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A B S T R A C T   

Sodium-ion batteries (SIB) are receiving wider attention due to sodium abundance and lower cost. The appli-
cation of hard carbon to SIB electrodes has shown their significant potential to increase rates, capacities, sta-
bility, and overall performance. This article describes the significance of hard carbon, its structural models, and 
mechanisms for SIB applications. Further, this work unveils the potential of plasma methods as a scalable and 
sustainable manufacturing source of hard carbon to meet its increasing industrial demands for energy storage 
applications. The working mechanisms of major plasma technologies, the influence of their parameters on carbon 
structure, and their suitability for SIB applications are described. This work summarises the performance of 
emerging plasma-driven hard carbon solutions for SIB, including extreme environments, and revolves around the 
flexibilities offered by plasma methods in a wider spectrum such as multi-materials doping, in-situ multilayer 
fabrication, and a broad range of formulations and environments to deposit hard carbon-based electrodes for 
superior SIB performance. It is conceived the challenges around the stable interface, capacity fading, and 
uplifting SIB capacities and rates at higher voltage are currently being researched, Whereas, the development of 
real-time monitoring and robust diagnostic tools for SIB are new horizons. This work proposes a data-driven 
framework for plasma-driven hard carbon to make high-performance energy storage batteries.   

1. Introduction 

New and innovative energy storage solutions are evolving with 
NetZero global drive. Sodium-ion batteries (SIB) are receiving wide-
spread popularity and being considered as a successor to lithium-ion 
batteries (LIB). Sodium (Na) has an ionic radius of 1.02 Ao, is quite an 
abundant element with a concentration of 23,000 ppm, and has a car-
bonate cost of ~ £160 per tonne [1]. Whereas, the ion size, abundance, 
and carbonate cost of lithium (Li) are 0.76 Ao, 20 ppm, and £4750 per 
tonne, respectively [2]. Academically, the number of scientific publi-
cations on carbon materials for SIB has reached beyond 1000 per year in 
recent years [3] along with their industrial embrace. SIB usually holds 
lower energy storage capacities than LIB, hence it struggled for more 
than two decades [4] with original equipment manufacturer (OEM) and 
suppliers for its commercialization. However, their applications are now 

expanding beyond stationary energy storage units, particularly for five- 
passenger mid-range (257–450 km) electrical vehicles [1]. Capital 
research investments like the 2023 seed funding call of the Ayrton 
Challenge on Energy Storage (part of £1 billion Ayrton Fund by the UK 
Government) and, the NEXGENNA project funded by The Faraday 
institution, UK, are specifically boosting hard carbon research for SIB. 

The carbon layers are perceived to prevent side reactions [5] and 
have shown their superior performance for SIB with retention capacities 
of 97 % and a prolonged lifespan of above 1500 cycles [6]. Particularly, 
hard carbon is being perceived as a promising candidate for SIB anode 
applications. This carbon allotrope is neither fully crystalline nor fully 
amorphous, but a mixture of rumpled and buckled graphenic sheets [7]. 
Hard carbon offers high conductivity of ions and electrons, structural 
stability, high capacity, lower working voltage, and low cost [8]. The 
European Commission report [9] has shown an attractive comparison of 
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hard carbon-based SIB with Lithium iron phosphate (LFP) batteries for 
energy density, cyclic durability, cost, and safety. The hard carbon based 
SIB was conceived as safer to transport than LIB; fast charging to 80 % 
state of charge in 15 min; cell cost was estimated at £0.036/Wh against 
£0.052/Wh for LFP; energy density in the range of 100 to 150 Wh/kg 
when compared to LFP range of 120 to 180 Wh/kg; capacity retention 
higher than 90 % at − 20 ◦C which remains lower than 70 % for LFP; the 
cycle stability of above 2000 which more than 3000 for LFP. Commer-
cial hard carbon based SIB cells launched in 2021 have shown higher 
energy densities of 160 Wh/kg with a potential of up to 200 Wh/kg and 
extraordinary cyclic stability of 12,000 cycles. 

Mostly, the hard carbon for SIB is derived from numerous sources 
such as biomass [10], resin carbon [11] bio-waste [12], and organics 
[13] including, plants [14], cellulose [15], cedarwood Bark [16], Jute- 
Fiber [17], algae [18], pyroprotein [19] etc. The organic resources 
may have some limitations around commercial scalability as the hard 
carbon structure usually forms via specialized methods, such as pyrol-
ysis, and interplanar distance between graphenic sheets is modulated 
[13] at high temperatures beyond 1000 ◦C [2,20]. Plasma techniques 
are emerging as a commercially viable candidate for the materials 
processing of SIB anodes. The hard carbon made through pyrolysis often 
needs post-processing to increase heterogeneity, disorder, and defective 
carbon entities. The microwaving process has shown the elevating ca-
pacity and rate capability of typical hard carbon. A short microwave 
treatment of only 6 s is demonstrated to uplift the reversible capacity of 
hard carbon from 204 to 308 mAh/g for SIB applications [21]. Spark 
plasma sintering has emerged [22] as a potential candidate to deposit 
hard carbon for SIB anodes with high throughput. The hard carbon 
produced with spark plasma sintering has shown better performance for 
SIB batteries due to higher conductance and lower oxygen contents 
achieved in rapid pyrolysis which are contrary to the typical methods. 
The preliminary proof-of-concept studies have demonstrated superior 
initial Coulombic efficiency (ICE) of 88.9 % with a rate capacity of 136.6 
mAh/g at 5 A/g, and the reversible capacity of 299.4 mAh/g. 

