.
NOTE: The figure depicts the root mean squared errors (RMSEs) across 50 simulations, benchmarking the posterior median responses of the GP-VAR and the BVAR against
the theoretical responses implied by the DSGE model proposed in Basu and Bundick (2017). RMSEs of our nonparametric GP-VAR model are shown in orange, while RMSEs
of the BVAR model are shown in black.

GP-VAR-16: In addition to the variables in the VAR with
M = 8 endogenous variables, we also include the components
of GDP (such as real personal consumption and real private
fixed investment), additional labor market variables (such as
unemployment, initial claims, average weekly working hours
and average hourly earnings across all sectors), housing starts,
as well as the real M2 money stock.

GP-VAR-32: On top of the variables of the VAR with M = 16
variables, we include important financial variables, further data
on housing and data on loans.

GP-VAR-64: The largest model we consider features M =
64 endogenous variables. The set of endogenous variables is
obtained by taking the variables with M = 32 and including
additional financial variables and data on manufacturing.

All variables are transformed to be approximately stationary
and we include five lags of the endogenous variables. Using five
lags is a standard choice and motivated by the wish to capture
dynamics over the full last year (see, e.g., Carriero, Clark, and
Marcellino 2015). The precise variables included (and trans-
formations applied to each variable) are shown in Table B.1 in
the Online Appendix. We consider these different model sizes
for several reasons. First, we would like to assess how adding
additional information impacts the forecasting performance and
the responses of key variables to an uncertainty shock. Second,
we are interested in the relationship between nonlinearities and
the size of the model.

Before we proceed with our actual empirical analysis, it is
worth stressing that Section E of the Online Appendix includes
additional empirical work. Most notably, this includes a forecast-
ing exercise based on the dataset described in this section that
serves to illustrate that our model generates excellent forecasts.

4.3. Comparison with Standard BVAR Analysis

We benchmark the IRFs of our GP-VAR-8 to the ones of a BVAR
with SV that is closely related to the original JLN specification.14

Our focus will be on the variables discussed in JLN: year-
on-year growth rates of output (measured through real GDP)
and employment. These two variables are informative regarding
investment and labor adjustment non-convex costs which are
central in micro-founded models such as Bloom (2009) and
Bloom, et al. (2018). We also show the responses of the uncer-
tainty indicator and the quarter-on-quarter returns of the S&P
500 and include the responses of the other variables in Section
E of the Online Appendix.

In Figure 5 we report the (average over time in the case
of the GP-VAR) posterior quantiles (16th, 50th, 84th) of the
responses to a macroeconomic uncertainty shock in the JLN
model (in gray) and in the corresponding GP-VAR (in orange)

14While they use a classical homoscedastic VAR estimated on monthly data,
we work with a quarterly BVAR with SV.
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Figure 5. Impulse responses of focus variables in the GP-VAR-8 relative to a small-scale BVAR.
NOTE: Average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive one standard deviation shock in macroeconomic
uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68% posterior credible sets. GP-VAR-8 refers to the smallest variant of our
nonparametric model and BVAR-8 refers to a small-scale BVAR with SV, which is closely related to the specification used in Jurado, Ludvigson, and Ng (2015).

Figure 6. Impulse responses of focus variables across different information sets.
NOTE: Average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive one standard deviation shock in macroeconomic
uncertainty across different information sets. Solid lines denote the posterior medians, while shaded areas correspond to the 68% posterior credible sets.

with eight endogenous variables and uncertainty ordered sec-
ond after stock market returns.15 Uncertainty responses to its
own shock differ slightly between the GP-VAR and the linear
model. These differences relate to responses within the first five
quarters after the shock hits the system. The BVAR yields uncer-
tainty reactions that peak after one quarter, declining steadily
afterwards. Instead, the GP-VAR generates endogenous uncer-
tainty reactions which peak after five quarters, declining sharply
afterwards. After around eight quarters, both IRFs (almost)
coincide.

