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A B S T R A C T

There have been a number of digital twin (DT) frameworks proposed for multiple disciplines in recent years.
However, there is a need to develop systematic methodologies to improve our ability to produce DT solutions
for the nuclear fuel industry considering specific requirements and conditions exclusive to the nuclear fuel
manufacturing cycle. A methodology tailored for nuclear fuel production is presented in this paper. Due to
the nature of the chemical processes involved in fuel manufacturing, we highlight the importance of using a
combination of physics-based and data-driven modelling. We introduce key technologies for DT construction
and the technical challenges for DT are discussed. Furthermore, we depict typical application scenarios, such
as key stages of the nuclear manufacturing cycle. Finally, a number of technology issues and research questions
related to DT and nuclear fuel manufacturing are identified.
1. Introduction

Modern industry requires the use of advanced manufacturing tech-
niques and operations utilising smart technologies that allow for inter-
operability among organisations, assets and the people involved in the
process. The advent of modern technologies is leading industry to focus
on the inter-connectivity of automation, machine learning, real-time
data monitoring and control. The challenge is to create manufacturing
processes that need to be observed or controlled remotely from an
environment that may not be accessible easily by human operators,
while having the capability to test and improve the quality of the
product, service or process without incurring high prototyping costs.

The idea of digital twinning originated as a virtual representation of
an engineering system, to better understand what was designed versus
what was produced, with the purpose of closing the gap between design
and execution (Grieves, 2014). This formal definition, as shown in
Section 3, encompasses three primary elements: (a) a physical object
in a physical space; (2) a virtual object in a virtual space; and (3) the
data link between the two spaces (see Fig. 1).

∗ Corresponding author.
E-mail address: xiandong.ma@lancaster.ac.uk (X. Ma).

The concept of virtualisation spread quickly when NASA started
to develop systems and mechanisms that needed to be monitored and
manipulated in space, an environment where operating conditions are
difficult to reproduce or unavailable during the design phase. They
started to develop virtual prototypes that could be tested before being
sent to space or even before physical manufacturing. After a number of
iterations testing the virtual prototype, and only after making sure the
prototype could reach the required specification, the manufacture of a
device was started (Glaessgen and Stargel, 2012).

DT technology has been discussed widely as a key game changer in
advancing Smart Manufacturing and Industry 4.0 initiatives. A signif-
icant advantage of DT technology is the availability of data gathered
from different domains in the manufacturing value chain to derive
time-sensitive decisions (Lim et al., 2020; Fukawa and Rindfleisch,
2023). However, it is argued that most DT industrial approaches are
ad-hoc solutions where DTs are expected to be used once or a few
times within a limited time-frame associated with a particular project.
Major industrial corporations such as Siemens, General Electric, Bosch
and Ansys. offer DTs solutions and infrastructure based on their own
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Fig. 1. Twinning between the physical and virtual spaces.
Source: Adapted from Jones et al. (2020).

experience in manufacturing of products and services. However, there
is a need for a systematic and unified DT methodology, in which DTs
could be used/reused over time in multiple coordinated applications
(Qamsane et al., 2021; Johansen et al., 2023).

Given that the primary objective of a DT is to create a virtual rep-
resentation or model of a physical process, this technology has proven
useful in numerous major industries. The present work explores the
advantages of employing this technology in nuclear fuel manufacturing,
an industry facing several challenges that DTs are highly likely to help
overcome. The adoption of a DT, in general terms, to aid nuclear fuel
manufacture offers the potential for a wide variety of benefits.

Nuclear power projects are capital-intensive, making them eco-
nomically challenging compared to other forms of energy generation
(Rothwell, 2022; Hansen, 2019). Reducing costs is a continual focus in
the industry (Rabl and Rabl, 2013). Similarly, the enrichment process,
aimed at increasing the concentration of 235U, can be both energy-
intensive and expensive (Lahoda, 2004). Ongoing research is focused
on developing more efficient and cost-effective enrichment methods
(Nishizawa et al., 1998; Seko et al., 1990), where DTs can be employed
to test these new approaches inexpensively.

Managing and disposing of spent nuclear fuel is a significant chal-
lenge. Long-lived radioactive isotopes present in spent fuel require se-
cure storage solutions to prevent environmental contamination (Bruno
and Ewing, 2006; Gauld et al., 2017). Processes operated in parallel to
those depicted in a digital representation might provide an additional
way in which fissile material quantities are assessed and accounted for,
particularly in the context of safeguards (Woo, 2012), and could reduce
uncertainties on quantities such as material unaccounted for.

Implementing a closed nuclear fuel cycle, where spent fuel is re-
processed and recycled, faces technical, economic, and socio-political
challenges. Nuclear power can face public opposition due to concerns
about safety, radioactive waste, and the perceived potential for nuclear
accidents (Havlicek, 2008). Overcoming these concerns is crucial for
the expansion of nuclear energy (Havlicek, 2008; Ganda et al., 2016).
Digital parallels of nuclear processes might also allow for greater opti-
misation concerning the quantities of reagents used, thereby improving
efficiency, whilst reducing cost and waste (Atz and Fratoni, 2023).

Obtaining regulatory approval for new fuel cycle technologies and
reactor designs can be a lengthy and challenging process (Sauter, 2009;
Heffron, 2013; Hogselius, 2009), potentially hindering innovation and
development. Over time, where learning concerning the specific fea-
tures of a process by means of DTs, concerning such factors as hold-up
and wear (Ströbel et al., 2023) might take years to acquire, comparison
of the DT operation with the real system could highlight departures
from accepted performance much earlier. This could aid maintenance,
allow for improvements to the process design and prevent significant
periods of reduced operation (Zhong et al., 2023; van Dinter et al.,
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2022). In the future, DTs of existing process architectures could be
adapted and scrutinised before an advanced plant is built, on the basis
of these developments, complementing the development and use of test
rigs and prototype process infrastructure (Song et al., 2022; Edwards
et al., 2023). Understanding the roles and distinctions between digital
plans and DTs is crucial, especially in fields such as fuel manufacturing
where they play significant roles in project management and optimi-
sation. Digital plans are primarily used for design, visualisation, and
communication during the pre-construction or pre-production phases.
DTs, nevertheless, serve operational purposes, offering insights into
real-time performance, monitoring, and optimisation throughout the
asset’s lifecycle.