This work describes the mechanism of hard carbon for SIB applica-
tion, hard carbon atomic models reported in history to the latest 
computational methodologies to study atomistic behavior to improve 
structure-property relationship for SIB anodes. An atomistic structure, 
variation in carbon sp2 and sp3 proportions, and disorder in hard carbon 
produced with plasma techniques are explained. Common plasma 
deposition i.e., physical vapor deposition (PVD), plasma enhanced 
chemical vapor deposition (PECVD) and low-pressure or atmospheric 
plasma deposition mechanisms and their suitability for SIB application 
are discussed. The emergence of core plasma techniques for Na-based 
batteries in order to uplift their capacities, stability and cycle life are 
reviewed. The last section highlights the current research challenges, 
ongoing aspirations and a digital manufacturing framework to make 
next-generation plasma-derived hard carbon SIB. 

2. Mechanism of hard carbon for sodium-ion batteries 

Hard carbon is getting recognition these years for SIB. The 
Coulombic efficiency of Na+ batteries depends on the interplay of Na 
ions leaving and returning to the electrode and could be formulated as 
Eq. (1) [23]. 

Coulombic Efficiency =
Discharge capacity

Charge capacity

=
No.of Na+return to cathode

No.of Na+ ions leaving cathode
(1) 

Fig. 1 presents the hard carbon structure and corresponding Na+

mechanisms for SIB. The atomic bonding and microstructure of hard 
carbon significantly drive the overall battery performance. The effi-
ciency of SIB depends on various factors such as surface area, surface 
energy, interplanar distance in graphitic sheets, number of vacancies 
and defects, porosity, active sites, and the pathway for the mobility of 
Na+. Fig. 1 presents the known mechanisms of SIB by absorption, 
insertion, and pore/cavity filling of hard carbon. The adsorption of Na+

occurs on active sites of the available surface area of hard carbon, which 
is normally the defects, vacancies, edges and active spots on the exterior 
of surfaces or the accessible area via open pores, cavities, and tunnels. 
The absorption in a pore and cavities is irreversible storage capacity. 
Adsorption of Na+ overall influences the sloping region capacity of SIB. 
The insertion mechanism covers the penetration and mobility of Na+

between graphene layers. Various models are reported in the literature 
advising recommended interplanar distance for Na ions and graphene 
sheets. Depending on insertion behavior, it impacts sloping and plateau 
capacities. The sloping capacity is affected by the random insertion of 
Na+ among graphene layers with broad energy distributions, whereas 
the plateau capacity is influenced by procedural intercalation among 
graphene layers. Whereas, a pore-filling mechanism is attributed to the 
clustering of Na+ in cavities and pores and their dimensional aspects. 
The pore-filling mechanism also impacts the plateau capacity of SIB. 
More details of Na+ mechanisms for SIB are available in literature re-
ports [24]. 

Fig. 2 presents the details of Na+ storage mechanisms for SIB and 
how a storage mechanism or the combination of storage mechanisms 
impacts SIB storage capacities. It can be seen that current density and 
potentials are significantly boosted in adsorption-insertion hybrid 
mechanisms when compared to adsorption only. 

3. Hard carbon models 

3.1. Empirical models 

There are continuous developments to illustrate hard carbon struc-
tures from history to the present era. Fig. 3A presents the developments 

Fig. 1. (A) Illustration of hard carbon structure and corresponding Na+ storage mechanisms for sodium-ion batteries. 
Adapted from [24] CC BY, 2022, Wiley-VCH. 
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in hard carbon models reported in the literature. Franklin [26] has 
presented a two-dimensional illustration of disorder crystallites/sheet 
bundles cross-linked with each other in random orientations. His work 

suggests formation of graphitizing and non-graphitizing carbon on 
thermal treatment between 1000 and 3000 ◦C. The density of graphi-
tizing and non-graphitizing carbon and mean number of average layers 

Fig. 2. The illustration of common Na+ storage mechanisms and their potential vs capacity relationship as a function of pyrolysis temperatures. 
Reproduced with permission: Copyright 2019, Wiley-VCH [25] 