This uncertainty reaction has direct implications on how the
other variables in the model react. Real GDP growth reacts in an
hump-shaped manner under both models. However, driven by
the somewhat later peak in uncertainty, the GP-VAR produces
much stronger output growth reactions that peak slightly later
(after around five quarters). When we focus on employment
growth the IRFs differ less. In principle, both models suggest
a peak decline of around 0.8 percentage points, with the GP-
VAR generating a somewhat slower response, reaching its trough
after about six to seven quarters. But in principle, responses
between the linear and nonparametric model tell a similar
story. Finally, financial market reactions measured through the
S&P500 suggest a much stronger decline in stock prices under

15This identification scheme is consistent with Jurado, Ludvigson, and Ng
(2015) and Basu and Bundick (2017), and implies an immediate reaction of
all real quantities but no immediate effect on stock market returns.

the GP-VAR. Interestingly, the shape of the IRFs suggests that the
linear model generates the strongest reaction after around two
quarters. In the GP-VAR, we find that stock markets react faster
and stronger to uncertainty shocks, with substantial reactions
within the first year after the shock hit the system.

To conclude, in Figure 6 we report the GIRFs to the uncer-
tainty shock for the same four variables displayed in Figure 5
but obtained from GP-VARs of different dimensions (with 8,
16, 32, and 64 variables). Differences across model sizes are
small (or nonexistent) for most variables. Small differences arise
for employment growth, with the magnitude of the responses
increasing with the model size. Stock market reactions also
differ slightly across datasets, with no clear-cut pattern. Since the
GIRFs are very similar across model size and given its excellent
forecasting properties, we will focus on asymmetries generated
by the GP-VAR-8 model in the following sections. Results for the
larger models are provided in the Online Appendix.

4.4. Asymmetries in the Transmission of Uncertainty
Shocks

The nonlinear and nonparametric nature of our models allows
for asymmetries in the impulse response functions. This implies
that shocks propagate nonlinearly through the model, giving rise
to differences in the GIRFs both over time but also for different
shock magnitudes or signs.
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Figure 7. Shock sign asymmetries in responses of focus variables for the GP-VAR-8.
NOTE: Average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a negative (positive) one standard deviation shock in macroeco-
nomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68% posterior credible sets. Here, negative ×(−1) denotes a negative
one standard deviation shock with the respective responses being mirrored across the x-axis.

Figure 8. Shock size asymmetries in responses of focus variables for the GP-VAR-8.
NOTE: Average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive two (one) standard deviation shock in macroeconomic
uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68% posterior credible sets. Here, 1 sd refers to a one standard deviation shock,
2 sd indicates a two standard deviation shock, and 2 sd ×(1/2) denotes a two standard deviation shock with the respective responses divided by two.

4.4.1. Asymmetries with Respect to the Sign of the Shock
We first consider whether positive and negative uncertainty
shocks trigger different responses of the economy. In Figure 7
we report the responses to negative and positive uncertainty
shocks from the GP-VAR-8, averaged over time. The figure thus
shows GIRFs to a positive (in orange), negative (in blue) and a
negative shock multiplied by −1 (in gray, to ease comparison).
From the figure we observe some differences. These differences
mostly relate to peak reactions as well as short-run (i.e., within
two years) responses. In general, we find that positive shocks
(higher uncertainty) trigger a stronger reaction of uncertainty,
which in turn translates into more pronounced reactions of real
activity and stock market quantities.

More specifically, considering the endogenous reaction of
the uncertainty indicator shows that responses to a positive
uncertainty shock peak after around a year and quickly die out
afterwards. However, if uncertainty unexpectedly declines, the
peak happens on impact and is much smaller as opposed to an
adverse uncertainty shock.

Turning to real GDP and employment growth, we find that
positive shocks trigger stronger reactions for both variables.
Interestingly, the timing of the peak responses is similar for
negative and positive shocks but reactions appear much more
pronounced for the latter. Stock market reactions also dif-
fer markedly across positive and negative shocks. For positive

shocks we, again, find that the peak effect happens after one
year and that it is more pronounced as compared to the negative
shock. Overall, the picture that emerges from the GP-VAR is
that higher unexpected uncertainty has stronger effects on the
economy than lower uncertainty, a feature that is a priori ruled
out in linear VARs.