Significant effort in DT research has been focusing on the connec-
tion between the real and virtual spaces. Grieves (2014) state that
global manufacturers today either work with the physical product or
with the virtual product, missing a deep meaningful understanding
of the interaction between the two products. Lin et al. (2021) claim
that DTs provide reasonably useful behaviour adjustments based on
feedback from the physical part. However, such adjustments are de-
terministic, and thus lack flexibility and adaptability. To address such
problems, an extended concept, evolutionary digital twin (EDT) was
proposed. With an EDT, a more precise approximated model of the
physical world could be established through supervised learning (Lin
et al., 2021).

The present article highlights the importance of combining both
physics-based and data-driven modelling approaches for nuclear ap-
plications (Section 2). We introduce key technologies and typical ap-
plication scenarios, such as the stages of the nuclear manufacturing
cycle Appendix. We introduce a DT methodology tailored for nuclear
fuel production, and use it to discuss relevant technical challenges
(Section 3). Finally, a number of technological issues and research
questions related to DT in the context of nuclear fuel manufacturing
are identified (Section 4).

2. Background

In recent years, special attention has been given to the creation
of DTs and their applications, encompassing an important number
of domains, such as manufacturing, aerospace, healthcare, satellite
networks, intelligent transportation and smart cities (Jones et al., 2020;
Wanasinghe et al., 2020). Despite the positive advantages provided by
DTs, there are no survey reports focusing on this technology applied
to the nuclear fuel manufacturing industry. Some reports explore the
promising utilisation of DTs in the design and construction of nuclear
reactors (Kochunas and Huan, 2021; Lin et al., 2021; Bowman et al.,
2022). However, the manufacturing processes involved in the creation
of nuclear fuel are entirely different from the reactor designs. In other
words, DTs deployed for nuclear energy generation are significantly
different from DTs proposed for manufacturing of the fuel required by
the reactors.

Due to their high applicability in any industrial sector, DTs are
a significant technology trend, where the incorporation of machine
learning/artificial intelligence techniques enrich DT significance and
research potential (Rathore et al., 2021). Wu et al. (2021) have ex-
plored the connection between DTs and their physical counterparts,
where physical objects and virtual twins can communicate, collaborate,
share information, complete tasks with each other, and form an infor-
mation sharing network by connecting multiple DT nodes. This concept
is called Digital Twin Network (DTN). Autiosalo et al. (2021) propose
an open-source server solution called Digital Twin Web, software that
follows a similar structure to the World Wide Web and which allows
digital distribution of twin documents as effortlessly as possible using
a web browser. Users with no experience in programming or server
administration can create a public and free-of-charge instance of the

software intended to be deployed as a server for DT implementations.
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A new concept, Digital Twin Data (DTD) was introduced by Zhang
et al. (2022). Since data are a core driver for DTs, a DTD approach
simply defines physical entity-related data, virtual model-related data,
service-related data, domain knowledge, fusion data, and connection
data (Tekinerdogan, 2023). This approach demands specific data re-
quirements in terms of data gathering, interaction, universality, min-
ing, fusion, iterative optimisation, and on-demand usage. Another DT
framework is based on the System Development Life Cycle (SDLC)
process that establishes (1) the specific requirements of a DT, (2) an
understanding of the manufacturing process within the operation of
the DT, and (3) the object-oriented aspects of the DT to achieve scala-
bility, re-usability, interoperability, interchangeability and extensibility
(Qamsane et al., 2021). This framework serves as a procedure for
good practice in DT development as it provides guidelines across the
DT life-cycle. Other recent work has focused on the deployment of
autonomous control systems into new nuclear reactor designs with DT
technology. An analysis for DTs for nearly autonomous management
and control systems (NAMAC) was reported by Lin et al. (2021). For
this approach, DTs are used to extract information from the NAMAC’s
knowledge base to support decision-making in reactor control and
management during all modes of plant operations. This data-driven
approach identifies nonlinear relationships within the complex reactor
system and the supporting real-time operations for the evaluation of
uncertainty quantification.

Kochunas and Huan (2021) propose that, for nuclear power ap-
plications, DT development should rely on mechanistic model-based
methods to leverage the considerable experience and understanding of
these systems. Model-free techniques can be adopted subsequently to
selectively, and correctively, augment limitations in the model-based
approaches. Both forward and reverse uncertainty quantification and
their optimisation are also analysed to facilitate decision making in
support of the physical asset operating in an uncertain environment.
This work in particular focuses on DTs that can be deployed in the
design of nuclear reactors. Rasheed et al. (2020), Bárkányi et al. (2021)
and Kochunas and Huan (2021) state that surrogate models in DTs
are suitable for linking together physics-based modelling, data-driven
modelling, and hybrid solutions. Fig. 2 shows a simple approach to
hybrid modelling. This work shows that the use of surrogate models
has advantages. Even though they are black-box type models, they
clearly reflect some of the physics involved in the system. Once the
models have been trained, they become stable for making prediction
inferences, uncertainties can be bounded and estimated and they are
less susceptible to bias. This study shows how the surrogate model
types that have been applied for different DT applications are imple-
mented based on: neural networks, support vector machines, radial
basis functions, linear regression, polynomial functions, Gaussian pro-
cess regression, power series expansions, fuzzy models, state space
models, Monte Carlo and Kalman filters (Papacharalampopoulos, 2020;
Lin et al., 2021; Bárkányi et al., 2021).

The main reasoning behind applying surrogates in DTs is that their
computational requirements are significantly smaller than other simu-
lation process such as Finite Element Analysis (FEA) or Computational
Fluid Dynamics (CFD). Two issues with the application of surrogate
models have been identified: (1) the significant amount of data needed
for model building and (2) the need of continuous maintenance over
the whole life cycle of the model. An alternative approach to improving
computational efficiency for surrogate models is the application of
models based on sets of physics-based equations or sets of differential
equations that describe a well-known process or system. Successful
implementations of DTs will require trust in the models, trust in the
data, and trust in the algorithms used to update the model based on
the data. When all the aforementioned elements are present, a system
defined in the physical space can be replicated successfully in a virtual
space (Wright and Davidson, 2020).