Fig. 3. (A) Major atomic structural models of hard carbon reported in history. Reproduced with permissions: Copyright 2019, Elsevier [28] and Royal Society of 
Chemistry [34]. (B) Molecular dynamics studies presenting overall atomistic structure and individual sp2 and sp3 carbon networks in plasma-derived amorphous 
carbon with a proportion of 71.3 % sp3 bonds. Reproduced with permissions: Copyright 2015, Elsevier [33]. The authors of this work, Zia et al. propose hard carbon 
as a multi-scale disordered structure and suggest extending the definition from micro and mesoporous to atomistic levels. 
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per parallel group increase with the increase in temperature. Further, 
the layer diameters reduce with increase in propotion of non-organized 
carbon. Likewise, the Shinn [27] model illustrates aromatic rings with 
several active sites, dangling bonds, and vacancies. His work originates 
from the coal liquefaction process and has identifies single-stage and 
two-stage structural products which differ in molecular weights, func-
tionality, and stability. Steven and Dhan’s [4] model is quite active these 
years and is known as “house of cards”. It illustrates the accessible 
pathways of ions among sheets. Their work as claimed as first study 
demonstrating similarity between insersion mechanoms for sodium and 
lithium based on their model. 

It is conceived that the hard carbon structure mostly includes 
twisted, rumpled, buckled graphemic sheets with various morphological 
features such as curves, bents, and non-planer orientations in three di-
mensions [28]. Hence, various three-dimensional models (Ban et al. 
[29], Townsend et al. [30], Harris and Tsang [31], and Terzyk et al. 
[32]) have attempted to reflect such features in their illustrations. Ben 
et al. [29] has performed imagining of non-graphitizing carbon which is 
heat treated from 529.85 to 2699.85 ◦C. Their work proposed a ribbon 
shaped structure based on their electron microscopy observations of 
intertwined crystallites which comprise of “turbostratically packed ag-
gregates of graphitic basal planes”. Townsend et al. [30] have performed 
computational modelling and generated various grapahtic structures 
with defined number of carbon rings. Their studies have found that the 
random structures are exceptionally stable when compared with peri-
odic ones. Likewise, Terzyk et al. [32] model has explored non- 
graphitizing carbon through a group of fullerene-like, curved frag-
ments randomly arranged together. Their work advance knowledge on 
pore size distributions and calculation of curved sp2 sheets which do not 
contain hexagonal rings. Harris and Tsang [31] have also identified 
fullerene-like structure on heat treatment of non-graphitizing carbon 
between 2100 and 2600 ◦C. It could be deduced that all the models 
probably have attempted to highlight the presence of graphitic and non- 
graphitic structures, non-standard atomistic arrangements, porosity, 
defects, vacancies, dangling bonds, active sites, and accessible pathways 
which are likely to maximize the opportunities for ion storage and 
mobility. 

This work extends the definition of hard carbon from micro and 
mesoporous to atomistic levels with an example of the plasma-derived 
amorphous carbon which is composed of disordered carbon atoms 
connected in the form of chains and rings and develop carbon sp2 and sp3 

network with atomic scale porosities. Fig. 3B presents the molecular 
dynamics studies of plasma-derived carbon with 71 % sp3 contents [33]. 
A highly disordered carbon structure can be observed either for com-
bined or individual sp2 and sp3 carbon networks, thus, the availability of 
higher surface area, number of active sites and dangling bonds, and 
atomic scale porosity make it a high potential candidate for superior 
electrochemistry of elements with comparable atomic/ionic sizes. 

3.2. Computational models 

Application of computational tools on hard carbon for SIB including 
physics-based modelling [35], first-principles studies [36,37], image 
processing [38,39], density-functional theory and molecular dynamics 
[40], and machine learning [41] taking hard carbon studies to new 
horizons by developing atomistic understanding. A physics-based 
pseudo-two-dimensional [35] model of hard carbon for SIB anode has 
shown high accuracy in predicting discharge profiles. This model used 
genetic algorithm and experimental data to perform rapid parametric 
optimization and is aspirant to do multi-objective optimizations by 
including cell design, electrode material and dimensional features, and 
cost etc. First-principles calculations based on joint density functional 
theory using ‘nonlinear polarizable continuum model’ and ‘Charge- 
asymmetric nonlocally-determined local electric solvation model’ sug-
gests preferred sites for adsorption which are mono-vacancy, di-va-
cancy, and Stone-Wales due to implicit interaction in hard carbon for SIB 