4.4.2. Asymmetries with Respect to the Size of the Shock
Our GP-VAR also permits to analyze how shocks of different
sizes impact the economy. While in a standard VAR shocks
enter linearly (and thus responses to shocks of different sizes
are exactly proportional to each other), our GP-VAR is more
flexible and allows for investigating whether shocks of different
magnitudes trigger different dynamics in the GIRFs.

In Figure 8 we consider two shock sizes: one and two standard
deviation. To permit straightforward comparison of the shapes
of the responses to differently sized shocks, we also add impulses
to a two standard deviation shock which are then rescaled to
match the impact of the one standard deviation shock (the gray
shaded area in the figures).

This figure gives rise to at least two observations. First, when
we compare the shape of the responses to a one standard devi-
ation to the ones of a two standard deviation shock we find
differences in the timing (and more generally in the shape) of the
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Figure 9. Impulse responses of focus variables in the GP-VAR-8 across different sub-sample periods.
NOTE: Period-specific average generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive (negative) one standard deviation shock
in macroeconomic uncertainty. Solid lines denote the posterior medians, while shaded areas correspond to the 68% posterior credible sets.

IRFs. A stronger shock triggers a faster peak reaction of GDP and
employment growth. Stock market reactions display a somewhat
different shape. After a sharp immediate reaction (for both shock
sizes) the peak effect happens to be on impact if the size of the
shock is large whereas it turns out to materialize after one year if
the shock size is smaller.

Second, in terms of the magnitudes we find that a two stan-
dard deviation shock triggers peak responses with magnitudes
that are less than twice the magnitudes to a one standard devia-
tion shock. This is particularly visible for employment and out-
put reactions. For stock market responses, the impact reactions
are (almost) proportional to each other.

4.4.3. Asymmetries over Time
After showing that the economy’s reaction depends on the sign
and size of the uncertainty shock, we study whether its effects
also change over time (see sec. 2.5 of Castelnuovo (2023), or
Mumtaz and Theodoridis (2018) for some evidence using TVP-
VARs).

We start by considering impulse responses averaged over cer-
tain sub-periods in Figure 9. The classification into sub-periods
is mostly taken from D’Agostino and Surico (2012), and it is such
that the main events in each sub-period include, respectively,
the great inflation (1970Q1 to 1984Q4), the great moderation
(1985Q1 to 2006Q4), and the post great moderation period
(2007Q1 to 2019Q4). To also evaluate whether asymmetries
between positive and negative shocks have changed over time,
all figures include the IRFs to positive (in orange) and negative
(in blue) shocks.

The main feature emerging from the figure is the different
behavior of the response of uncertainty across sub-samples. In
the final two sub-samples, uncertainty responses increase up to
four quarters after the shock, with peak effects being strongest in
the great moderation period and becoming slightly weaker in the
final sub-sample. Moreover, sign effects of uncertainty responses
increase appreciably in the last two sub-samples.

These differences in the responses of uncertainty trigger dif-
ferences in the IRFs of the other quantities which relate not only
to the magnitudes but also to the shapes of the responses. We
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Figure 10. Period-specific impulse responses of focus variables in the GP-VAR-8 across different sub-sample periods.
NOTE: Generalized impulse responses (GIRFs, outlined in Section A.7 of the Online Appendix) to a positive one standard deviation shock in macroeconomic uncertainty in
the GP-VAR-8 across sub-sample periods. Solid lines denote the yearly averaged posterior medians, with colors ranging from yellow (start of the sample) to red (end of the
sample).

find that GDP growth, employment and the S&P 500 display the
strongest reactions in the great moderation regime, becoming
slightly weaker in the post great moderation period. The weaker
reaction of real activity over time corroborates findings in Mum-
taz and Theodoridis (2018) who also report smaller responses of
real activity to uncertainty shocks. As opposed to their findings,
we observe that stock market reactions do not change much
in magnitude but the shape differs (in accordance with the
different shape in the uncertainty reaction described above).
We, moreover, observe that asymmetries in terms of the sign of
the shocks have decreased over time for GDP and employment
growth. Only for stock market reactions these sign asymmetries
have increased, with benign uncertainty shocks yielding a much
weaker positive reaction of stock markets during the post great
moderation regime.