In the context of manufacturing, Bao et al. (2019) define three types
of DTs: product DT, process DT and service DT. The inter-operation
3

Fig. 2. Hybrid analysis and modelling (Rasheed et al., 2020; Bárkányi et al., 2021).

mode among these DTs are presented and combined to execute op-
erations between product, process and resource using the Automated
Markup Language (AutomationML). This standard aims to converge the
physical space and the virtual space in the workshop or factory for
predicting manufacturing outcomes.

3. Defining digital twins for nuclear fuel manufacturing

3.1. Reaction kinetics

Based on our current understanding of the primary processes in-
volved in nuclear fuel production (see Appendix), it is evident that
many of the stages in nuclear fuel manufacturing can be modelled as a
series of chemical processes. By modelling the chemical interactions of
the elements involved in each reaction, it is feasible to use the kinetics
of the reaction as a basis for the creation of a DT. Reactor kinetics
is the study of processes that control the time-dependent behaviour
of a chemical reactor. The chemistry involved in the nuclear fuel
manufacturing cycle plays a crucial role in the generation of nuclear
energy (Nash and Braley, 2011). A chemical process is represented
mathematically as the change in the concentration of its reactants
or products with time (Smith and Konings, 2020). A two-component
chemical reaction is described by the balance equation

𝑎𝐴 + 𝑏𝐵 → 𝑐𝑃 , (1)

where 𝐴 and 𝐵 represent the reactants and 𝐶 represents a product of
the reaction. The coefficients 𝑎, 𝑏 and 𝑐 in reaction (1) represent the
stoichiometric ratios of each component in the reaction. The rate of
appearance or disappearance of these chemicals are related to each
other by the rate equation

𝑟𝐿 = −𝜎
𝜌
𝑟𝑅, (2)

where 𝐿 and 𝜎 represents a chemical and its stoichiometric coefficient
on the left hand side of reaction (1); 𝑅 and 𝜌 represent a product and
its stoichiometric coefficient on the right hand side of reaction (1). The
negative sign indicates that the rate of appearance of a chemical on
the right is proportional to the rate of disappearance of a chemical on
the left. The reaction rate expressions describe the rate of a reaction to
concentrations of the reactants and products, with each concentration
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Fig. 3. A Methodology to implement DT solutions for manufacturing systems.
Source: Adapted from Qamsane et al. (2021).
expressed with an order. For the general reaction (1), the reaction rates
can be expressed as

𝑟𝐴 =
𝑑𝐶𝐴
𝑑𝑡

= −𝑘1𝐶𝛼
𝐴𝐶

𝛽
𝐵 , (3)

𝑟𝐵 =
𝑑𝐶𝐵
𝑑𝑡

= −𝑘2𝐶𝛼
𝐴𝐶

𝛽
𝐵 (4)

and

𝑟𝑃 =
𝑑𝐶𝑃
𝑑𝑡

= 𝑘3𝐶
𝜙
𝑃 , (5)

where 𝐶𝐴, 𝐶𝐵 and 𝐶𝑃 represent the concentration of reactant 𝐴 and 𝐵
and product 𝐶 respectively. Here, 𝑘1, 𝑘2 and 𝑘3 are rate constants which
are not a function of concentration. It can be seen from expressions
(3), (4) and (5) that reaction (1) becomes a nonlinear differential
system that can be solved for any concentration 𝐶 which has reacted
by time 𝑡 (Scholz and Scholz, 2014). The solution will depend on the
experimentally-determined reaction rates 𝑘 and exponents 𝛼, 𝛽 and 𝜙.
In many elementary reactions the exponents are of order zero, one or
two. However, in more complex processes, fractional orders also occur
(Rodin and Egan, 1989).

As identified previously in the literature, the creation of a DT can
be facilitated through the utilisation of a physics-based model. This
approach aligns with the methodology proposed and detailed in the
next section.

3.2. Methodology

The creation of DT solutions for nuclear fuel manufacturing pro-
cesses will involve considering the following steps. This approach is
grounded in a general methodology that holds applicability across
diverse manufacturing industries (Qamsane et al., 2021). Fig. 3 illus-
trates this methodology in a graphical representation, demonstrating
the process in a non-linear or non-sequential manner, allowing for more
complexity and flexibility in presenting relationships and connections
between various phases of the DT implementation. Each stage in the
methodology is explained in the list below.

3.3. Off-line development phase

1. Define system: Definition of the physical system or manufactur-
ing process to be represented as a DT. This initial phase involves
4

planning to assess whether there is a need to enhance a spe-
cific aspect of the manufacturing process. It aims to determine
whether a DT solution can address the identified need. Dur-
ing this phase, problems within the manufacturing facility are
pinpointed, and potential solutions are proposed. In situations
where implementing a solution directly in the physical space is
impractical, for reasons such as financial constraints prevent-
ing production halts, a parallel representation of the physical
environment can be employed. This allows for improvements
or optimisations to be explored without disrupting the ongoing
process, especially during the development phase (Bao et al.,
2019; Bárkányi et al., 2021; Bowman et al., 2022; Fukawa and
Rindfleisch, 2023; Grieves, 2014; Jones et al., 2020; Lim et al.,
2020; Lin et al., 2021; Wright and Davidson, 2020).

2. Determine task: Determination of the DT task or purpose
(e.g., monitoring and optimisation, predictive maintenance, real-
time decision-making, automated control, and responsiveness).
This phase involves identifying the specific goals of the DT appli-
cation. Typically, the overarching objectives include enhancing
the economic efficiency of the entire process, improving man-
ufacturing efficiency, optimising the proportion of production
time dedicated to value-added activities, or ensuring consistency
in the quality of the final product (Wanasinghe et al., 2020;
García et al., 1989; Grieves, 2014; Qin and Badgwell, 2003; Wu
et al., 2021; Zhang et al., 2022). Quantitative assessment and
evaluation of historical data are essential in gaining insights into
the relevant issues that the DT aims to address. To achieve a
comprehensive understanding of the data, considerable expertise
and knowledge of the manufacturing problem are necessary.
Input and insights from domain experts are invaluable during
this phase, aiding in the collection of additional perspectives
on data collection. For example, this step facilitates the identi-
fication of useful versus non-useful data, establishes criteria for
data trustworthiness, determines which data to utilise, specifies
features to extract, and addresses considerations such as data
handling or data manipulation (Qamsane et al., 2021).