application [37]. Similarly, first-principles calculations using joint 
density functional theory, nonlinear polarizable continuum model and 
pseudopotential atomic orbital method have investigated the armchair 
and zigzag edge parameters to understand the charge transfer mecha-
nisms and energy profiles with solvents in aspiration to optimize elec-
trolyte for SIB [36]. Similarly, the density functional theory and Monte 
Carlo simulations are used to discover new materials and formulations. 
Those computational studies have suggested T- Carbon as a potential 
element for battery anodes. The T‑carbon exhibits a diamond phase with 
an acetylene bond in a hollow structure [42] and has good potential for 
SIB batteries. Referring to image processing techniques, an image- 
guided construction study of hard carbon gives the atomistic struc-
tural representation, where the algorithm automatically calculates the 
interlayer spacings. This digital development helped to understand the 
structure-property relationship and is considered a pathway to fabricate 
high-performance hard carbon anodes for SIB [38]. Likewise, intelligent 
image analysis frameworks are being developed to analyse hard carbon 
morphologies with fringe analysis and Gabor filtering algorithm for 
robust fetching of accurate, meaningful, and reliable data to understand 
the property-structure relationship of hard carbon for SIB [39]. 

Fig. 4 presents the molecular dynamics studies [43] of carbon that 
reflects a relationship between atomic density and sp3 network. The blue 
and red dot corresponds to carbon sp2 and sp3 atoms, respectively. 
Referring to 4 A, the sp3 amounts of 12.5 %, 59 % and 76 % correspond 
to the density of 2.10 g/cm3, 2.88 g/cm3, and 3.31 g/cm3, respectively. 
Likewise, Fig. 4B also suggests that the density of carbon proportionally 
increases with sp3 fraction. Another molecular dynamics study [44] of 
DLC made with carbon ion energies of 1 eV and 70 eV which corre-
spondingly influence their sp2 and sp3 compositions and porosity. For 
mechanical applications, 70 eV energy is desirous as DLC aimed to have 
the highest possible sp3 phase and density which uplifts overall hardness 
and tribological performance. However, a much higher density may 
hinder sodium mobility for sodium battery applications. A recent study 
suggests that there are about ~40 % surface defects in tetrahedral car-
bon [45]. Such surface defects, porosities and tunnels are essentially 
required for sodium ion mobility in SIB applications. Hence, there is a 
need to investigate the optimum amount of surface defects and poros-
ities required for superior SIB performance. Therefore, plasma-based 
carbon needs to be revisited for scientific mechanisms, process- 
property-performance relationships, and limitations specifically in the 
context of sodium battery applications. 

Fig. 5A presents the range of atomic environments forecasted 
through computational methods after validation of experimental data. 
Depending on precursors, synthesis methods and experimental condi-
tions, hard carbon could have different atomistic patterns such as hex-
agonal rings, 3, 5 and 7 membered rings, edge sites, pores, methyl and 
methylene sites, sp2 and sp3 bonds. Fig. 5B presents the sodium mapping 
of 8000 samples to reflect their binding distribution with hard carbon. 
The image is superimposed with distribution of sodium sites in hard 
carbon across surfaces, crease, and interlayer. It is conceived that that 
sodium attach at continuous of void volume; in lines with crease of folds 
and bends; and at interlayer sites where sheets or structures are pitched 
together. More details are available in the literature report [46]. 

3.3. Data-driven approach for modelling 

Machine learning is emerging to reveal hard carbon atomistic be-
haviours for SIB batteries. A combination of machine learning and 
density functional theory has demonstrated Na intercalation behaviours 
for disorder carbon [40]. Machine learning tools are used to optimize 
structural parameters (interlayer spacing d002, a-axis La, and the c-axis 
Lc) of disordered carbon having a vital potential to give higher ICE, 
capacity and working plateau for SIB batteries [41]. Further, a stan-
dardization process was proposed [41], as shown in Fig. 6, which sug-
gests standardizing structure-property data such as the data obtained 
from Raman spectroscopy, X-ray crystallography, BET (Brunauer, 
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Emmett and Teller) etc. and corresponding ICE, capacities, plateau, rate 
and cycles. The standardised data will lead to the formation of a struc-
tured database that can be continuously updated. Further, the machine 
learning-based optimization and predictive models will process the data 
to suggest best parameters to develop high-performance hard carbon 
anodes for SIB. 

4. Plasma derived hard carbon 

Typically, the carbon is applied on SIB anodes by mechanical mixing 
[47] and followed by high-temperature pyrolysis. However, the plasma- 
based deposition of carbon has delivered superior performance for LIB 
and has vital potential for SIB considering quality, scalability, and cost. 
The following sections dedicatedly describe the structure and deposition 
methodologies of plasma-based carbon and their suitability for SIB. 

Fig. 4. The atomistic structure of carbon virtually deposited through molecular dynamics simulations presenting a relationship between sp3 proportion and density 
of plasma-derived carbon. 
Adapted from [43], CC BY, Springer Nature. 

Fig. 5. (A) Range of atomistic arrangements and (B) superimposed sodium locality at surfaces (red circles), crease (blue circles) and interlayer (green circles) in hard 
carbon studied with computational tools. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
Reproduced with permissions: Copyright 2022, WILEY [46]. 