Finally, to conclude this section we raise the issue that con-
sidering GIRFs averaged over sub-samples possibly still masks
important differences over time within sub-samples. To shed
light on whether IRFs change within regimes, Figure 10 displays

yearly averages of posterior medians of the IRFs over time dur-
ing each of the three periods. Yellow IRFs refer to the beginning
of the respective sub-sample and red ones denote IRFs computed
toward the end of the sub-sample. This figure suggests substan-
tial heterogeneity in responses during the great inflation period.
Especially toward the end of this sample, reactions of GDP
growth and employment point toward a substantial real activ-
ity overshoot. During the great moderation, the intra-period
variation of the IRFs becomes much smaller, yielding patterns
more consistent with the common wisdom in the uncertainty
literature: real activity and stock markets decline in response to
increases in economic uncertainty. In the years from 2007 to
2019, we find that IRFs differ especially in the beginning of the
sample (from 2007 to 2009). For the remaining years, there is
much less variation in responses and they are similar to those
observed in 1985–2006.

Overall, we can conclude that the effects of uncertainty
change both during sub-samples defined by economic consid-
erations and sometimes also within each sub-sample. This kind
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Figure 11. The normalized Dt measure for sign and size asymmetries of the key variables.
NOTE: This figure shows the normalized Dt measures, which represent the maximum absolute difference in responses over the horizon in period t. These measures are
normalized to lie between zero and one. Sign asymmetries compare the differences in responses to positive and (mirrored) responses to negative shocks, while size
asymmetries compare the responses between shocks of different sizes, scaled appropriately to represent a shock of common size. Shaded gray areas correspond to NBER
recessionary periods.

of time variation is a priori ruled out in linear VAR models,
which can therefore lead to biased estimates of the effects of
uncertainty.

4.5. A Deeper Look at Model-Implied Asymmetries

The previous sections focused on whether our model produces
asymmetries with respect to shock size, sign and whether the
transmission of uncertainty has changed over time. The analysis
related to shock size and sign, however, focused on full sample
asymmetries and this might mask temporal heterogeneity. For
instance, it could be that sign asymmetries are more pronounced
in different stages of the business cycle and thus depend on time.
In this section, we focus on how asymmetries evolve over time
and then compute correlations to observed macroeconomic
variables to understand whether they are related.

Figure 11 (and Figure E.16 in the Online Appendix) show the
posterior mean of the asymmetry measures proposed in Olivei
and Tenreyro (2010). These are given by

Dt = max‖δ+
ht + δ−

ht‖1, DCt = ‖
16∑

h=0
(δ+

ht + δ−
ht)‖1.

We let δ+
ht and δ−

ht denote the horizon h response to a positive and
negative shock in time t. Dt measures the maximum absolute
difference in responses to positive and (mirrored) responses to
negative shocks, while DCt is computed as the absolute cumu-
lative sum of differences in these responses over the horizon.
Notice that if the model is linear, δ+

ht = −δ−
ht , implying that

Dt = DCt = 0. Both measures can be easily modified to also
measure size asymmetries by replacing δ+

ht and δ−
ht by impulse

responses to different shock sizes but scaled appropriately so that
they represent a shock of common size. These measures can also
be computed on a variable-by-variable basis measuring only the

asymmetries of a particular variable-specific GIRF. This is what
we do in the figures. Moreover, we normalize them to lie between
zero and one.

Figure 11 suggest that asymmetry measures seem to vary with
the business cycle. In particular, we find that asymmetries in the
endogenous reactions of uncertainty, real GDP and employment
decline during NBER recessions whereas they tend to peak
around business cycle turning points. For fast-moving variables
such as stock market returns we find that substantial declines in
stock markets are accompanied by increasing asymmetries.

During recessions, we typically observe that uncertainty
shocks are positive and large but fade out more quickly for real
variables (and uncertainty itself), resulting in fewer asymmetries
for them. But, particularly for these real variables, we observe
an increased level of asymmetries immediately after recessions
(and expansionary episodes). This reflects that shocks in these
periods are much smaller in absolute terms but, at the same time,
reactions of real economic variables are more persistent, leading
to a substantial increase in asymmetries (see also Figure 8).
Hence, this finding captures the notion of sudden reactions
during recessions and large uncertainty shocks, followed by
quick decays in responses but slower convergence to smaller
certainty shocks when the economy is already in a recovery state.
A notable exception to this behavior are stock market returns.
Financial markets tend to rapidly adjust to small variations in
uncertainty. However, they are typically more sensitive to larger,
unexpected increases in uncertainty. This leads to a higher
degree of asymmetries, in particular during recessions driven by
financial markets (such as the global financial crisis).