3. Select modelling approach: The selection of a suitable mod-
elling approach (whether physics-based, data-driven, or hybrid)
is contingent upon the knowledge available about the system
or process. Given that most processes involved in nuclear fuel
manufacturing are highly automated, a substantial amount of
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data were collected routinely using advanced technologies such
as Supervisory Control and Data Acquisition (SCADA) and Fail-
ure Mode and Effects Analysis (FMEA). These processes often
entail the transformation of chemical elements (e.g., converting
uranium hexafluoride into uranium dioxide) or the physical
enhancement of elements (e.g., uranium enrichment). In light of
these considerations, a hybrid modelling approach proves advan-
tageous. This is particularly beneficial, given that all chemical
interactions within the fuel cycle have been studied, charac-
terised, and documented extensively in the past (Atz and Fratoni,
2023; Ganda et al., 2016; Havlicek, 2008; Kang et al., 2008;
Nash and Braley, 2011). As discussed in Section 3.1, the equa-
tions derived from reaction kinetics can serve potentially as a
foundational element for a hybrid model. This approach inte-
grates real-time sensor data from the physical system, provided it
is available in real-time, offering a comprehensive and dynamic
representation of the manufacturing processes.

4. Collect data: After defining the DT models, the next step in-
volves the collection of data from the physical system. It is
imperative to gather an appropriate quantity and quality of data,
tailored to the chosen modelling approach. As mentioned earlier,
these manufacturing activities leverage professional tools for
data collection, integrated seamlessly with digital manufacturing
and DTs. Technologies such as Big Data and Cloud Computing
are already inherent components of these processes (Qi and Tao,
2018; Kkarchenko, 2018; Wanasinghe et al., 2020). As illus-
trated in Fig. 3, the data collection step is positioned as an offline
element in this proposed methodology. This strategic placement
stems from the acknowledgement that, in scenarios where no
historical data is available for assessing the prerequisites of
a DT, establishing a setup for physically acquiring data takes
precedence before the implementation phase.

5. Rebuild: The necessity to rebuild a DT solution may arise if the
current design fails to produce the expected results, as defined
in step 2. However, as depicted in Fig. 3, the evaluation of the
current solution occurs at the end of the on-line phase, following
the deployment of the proposed off-line solution. Consequently,
establishing an iterative nature for the proposed methodology,
this rebuilding step is positioned in the offline phase. This is
because this step requires a revision of the DT modelling ap-
proach, where even a redefinition of the DT task or purpose may
be necessary if the current design yields unsatisfactory results
(Wanasinghe et al., 2020; García et al., 1989; Grieves, 2014;
Zhang et al., 2022).

3.4. On-line deployment phase

6. Define parameters and model variations: This preparatory
step is crucial and must be completed before moving on to
the implementation of the model(s) and the determination of
the model parameters, along with the establishment of a robust
model validation strategy. The reason behind this activity is to
ensure a solid foundation for the subsequent deployment phase
of the methodology. Considering the aforementioned versatility
of hybrid approaches in deploying DT solutions for nuclear fuel
fabrication, a range of possibilities exists. These approaches, as
discussed in Section 2, draw inspiration from practices applica-
ble to various industries (Wanasinghe et al., 2020; García et al.,
1989; Grieves, 2014; Qin and Badgwell, 2003; Wu et al., 2021;
Zhang et al., 2022). By leveraging hybrid models, which com-
bine physics-based and data-driven elements, the methodology
gains flexibility and adaptability. A pivotal aspect of this step
involves the seamless integration of the DT solution into the
operational framework. This integration is designed to harness
run-time data, enabling the DT to assess dynamically the system
5

and provide valuable recommendations. The utilisation of real-
time data not only enhances the accuracy and relevance of
the DT but also empowers it to respond effectively to dynamic
changes in the manufacturing environment. As a result, this
integration serves as a proactive measure, aligning the DT with
the real-time intricacies of the fabrication process and ensuring
its efficacy in offering timely insights and recommendations (Bao
et al., 2019; Bárkányi et al., 2021; Fukawa and Rindfleisch,
2023; Qin and Badgwell, 2003; Wu et al., 2021; Zhang et al.,
2022).

7. Deploy: The deployment of a DT is a complex process de-
manding a comprehensive, multidisciplinary approach that in-
corporates domain expertise, seamless technology integration,
and effective communication among diverse stakeholders. Each
deployment is inherently distinct, tailored to the specific char-
acteristics and requirements of the physical system or process
represented by the DT. Leveraging insights gained from past
experiences in nuclear sites, establishing a dedicated DT for
nuclear fuel fabrication necessitates careful consideration of crit-
ical elements. This includes securing adequate computational
resources, seamless integration with existing IT systems, the de-
velopment of an intuitive user interface and visualisation tools,
robust security measures, adherence to regulatory compliance
standards, and more (Fukawa and Rindfleisch, 2023; Glaessgen
and Stargel, 2012; Johansen et al., 2023). Each of these aspects
contributes to the successful implementation and operation of
the DT in the context of nuclear fuel fabrication. As depicted in
Fig. 3, evaluating the deployment of a DT solution is straightfor-
ward. In instances where the intended benefits are not realised,
the deployment task may need to be repeated, having addressed
or resolved issues previously, until the desired outcomes are
achieved.

8. Supervision and maintenance: Supervise and maintain the de-
ployment of the previously proposed offline solution. Continuous
oversight of the DT within the application environment and
ongoing assessment of model quality are indispensable aspects
of the maintenance stage. To ensure optimal performance, sys-
tematic approach is established for the continuous monitoring
of the DT operations (Jones et al., 2020; Kochunas and Huan,
2021). Regular updates and maintenance activities for both the
DT models and data sources are crucial to uphold accuracy and
relevance over time. At this stage, potential modifications to
the model parameters or structure may be necessary (Lin et al.,
2021). Similar to the preceding step, an evaluation of the DT’s
performance may reveal the need to rebuild and improve the
solution or simply fine-tune the existing one.