Fig. 6. A standardization framework for disorder carbon materials on structure-property data structuring, continuous updating of the database, and screening 
optimum parameters using machine learning tools. 
Reproduced with permissions: Copyright 2022, The Royal Society of Chemistry [41]. 
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4.1. Structure of plasma derived hard carbon 

Plasma technologies are well-recognized to deposit a variety of car-
bons such as diamond-like, graphite-like, amorphous, nanocrystalline, 
granular, etc. PVD and PECVD have a history of producing carbon layers 
and their superior performance for LIB has been investigated with size, 
thickness [48], coverage, and morphology [49] factors in past years. The 
plasma-based hard carbon solutions are now emerging for SIB. In pre-
liminary studies, hard carbon derived from spark plasma sintering has 
shown a superior initial coulomb efficiency of 88.9 % [50]. 

The synthesis of hard carbon via plasma methods and its perfor-
mance for SIB are governed by the composition of carbon sp2 and sp3 

phases in the hard carbon. Fig. 7 explains how the sp2 and sp3 compo-
sition influence the production of hard or soft carbons. Referring to 

Fig. 7A, the ternary diagram shows the mapping of various types of 
carbon or hydrogenated carbon structures. The ternary diagram presents 
the atomic arrangements of carbon atoms in diamond (100 % sp3), 
graphite (100 % sp2) and hard carbon (mixture of sp2 and sp3) material. 
The diamond is composed of a tetrahedral structure where every carbon 
atom develops covalent bonding with four surrounding carbon atoms. 
While the carbon atoms arrange themselves into an aromatic ring and 
make covalent bonds with adjacent carbon atoms within the same plane 
for graphite. Whereas in the case of hard carbon, an engineered carbon 
structure, is highly disordered and a mixture of sp2 and sp3 bonds where 
sp2 atomic clusters are bonded to sp3 networks. The structure is often 
recognized as diamond-like with a higher sp3 phase and graphite-like or 
polymeric carbon [51] with a higher sp2 phase, respectively. There is no 
precise location of diamond-like carbon (DLC) structure within a ternary 

Fig. 7. (A) Ternary diagram of carbon structures on the bases of sp2 and sp3 compositions and hydrogenated and non‑hydrogenated carbon types. Reproduced with 
permissions: Copyright 2017, KOBELCO, Japan [54]. (B) Ferrari Three-stage model correlation carbon structure and Raman spectra information (IG peak positions, 
ID/IG) as a function of sp3 contents. Reproduced with permissions: Copyrights 2003, American Physical Society [53]. (C) Relationship between IG peak position 
FHWM for carbon structure, suggesting highest disorder against Raman shift of 1550 ± 10 cm− 1. Reproduced from CC 4.02021, MDPI [55]. (D) A relationship 
between sp3 vs FWHM suggests that the sp3 bonds increased with carbon disorder in layer. Reproduced with permissions: Copyright 2010, Elsevier 2010 [56]. 
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diagram but generally, it is the central zone of ternary diagram [52] 
relatively closer to sp2 - sp3 element. The transition between graphite- 
like and diamond-like structure occurs with the transformation of 
amorphous carbon (a-C) from aromatic rings into carbon chains devel-
oping a tetrahedral carbon (ta-C) structure as mapped in ternary dia-
gram (Fig. 7A) and depicted in Fig. 7B. The PVD and PECVD methods 
used to make these diamond-like hard carbon are detailed in Section 4.2. 

Fig. 7B is a Ferrari three-stage model [53] that correlates the carbon 
structure and Raman information as a function of sp3 percentage. The 
level of disorder in hard carbon is qualitatively assessed with their IG 
peak positions and FWHM values. The graphitic materials mark their IG 
position between the Raman shift of 1580 and 1600 cm− 1. The a-C (ring 
structure) usually has a 20 % sp3 bond and the ta-C (chain structure) has 
sp3 bonds up to 85 % marking the IG peak position at the Raman shift of 
1520 cm− 1 and 1570 cm− 1, respectively. The diamond-like hard carbon 
structure (as depicted in Fig. 7A), a highly disordered mixture of ring 
and chain structure marks IG values between 1540 cm and 1560 cm− 1. 
The ID/IG proportions change with a carbon structure, accordingly. 
Likewise, the crystalline materials show a sharp narrow peak at a certain 
Raman wavelength, such as diamond at 1332 cm− 1, silicon at 5,20 cm− 1 

and graphite around 1600 cm− 1. Hence, narrow Raman peaks corre-
spond to small FWHM values while the broader peaks give higher 
FWHM values and reflect a proportional increase in structural disorder. 
Fig. 7C presents that the FWHM of diamond-like hard carbon structure is 
highest at Raman shift of 1550 ± 10 cm− 1 where the highest disorder 
could be expected due to a mixture of ring and chain structures. Like-
wise, Fig. 7D presents the direct relationship of FWHM vs sp3 contents 
which suggests that the increasing disorder ensures a higher number of 
sp3 bonds. The high disorder in carbon atoms and higher number of sp3 

bonds maximize the chances of Na+ adsorption, insertion, and pore- 
filling mechanism to enhance the overall performance of SIB batteries. 