To understand whether asymmetry measures are related to
observed macroeconomic variables, we compute correlations for
the posterior mean of the D and DC measures over the full
sample with our focus variables (i.e., the uncertainty index, real
GDP, employment and the S&P 500) and other macroeconomic
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Table 1. Correlation between key macroeconomic variables and asymmetry
measures.

Sign Size

D DC D DC

Focus variables
UNC −0.46 −0.78 −0.14 −0.26
RGDP 0.60 0.47 0.52 0.27
EMP 0.48 0.32 0.34 0.11
SP500 −0.18 0.02 −0.23 0.05
Other macro factors
FFR 0.63 0.44 0.66 0.45
AWH 0.78 0.80 0.73 0.74
CPI 0.70 0.55 0.70 0.59

factors (short-term interest rates, hours worked and CPI infla-
tion). These correlations are depicted in Table 1. Within our
set of focus variables, we find that model-implied asymme-
try measures are correlated with economic uncertainty, real
GDP growth and employment growth whereas the correlation
between stock returns and asymmetry measures is considerably
lower. These correlations are higher for sign asymmetries (both
for the D and DC metrics), in particular when we consider the
negative relationship between economic uncertainty and asym-
metry but also for real GDP and employment growth and when
the DC measure is considered. When we turn to other macro
fundamentals, we find even higher correlations. In particular,
asymmetries increase in lockstep with short-term interest rates,
hours worked, and inflation.

To sum up, this analysis reveals that nonlinearties in IRFs are
not solely driven by the fact that the regressors enter the mean
equation in a nonlinear manner but also that these asymmetries
are time-dependent and seem to be linked to the business cycle.
This result is consistent with papers such as Auerbach and
Gorodnichenko (2012), Mumtaz and Surico (2015), Alessandri
and Mumtaz (2019), and Barnichon, Debortoli, and Matthes
(2022) who find that effects of economic shocks vary with the
state of the economy.

5. Conclusions

In this article, we have developed a flexible multivariate model
that uses Gaussian processes to model the unknown relationship
between a panel of macroeconomic time series and their lagged
values. Our GP-VAR is a very flexible model which remains
agnostic on the precise relations between the endogenous vari-
ables and the predictors. This model can be viewed as a very
flexible and general extension of the linear VAR commonly used
in empirical macroeconomics. We also control for changes in
the error variances by introducing a stochastic volatility specifi-
cation. While a more flexible conditional mean can reduce the
need of a time-varying conditional variance, empirically we find
heteroscedasticity to be relevant also for GP-VARs.

We develop efficient MCMC estimation algorithms for the
GP-VAR, which are scalable to high dimensions, so much so
that for large models estimation is even faster than for the
corresponding BVAR-SV. Scaling the covariance of the Gaussian
process by the latent volatility factors is particularly helpful
to achieve computational gains, as it permits to pre-compute
several quantities before MCMC sampling. This speeds up com-
putation enormously.

In our empirical work we reassess the effects of uncertainty
shocks by replicating and extending the analysis by Jurado,
Ludvigson, and Ng (2015) based on linear VARs with the GP-
VAR. Overall, our empirical results suggest that the measure-
ment of uncertainty and its effects with a simple linear VAR
can lead to several incorrect conclusions. Not only the effects
of uncertainty can be over-stated, but they can also be treated
as stable over time, symmetric for positive and negative shocks,
and proportional to the shock size. Instead the GP-VAR, pre-
ferred to the linear VAR in terms of fit and forecasting perfor-
mance, returns time variation in the responses, asymmetry and
non-proportionality. Hence, the empirical features we uncover
should be also replicated by theoretical models about uncer-
tainty and its effects, which instead at the moment typically
assume stability and symmetry (see, e.g., the survey in Bloom
2014).
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