9. Tune: Tuning the proposed DT involves adjusting its parameters
or configurations to optimise performance and enhance accuracy
in representing the physical system. The first step is to evaluate
how effectively the DT captures and predicts the behaviour
of the physical system. This assessment includes considering
feedback from end-users or stakeholders who may highlight any
discrepancies between the DT’s predictions and the actual system
behaviour (Wanasinghe et al., 2020; Wu et al., 2021). Next, it
is important to examine critically the parameters and config-
urations of the DT model to identify areas for improvement.
This evaluation aims to determine whether adjustments to these
parameters could lead to enhanced accuracy and better align-
ment with the real-world system. Once potential adjustments are
identified, the tuned DT needs validation. This involves assessing
its performance using historical data or separate datasets not
used during the initial model development. Tuning is often
an iterative process; therefore, after making adjustments, it is
crucial to repeat the evaluation, validation, and testing steps
to assess thoroughly the impact of changes. Documentation and

communication play a key role in the tuning process. Finally, for
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Fig. 4. Software-based DT solution.
Source: Adapted from Wu et al.
(2021).
long-term effectiveness, the performance of the tuned DT must
be monitored over time. This ongoing assessment helps ensure
that the model remains accurate and aligned with changes in
the physical system, providing a reliable representation over the
course of its deployment (Wanasinghe et al., 2020; Wu et al.,
2021; Rathore et al., 2021).

4. Opportunities

The adaptability of DTs to specific industries, processes, or systems
enables organisations to adopt them as tailored solutions, emphasis-
ing specific possibilities for the nuclear fuel industry. To demonstrate
the potential of DTs in fostering innovation, efficiency, and strategic
decision-making, positioning the nuclear fuel industry for success in
a technology-driven landscape, various opportunities and challenges
have been identified.

4.1. Standardisation

Data collection is a crucial aspect of DTs. However, field-collected
data often lacks a standardised format. Various commercially-available
data integration platforms from different vendors adhere to distinct
standards and methods for presenting data. Furthermore, existing
datasets are decentralised frequently, stored in separate locations, and
not linked to a common database (Qamsane et al., 2021; Johansen
et al., 2023). These challenges pose a significant obstacle when inte-
grating previously collected data and real-time data into a unified data
analytics process. Consequently, the need arises for an intermediate
custom tool capable of converting data from both proprietary and open
access sources into a standardised format that the DT can comprehend.

Therefore, no standard DT approach has seen broad adoption be-
cause they are largely tool-based or framework-based (Qamsane et al.,
2021). The absence of a standard in data representations for DT, cou-
pled with the multitude of available frameworks for DT development,
introduces challenges to deploying DTs in real manufacturing settings.
Additionally, there is a lack of systematic techniques that leverage
well-known research approaches to achieve scalable, reusable, and
interoperable DT solutions in the real manufacturing world. While
industries are gradually embracing solutions from recognised digital
service providers (refer to Section 1), the approach to DT solutions
varies significantly across different industries. Nonetheless, it is plau-
sible that a solution for the nuclear fuel cycle will adopt a framework
similar to the one illustrated in Fig. 3. Once a modelling framework is
selected and developed, the final solution will manifest in a software-
defined manner, operating on a dedicated computing system either
locally or in the cloud (refer to Fig. 4).

A recently published report, outlined in Kung et al. (2022), offers
a comprehensive overview of ongoing global standardisation efforts in
DTs, along with the involved organisations. The report, compiled by
a dedicated group, maps international standards and classifies related
6

documents extensively, identifying originating bodies and industrial do-
mains. It emphasises the existence of numerous documents supporting
DT technologies, covering aspects such as modelling, security, proto-
cols, and data formats. Additionally, the report provides guidelines that
aid developers and users of DTs, potentially serving as a foundational
basis for standardising DT technology across industries.

It is a priority that a standard for DT development be adopted
to facilitate interaction with commercial tools and software tools de-
veloped within the nuclear fuel sector. Furthermore, a standard can
support integration with physically-sensed data and their extended
reality counterpart (Kochunas and Huan, 2021; Touran et al., 2017).
In fact, the reason for success of deployed technologies in the nuclear
industry is arguably a reliance on standardisation. Whilst the industry
generally demands standardised solutions, currently there is no stan-
dard exclusively focusing on digital twinning. The ISO/DIS 23247-1
standard (ISO/DIS, 2022) provides limited information on DT frame-
works. Moreover, it provides no specific guidance for implementing
DT solutions nor is this standard specifically tailored for any industry,
including nuclear.

4.2. On-line uranium enrichment assessment

In nearly every industrial process, including product design, product
performance, process planning, assembly line, task-scheduling, and
resource allocation, optimisation is required. As an emerging technol-
ogy, digital twinning provides a direct pathway to optimisation with
considerably less effort than with no digital virtualisation. However,
careful consideration of the chosen DT methods and the underlying
feature set will be essential for better optimisation of the results.

In terms of uranium enrichment, a number of off-line methods exist
to determine enrichment of uranium throughout the manufacturing
process of nuclear fuel (Park et al., 2012). The main goal of DT
technology here is to render fuel manufacturing compliance responsive
to detected changes in product composition and quality by potentially
implementing a DT of the process with on-line enrichment assessment
capability. Currently, product compliance in nuclear fuel manufactur-
ing relies on off-line, lab-based analysis and manual inspection. In
nuclear fuel DT research, we should test the hypothesis that a control
network can be conceived using input data from online DT methods
to render the process responsive. Any variance in product quality
(UO2 quality, enrichment or pellet shape) can be tested and hopefully
reduced by adjusting feedstocks, process operations, or by identifying
and amending machine faults.

4.3. Big data and cloud computing

The infrastructure for handling and storing high-volume data has
been progressing considerably in recent years. Numerous platforms
are now readily accessible, providing comprehensive capabilities for
processing big data projects encompassing storage, centralised manage-

ment, analysis, visualisation, accessibility, and security. Several survey
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articles delve into various facets of big data, covering not only state-
of-the-art technology and platforms but also methods that inherently
address the critical requirements of DT applications (Qi and Tao, 2018;
Kkarchenko, 2018).

In virtually any industrial setup, sensors attached to a manufactur-
ing process generate a substantial volume of data. Recognising that
such data can often be tainted with systematic or unsystematic noise,
it is essential to pre-process it before applying any machine learning-
based algorithms (Wanasinghe et al., 2020). The potential of edge
and cloud computing platforms to manage DT-related data is on the
horizon. Edge computing, for example, enables distributed processing
at the DT network’s edge, with aggregate processing accomplished
in the cloud. However, aggregating data in the cloud may lead to
increased response times, impacting the performance of fast-paced
dynamic systems. However, for nuclear fuel operations, this might be
less of an issue, as most of the chemical processes discussed earlier
can operate potentially within the latencies provided by a modern DT
network. Due to diverse requirements, different DT scenarios necessi-
tate varying computing speeds and latencies. Cloud servers, with their
capacity to process large amounts of data in seconds, offer robust DT
services. Additionally, a cloud architecture can facilitate the organi-
sation the management of numerous connected physical objects and
parallel virtual models, along with the amalgamation and integration of
real-time and historical data. This proves particularly beneficial for the
nuclear industry, where the practice of retaining months or even years
of historical data for security purposes is commonplace (Westinghouse,
2024a).