Fig. 8A presents the HRTEM atomic mapping of free-standing 
monolayer carbon. The images are processed for better visualization 
and identification of compositions such as pentagons in red colour, 
heptagons and octagons in blue colours, and hexagons in purple colour 
and green colour is used for crystallites. Fig. 8B presents the zoomed-in 
image of the red square in Fig. 8A. The mixture of carbon rings and 
varying angles among each ring reflect the disorder of structure in a two- 
dimensional plane. Fig. 8C presents ReaxFF Molecular dynamics studies 
of hard diamond-like carbon structure in three dimensions with a den-
sity of 3240 Kg/m3 and cross-validated with XAES experimental studies. 
It presents the tetrahedral network of 71.5 % sp3 bonded carbon atoms 
(red), 28.1 % sp2 bonds (blue) and 0.4 % of sp1 bonds (green). The sp1 

bonds are unstable with the shortest lifespan. Along with highly disor-
dered networks of carbon atoms, it can be observed that the atomic 
bonding composition varies from bulk to surface or vice versa. The sp1, 
sp2 and sp3 proportions are 11 %, 37 %, and 52 % at the surface while 0 
%, 32 %, and 68 % within the bulk. Fig. 8D presents the MD simulation 
of hydrogenated hard carbon [57,58]. The attachment of hydrogen 
atoms to the dangling bonds reflects the enriched availability of active 
sites and anticipates a higher potential for Na+ to develop similar 
mechanisms for SIB applications. Fig. 8E and Fig. 8F are a detailed 
visualization of Fig. 8C and separately present a tetrahedral network of 
71.5 % sp3 bonds (Fig. 8E) and sp1 and sp2 bonds (Fig. 8F) in 3180 Kg/m3 

dense hard carbon. 

4.2. Manufacturing of plasma derived hard carbon 

The empirical [61] and experimental [62] studies suggest that the 
optimum ion energy of 100 eV gives the highest sp3 proportion in carbon 
films [63] when made through plasma methods. Fig. 8 gives an overview 
of three major plasma deposition groups to make hard carbon for SIB 
anodes. The plasma deposition groups work on varying principles and, 
therefore, produce carbon species of different kinetic energies. 

4.2.1. Physical vapor deposition (PVD) technology 
Physical vapor deposition (PVD) mainly includes sputtering, evap-

oration, arc discharge, and numerous types of ions, electrons, and laser 
beam methods where the material to be deposited is transported from 
the solid carbon target and deposited at substrates to deposit a thin 
carbon layer. 

4.2.1.1. Sputtering deposition. Fig. 9A illustrates the fundamental sput-
tering process. In sputtering, the carbon atoms leave the target, get 
charged by receiving free electrons and ions, and grow into nano seeds 
by physical collusions and making chemical bonds due to electronega-
tivity differences. The nano seeds pass through coalescence and clus-
tering phases and arrive at substrate (i.e., the anode in the case of SIB) as 
atomic clusters by passing through seeding, coalescence, and clustering 
phases to deposit a thin film of hard carbon. More details on the growth 
mechanism could be found in the literature [64]. The carbon species 
usually have kinetic energies in the range of 2.5 to 25 eV [51] for 
sputtering depositions. The sputtering technology is sub-categorized as 
magnetron [65], direct-current [66], radio-frequency [67], balanced 
[68] and unbalanced [69] magnetron sputtering and some other vari-
ants [70] subjected to the type of electric power inputs and arrange-
ments of magnetic fields. The corresponding nature of electrostatic 
potentials and magnetic fields influence the degree of ionization of 
carbon atoms, growth mechanism, deposition rates, density and porosity 
in carbon films. Usually, the sp3 phase in carbon made with sputtering 
methods remains 50 % or lower unless made with specialized sputtering 
techniques [71]. 

4.2.1.2. Arc deposition. The arc technology is well recognized for 
depositing carbon with higher sp3 bonds. The sp3 phase in hard carbon is 
often above 80 % when produced with arc systems [72,73]. The arc 
plasma is ignited by applying a high electric potential between elec-
trodes. The carbon atoms usually have energies in the range of ten to 
several hundred [74] eV in arc discharge. There are two common cat-
egories in arc discharge deposition. The substrate is either directly 
exposed to arc discharge [75] or the plasma is transported [76] through 
C, S, and T-shaped ducts to a substrate as shown in Fig. 9B. The plasma 
density and transportation are regulated with the application of mag-
netic fields. The plasma ducts are made with single or double bends (C, 
S, and T shapes) to filter out unwanted microparticles. The yield rate and 
porosity are usually higher for direct depositions which are reduced in 
single and double-bend arc systems. Considering hard carbon re-
quirements for SIB, the direct arc plasma discharge would be suitable to 
produce a hard carbon structure with high throughput and relatively 
more porosity. Whereas the single and double-bend cathodic arc systems 
have significantly lower deposition rates and are chosen in aspiration to 
make dense and defect-free carbon layer which is not desired for SIB 
batteries. 

4.2.1.3. Ions, electrons and laser based depositions. The carbon is also 
deposited with numerous types of energy beams, such as ion [77], 
electron [78], or laser beams [79]. Fig. 9C shows the deposition of thin 
film deposited with lasers as a representative example. Irrespective of 
type, the energy beam sputters the carbon atoms from the target which 
are then transported to a substrate in the form of atoms or ions to form a 
thin film. Although, pulsed laser deposition, ion beam and electron 
beam depositions are quite common to form a hard carbon. These 
methodologies may have limitations for SIB anode applications due to 
small-area deposition. 

4.2.2. Plasma enhanced chemical vapor deposition (PECVD) technology 
Contrary to solid carbon sources in PVD, the Plasma Enhanced 

Chemical Vapor deposition (PECVD) technique deposit a hard carbon 
layer from carbonous vapours formed by chemical reactions from 
gaseous precursors [80] in the presence of electrical and magnetic 
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Fig. 8. (A) HRTEM and colour processing atomic mapping of free-standing monolayer carbon and (B) zoomed-in red square in (A) presenting disorder/mixture of 
carbon atomic structure in a two-dimensional plane. Reproduced with permissions: Copyright 2020, Springer Nature [59]. (C) ReaxFF Molecular dynamics of hard 
diamond-like carbon studies present a combined three-dimensional network of sp2 and sp3 carbon atoms. While (D) presents the atomic scale molecular structure of 
hydrogenated hard carbon (large circle presents carbon and small circles present hydrogen). Reproduced with permission, 2006, IOP Publishing [57]. (E) presents sp2 

and (F) presents sp3 network of carbon atoms presented in (C). Fig. 6C, E and F reproduced from CC BY 2007, IOP Publishing [60]. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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potentials. Benzene, acetylene, cyclohexane are common examples of 
gaseous precursors that give higher deposition rates of hard carbon than 
methane and ethane [81]. Similar to PVD, the PECVD is also sub- 
categorized based on radio-frequency, alternating current, direct cur-
rent, microwave plasma etc. Fig. 9D and E show representative examples 
of alternating current and microwave plasma based PECVD reactors. 
Each method varies in mechanism and provides certain levels of disso-
ciation energy to carbon precursors. The above-described methane, 
ethane, cyclohexane acetylene, and Benzene correspond to ionization 
potential (eV) of ~ 12.4, ~ 11.4, ~ 9.8, ~ 9.3, and ~ 9.25, respectively 
[81]. Hence, different precursor needs a different level of energy inputs 
to produce carbon species with 100 eV ion energies. Similarly, the hard 
carbon density also depends on the electrostatic potential provided to 
the substrate [82]. The PECVD methods can offer more flexibility for 
hard carbon SIB anodes in terms of secondary and tertiary doping, 
reactive synthesis, high-temperature deposition and post-thermal 
treatments. 

4.2.3. Atmospheric plasma deposition technology 
PVD and PECVD technologies require deposition of hard carbon 

under a high vacuum and some factors are also associated with high 
capital cost, confined scalability, product complexity, and prolonged 
process time. The atmospheric plasma deposition [83] family is swiftly 
growing these years to provide rapid, economical, and higher deposition 
rates of carbon. The plasma is produced between two electrodes and 
atmospheric plasma setups vary by radio frequency, alternating current, 
direct current, and microwave plasma types and ambient or aqueous 
environments. Micro-plasma [84], dielectric-barrier-discharge [85], 
electrolysis [86], plasma guns [87], plasma jets [88], and microwave 
resonators [89] are common atmospheric plasma deposition systems to 
deposit carbon. Fig. 9F shows the dielectric-barrier discharge as a 
representative example of the atmospheric plasma family. Normally, the 
atmospheric plasma reactors require small capital investment and are 

custom-built and tabletop setups. The electrode designs and configura-
tion provide tremendous flexibility to synthesise nanomaterials and 
functional layers specific to substrate morphologies. The array of elec-
trodes promotes large-area deposition on scalability aspects. 

Irrespective of the plasma deposition family, the deposition param-
eters greatly influence the characteristics and performance of hard 
carbon. Ion energy, ion flux, plasma frequency and density, electrostatic 
potentials, magnetic fields, thermal environments, vacuum levels in case 
of PVD/PECVD, process and reactive gas and their flow rates signifi-
cantly modulate deposition rates, layer thickness, and mainly the 
amount of sp3 bonds in hard carbon which govern their electrochemical 
performance. The process-structure-property relationships of plasma- 
derived carbon are available in the literature [81,95,96]. 