5. Challenges

5.1. Security and privacy issues

The aforementioned data storage systems require protection against
cyber-attacks and must be well organised to ensure fast data access (Lee
and Huh, 2019; Kkarchenko, 2018; Yao et al., 2020). Implementation
of user identification protocols is crucial to prevent unauthorised data
access and modifications. Consequently, the handling of data in DT
systems for the nuclear fuel industry is deemed critical, necessitat-
ing strict security and privacy protocols. The inclusion of Internet of
Things (IoT) devices in DT introduces heightened security concerns for
the underlying communication protocols. Although physical processes
may not be threatened easily during these situations, attackers could
potentially manipulate the virtual model or tamper with the data fed
back by it. Moreover, the extensive collection of asset-related data must
be stored securely to prevent data breaches from both internal and
external threats (Tao et al., 2019).

In the realm of data analytics, several challenges need addressing:
(1) the choice between using cloud or local software and data ware-
houses for analytics and data storage; (2) determining the strategy for
executing machine learning models; and (3) deciding when to perform
batch, semi-batch, or real-time data analysis (Wanasinghe et al., 2020).
To comply with Nuclear Power Plant (NPP) safety design, evaluation,
operator training, and emergency management, the chosen framework
must offer insights into the current process state and predictions of
future state transients (Alamaniotis, 2023). In fuel production security,
utilising a DT to manage security-critical substances such as 235U offers
inherent benefits. By ensuring the security of the DT itself, the param-
eters governing the operation of manufacturing machines can also be
safeguarded. This relationship is akin to holding a key; without it, the
replication of the process becomes unfeasible. Moreover, employing
a DT could reduce the necessity for numerous individuals to possess
precise knowledge of the system’s configuration. Instead, the DT serves
as a virtual, non-invasive entity, devoid of the vulnerabilities associated
with human involvement.
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5.2. Condition responsiveness and control

Digital twinning offers an attractive outcome when implemented
properly. Prognosis, or proper forecast of the remaining operational
life, future condition, or probability of reliable operation of equip-
ment based on the acquired condition monitoring data, is needed.
This feature has not been fully taken advantage of in real manu-
facturing settings in the context of DT (Grieves, 2014). Prognosis
can, for instance, improve the predictability of machinery failure rate
and avoid unexpected corrective maintenance, hence becoming an
intelligent predictive maintenance system. However, the automated
data-collection, analysis and prediction of system state using DT is still
not a mainstream practice in nuclear manufacturing. Nevertheless, DTs
are becoming a valuable tool during the design process of complex
nuclear reactors (Kochunas and Huan, 2021; Bowman et al., 2022; Lin
et al., 2021).

With a suitable methodology (see Fig. 3), a DT for any of the
nuclear fuel processes discussed earlier will include the processing of
the sensors being used to measure the state of the machinery (flow
rate, temperature, pressure and vibration), and these measures will
be stored and analysed using physical-based (mathematical models)
and data-driven (machine learning and/or neural networks on his-
torical and current states) prognostics models. Within the context of
the characteristics of the DTs, the techniques can apply metrology
methods, physical-to-virtual data connections, when providing the state
of the physical entity (Heng et al., 2009; Fernandez et al., 2017; Gong
et al., 2022). The use of Model Predictive Control (MPC) along with
DTs is a priority for the nuclear industry. Specifically, MPC research
has thrived for control applications in chemical processes in the oil
and gas industry. Therefore, it is viable to apply MPC in the nuclear
fuel industry as well (García et al., 1989), hence MPC and DTs can
provide the means of controlling a process based on the proposed DT
model. Physical processes are monitored and compared to their DT
counterparts which are able to predict future states of the process, and
optimise/adapt/control the process appropriately (Jones et al., 2020;
Rasvan, 2018; Dong et al., 2018; Zhu et al., 2022; Benitez-Read et al.,
1992).

Industrial applications requiring a robust automated means of con-
trol have been using MPC solutions for a long time. MPC is now used
widely across engineering disciplines (Qin and Badgwell, 2003). Every
aspect of the MPC implementation aims to achieve an ideal interaction
with sensor-based DTs while delivering closed-loop control through the
process and controller connections. Jones et al. (2020) compare the
similarities between the DT and the Model-Based Predictive Control
principles. MPC concepts such as sensor-to-controller and controller-to-
actuator are analogous to the physical-to-virtual and virtual-to-physical
interactions that are inherently necessary for DT implementations.
Hence, a suitable integration of MPC and DT methods will help ac-
complish a closed loop approach for nuclear fuel manufacturing that
achieves the benefits stated when the DT concept was first conceived
(Grieves, 2014).

6. Conclusions

This article has presented a survey on recent research and techno-
logical development in the area of DT, focusing on how DT can be
applied to the nuclear fuel manufacturing industry.

We have envisioned the deployment of DTs in the entire fuel manu-
facturing cycle. In particular, we provided key features and definitions
of DTs and reviewed the key technologies for DT implementations. The
proposed methodology is based on the following nine stages: (1) define
the physical system of the manufacturing process; (2) determine the DT
task or purpose (optimisation and/or control); (3) select a suitable mod-
elling approach (physics-based, data-driven or, most likely, hybrid),
particularly using chemical kinetics modelling due to the nature of the
fuel manufacturing cycle; (4) collect appropriate quantity and quality
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of data; (5) rebuild the DT solution if the current design fails to produce
the expected results; (6) establish the model parameters; (7) deploy
the chosen model; (8) supervise the DT implementation within the
application environment and (9) tune the parameters or configurations
to optimise performance of the model.

We elaborated on the technical challenges in DT implementation
and investigated potential approaches to address such issues. Finally,
we showed promising application criteria, technology trends, and open
research issues related to DT for real nuclear fuel manufacturing indus-
trial implementations. While digital plans are now ubiquitous to ensure
that nuclear plants are built according to precise design specifications,
digital twins might offer the same benefits by ensuring that they per-
form according to such designs. The challenges unique to the nuclear
field will include the development of additional standards, determining
how to best utilise the existing modelling and infrastructure, and the
way to integrate technologies considering cloud security and privacy
issues, while maintaining the desired condition responsiveness and
control capabilities that are yet to become mainstream in the nuclear
industry.
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Appendix. The nuclear fuel cycle

Uranium is a naturally occurring heavy metallic element discovered
235
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in 1789. One of the uranium isotopes found in nature, U is fissile, and
has become the main fuel for nuclear reactors often in a relatively low-
enriched form of uranium dioxide (UO2). The atomic weight of uranium
is 238.07 (Joyce, 2018), its atomic number is 92 and it is slightly
radioactive (Kushner, 1974). It is estimated that the concentration
of uranium in the earth’s crust is 2.8 parts per million. This means
that uranium is as plentiful as lead and more plentiful than silver or
mercury. Approximately 85% of the known uranium global reserves are
located in 6 countries: Australia, Kazakhstan, Canada, Namibia, Niger
and Russia (Piro and Lipkina, 2020).

A.1. Uranium ore concentrate production

Oxides, silicates, phosphates and vanadates are some uranium-
bearing minerals that can be mined commercially for fissile material
useful in nuclear power generation. Most of these ores contain 0.1%
to 0.3% U3O8. Traditionally, there have been two techniques to mine
uranium, open-pit and underground mines (deep mining). However,
alternative techniques such as in-situ leach (ISL) mining have become
more extensively used. The ISL technique uses a number of chemical
solutions that are injected into underground deposits to dissolve the
uranium (Piro and Lipkina, 2020).

The recovery of uranium is planned carefully to extract the fissile
material from mined ore. The ore is transported to a recovery facility
where it is milled and leached. During milling, the uranium bearing
ore is crushed and then ground into a slurry. The purpose is to increase
effectively the surface area to volume ratio of the material, which eases
chemical leaching. Next, the slurry is leached in solution, in some cases,
sulphuric acid is used as the leaching agent, but alkaline leaching can
also be applied. Fig. A.5 shows this process. The leaching agent is
required to remove the uranium and other constituents from the ore.

A subsequent stage in the process requires separation of liquids and
solids. After solids have been separated from a solution, the resulting
liquid solution must be purified. This is accomplished typically using
ion exchange or solvent extraction yielding an enhanced concentration
of uranium in solution. Next, the uranium nearing compounds are
precipitated out of the concentration by the introduction of a neutral-
ising agent such as ammonia, magnesia or caustic soda depending on
the composition of the solution. The final product produced from this
process is a triuranium octoxide (U3O8) which, after drying, produces a
compound still containing some impurities. This compound is referred
to as uranium ore concentrate (UOC) or ‘‘yellow cake’’. This product is
shipped in drums to a conversion facility for further processing (IAEA,
2009).

A.2. UOC to UO3

Concentrated HNO3 at 95-100% is used to dissolve UOC. Oxidising
dissolution occurs to ensure that all the uranium is dissolved. This pro-
cess produces a slurry that contains approximately 40% uranium (IAEA,
2009; Murchie and Reid, 2020). A subsequent filtration stage removes
impurities from the UOC such as nitrogen oxide gases. Depending on
the concentration of the HNO3, one of the following chemical reactions
occur where the resulting uranyl nitride (UO2(NO3)2) is the product of
interest

U3O8 + 8NHO3 → 3UO2(NO3)2 + 2NO2 + 4H2O (A.1)

or

3U3O8 + 20HNO3 → 9UO2(NO3)2 + 2NO + 10H2O (A.2)

The uranyl nitride slurry is filtered through rotary filters. The result-
ing filtered liquor contains 35% w/v uranium. Subsequently, the uranyl
nitrate solution is treated by using tributyl phosphate (TBP) extraction
techniques.

+ −
UO2 + 2NO3 + 2(TBP) ⟷ UO2(NO3)2 ∙ 2(TBP) (A.3)
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Fig. A.5. A generic schematic of the leaching process.
Source: Adapted from Piro and Lipkina (2020).

The extracted compound is discharged onto a water flow at 60 ◦C
where it is then precipitated to form a concentrate 110 𝑤∕𝑣 uranium.
Finally, the precipitate must be calcined to produce UO3 with a deni-
tration process at about 300 ◦C to 350 ◦C which can be described as

2UO2(NO3) → 2UO3 + 4NO2 + O2 (A.4)

or

UO2(NO3) + 𝑥H2O → IO3 + NO2 + NO + O2 + 𝑥H2O (A.5)

The entire process is illustrated in Fig. A.6.

A.3. UO3 to U𝐹4

The conversion process consists of the hydration of UO3 by adding
dilute nitric acid and a wetting agent. This highly exothermic reaction
forms a slurry that is dried in a kiln. This part of the process creates
uranium trioxide hydrate as a free flowing powder. The hydrate is
dehydrated by an endothermic dehydration process to remove as much
H O as possible. The dehydrated UO is reduced subsequently by
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2 3
hydrogen as a reducing agent (IAEA, 2009; Murchie and Reid, 2020),
hence

UO3 + H2 → UO2 + H2O. (A.6)

Finally, the UO2 compound goes to a hydrofluorination stage in
order to obtain metalling uranium. The UO2 is reacted with hydrogen
fluoride to produce UF4 at 450 ◦C, hence

UO2 + 4HF → UF4 + 2H2O. (A.7)

Fig. A.7 illustrates the UF4 production process.

A.4. U𝐹6 production

It is known that the cost of UF6 production depends deeply on the
cost to manufacture and handle fluorine and its precursor, hydrogen
fluoride. Both substances are extremely difficult and dangerous sub-
stances to work within a manufacturing facility (Murchie and Reid,
2020). Hydrogen fluoride (HF) is produced by the reaction of fluorspar
(calcium difluoride) with sulphuric acid (DOE, 1999), hence

CaF2 + H2SO4 → 2HF + CaSO4. (A.8)

This reaction is endothermic and reactors are run typically at tem-
peratures higher than 200 ◦C. HF is a transparent substance that
dissolves in water to become hydrofluoric acid in aqueous form. This
acid is highly corrosive and hazardous. Fluorine can be isolated by
electrolysing molten salt KF ∙ 2HF, hence

KF ∙ 2HF = K+ + HF−2 . (A.9)

Fluorine is the most reactive element in the periodic table as it
reacts with all other elements except helium and neon. Reactions of
fluorine are generally highly exothermic due to its reactivity. Therefore,
the construction of a manufacturing plant to handle fluorine in a safe
manner is usually expensive. The production of uranium hexaflouride
(UF6), requires uranium tetraflouride or green salt (UF4) to be passed
into a Monel reactor with elemental fluorine in a fluid bed using
nitrogen for direct fluorination. This is a highly exothermic reaction at
450 ◦C. The resulting UF6 is filtered and condensed into a liquid. The
process is illustrated in Fig. A.8 and described in the following chemical
reaction:

UF4 + F2 → UF6 (A.10)

A.5. Uranium enrichment

Uranium enrichment methods have been demonstrated since the
1940s. These methods are based on a physical separation, hence they
are not chemical reactions. Gaseous diffusion enrichment was the first
commercially-available process. The system uses a diffuser or converter
that has a number of diffusion barriers (i.e. membranes with perforated
sub-micron holes). Gaseous UF6 is pumped into the diffuser at a high
pressure where molecules comprising 235U tend to pass through the
membrane to a lower pressure section of the converter. This diffused
gaseous UF6 in the low pressure stage contains a higher concentration
of 235U. This is processed in a subsequent stage where the process is
repeated to achieve the required enrichment concentration (Murchie
and Reid, 2020).

Gas centrifuge enrichment technology allows for the separation of
gaseous UF6 with a higher concentration of 235U by employing long
narrow rotary cylinders. The cylinders rotate at around 50 000 rpm.
The resulting centrifugal forces operate at thousands of times that of
gravity, creating a density gradient in the gas mixture. 238U molecules
gather at the centre of the cylinder while the heavier 235U move
towards the outer wall. Both depleted and enriched uranium streams
are withdrawn from the rotary cylinder via a fixed outlet at each end
(USNRC, 2012a). A general uranium enrichment process is shown in
Fig. A.9.
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Fig. A.6. UOC to UO3 conversion process.
Source: Adapted from Alfaro et al. (2015).

Fig. A.7. UF4 production from UO3 by hydrofluorination.
Source: Adapted from Alfaro et al. (2015).

Fig. A.8. UF6 production from UF4 by fluidisation method based on Springfields Fuels Ltd (Westinghouse, 2024b).

Fig. A.9. Block flow diagram for an enrichment process.
Source: Adapted from Murchie and Reid (2020).
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Fig. A.10. Conversion of UF6 to UO2 using the IDR process.
Source: Adapted from Murchie and Reid (2020).
Fig. A.11. Fuel assembly fabrication based on a process at Springfields Fuels Ltd (Westinghouse, 2024a).
A.6. UO2 production

A commercial process for producing UO2 called Integrated Dry
Route (IDR) was developed in the United Kingdom in 1969 (IAEA,
2009). The IDR process has the benefit of avoiding the use of liquids.
In this process, UF6 in solid form is evaporated to a gas by adding heat
to the shipping container inside a vaporisation chamber. The heat is
added by circulation of steam or electric heat through the chamber. The
evaporated UF6 is sent to a hydrolysis reactor where it is mixed with
superheated steam (USNRC, 2012b). The UF6 reacts with the steam
instantaneously and forms uranyl fluoride (UO2F2) powder and HF
gas (Richards et al., 2020; Wang and Pitzer, 2001). This is a highly
exothermic reaction described as

UF6 + 2H2O → UO2F2 + 4HF. (A.11)

When the UF6 reacts with the superheated steam, the reaction takes
place at approximately 260 ◦C. The uranyl fluoride (UO2F2) falls to
the bottom of the chamber and is moved to a slightly slanted rotating
cylindrical kiln. The uranyl fluoride is converted subsequently into
nuclear-grade UO2 powder by means of a counterflow of superheated
stream and hydrogen. The mechanism of the reaction at approximately
600 ◦C proceeds through separate pyrohydrolysis and reduction steps.
Therefore

UO2F2 + H2O → UO3 + 2HF, (A.12)

and

UO3 + H2 → UO2 + H2O. (A.13)

The overall process is endothermic. There is a temperature profile
along the rotating kiln (Murchie and Reid, 2020; IAEA, 2009) that is
controlled to meet the required powder characteristics such as particle
11
size, specific surface area, O/U ratio and bulk density. The IDR is not
the only process available to produce UO2 powder. Nevertheless, it is
the most inexpensive and commonly applied. Another common method
is the precipitation of ammonium uranyl carbonate (AUC) where the
resulting produced UO2 powder has a good flow-ability so that it can be
compacted without a subsequent granulation step (Murchie and Reid,
2020). The UO2 dry conversion process is shown in Fig. A.10.

A.7. Fuel assembly

When UO2 powder has been produced using the IDR method, it is
first blended at a low pressure and then granulated with a number
of additives for lubrication and pore forming. This process provides
green pellets with high stability (USNRC, 2012b). The aforementioned
additives also provide a preferential path for diffusion and help to
improve sintering, as they introduce vacancies in the UO2 crystal
structure.

The UO2 is sent to a pelleting press where it is pressurised into
cylindrical pellets. The shape of the pellets are determined during this
process, usually including chamfers on the edges or dishes at the top.
These shapes are used to improve the mechanical stability of the pellet
during operation. After pressing, the pellets are sintered in a reduced
atmosphere at 1700 ◦C (Ohai, 2002) in order to form a coherent bonded
mass without melting. Grinding is necessary for correction of slight
uneven thermal deformations during the sintering process (USNRC,
2012b). After an inspection process, the pellets are inserted into fuel
clad tubes to constitute fuel pins that are later pressurised and sealed
by Tungsten Inert Gas (TIG) welding. The pins are sent to an annealing
furnace to eliminate any unresolved stresses associated to the welding
process. A gamma scanner is used to corroborate if the pellets are
distributed evenly within the pins. After cleaning the pins, the next step
is the mechanical loading of UO2 pins into rods or assemblies (Kang
et al., 2008). Fig. A.11 shows the overall fuel assembly process.
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