5. Emerging plasma-derived hard carbon solutions for sodium- 
ion batteries 

Referring to plasma applications for sodium batteries, the oxygen 
plasma treatment of hard carbon for SIB is reported to turn hard carbon 
surfaces into a hydrophilic nature for better solid electrolyte interfacing 
[97]. The oxygen plasma processing has uplifted specific capacity from 
225 to 325 mAh/g (44 % increase) at the current rate of 50 mA/g. 
Further, incorporating oxygen and nitrogen groups is anticipated to 
yield long-term cyclic performance [98]. Similarly, facile oxygen plasma 
process of hard carbon at room temperature, 30 MHz frequency and 300 
W power [99]. The oxygen plasma processing has enhanced initial 
Coulombic efficiency from 60.6 % to 80.9 % (33 % increase) and also 
reflects the enrichment of Na+ in active spaces after the addition of 
oxygen groups. 

Similarly, the PECVD system is used to carbonize phenolic resin 
aerogel to develop integrative carbon network material [100]. The 
PECVD supported large-scale processing and assisted in regulating ox-
ygen groups and carbon structure to boost rate and cycle capabilities. An 

Fig. 9. Representative examples of Plasma Vapor Deposition methods such as (A) Sputtering, (B) Arc Discharge, (C) laser/electron/ion beams; Plasma Enhanced 
Chemical Vapor Deposition methods: (D) Typical PECVD deposition and (E) Microwave enhanced PECVD deposition; and Atmospheric Plasma Deposition family 
such as (F) Dielectric Barrier Discharge to deposit carbon layers. 
Reproduced from A [90] B [91], C [92], D [90], E [93], and F [94]. 
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integrative carbon network-based anode made with the PECVD process 
has provided the reversible capacities of 101.9 mAh/g at 1000 mA/g. 
Further, the reversible capacities were retained at 76 % beyond 2000 
cycles. Similarly, the nanostructured DLC deposited with RF sputtering 
have uplifted reversible capacity and output voltage of about 2.3 V when 
adopted for sodium air battery [101]. The carbon deposited with an 
electrochemical process and enhanced with ultrasonication and acid 
washing have shown reversible capacities of ~ 170 mAh/g at 10 mA 
after 50 cycles [102]. 

Referring to atmospheric plasma depositions, the hard carbon made 
with a spark plasma sintering process have shown ICE of 88.9 % and a 
reversible capacity of 299.4 mAh/g. Whereas, the rate capacity was 
136.6 mAh/g at 5 A/g. The overall performance was better or matchable 
with typical SIB [22]. The rapid pyrolysis reactions during the spark 
plasma sintering process make hard carbon with lower oxygen contents 
and higher electronegativity, which improves the electrochemical per-
formance of SIB. The preliminary studies have proven the potential of 
plasma-based carbon for SIBs and could be systematically investigated 
to reveal their maximum potential. Similarly, the solution plasma pro-
cessing technique is demonstrated to prepare doped carbon for SIB an-
odes. The phosphorus doping in carbon produced with solution plasma 
processing [103] is perceived to create abundant active sites which 
promote Na ion functioning and has shown 75 % ICE and reversible 
capacity of 340 mAh/g at 1 A/g current density, respectively. The so-
lution plasma processed phosphorus-doped carbon anodes have shown a 
reversible capacity of 83 mAh/g beyond 40,000 cycles. Further, the rate 
performance was 130 mA/g at a current density of 100 A/g. Another 
study also reported the synthesis of nitrogen and sulfur-doped carbon- 
based anode for a sodium-based secondary battery using one-step 
plasma in a liquid process and delivering 35,000 cycles at an ultra- 
high current density of 100 A/g [104]. 

6. Challenges and future aspects 

Although hard carbon is fairly attractive for SIB but there are still 
opportunities to advance the performance and mechanisms, and to 
minimise the limitations i.e., change in morphology and volume during 
the sodium insertion/extraction process which limits the cycle life 
[105], capacity fading [106] etc. Generally, SIB relatively have lower 
capacities than LIB which needs to be uplifted to make it a strong 
competitor [107] and to extended its usability for heavy duty applica-
tions like power tools, aerospace etc. Various materials designs, archi-
tectures, additives, dopants, and formulations are being explored and 
aqueous and solid electrolytes [108,109] and interfaces are being 
designed to further improve hard carbon performance for SIB. 

The plasma technologies have enriched capability to perform multi- 
material dopings and in-situ microstructure tailoring. The recent non- 
plasma developments in hard carbon solutions for SIB could be scal-
able for large-scale manufacturing using plasma technologies. Referring 
to the material doping, the hybrid framework of metal and carbon has 
shown a capacity of 72 mAh/g at a current density of 200 A/g and ca-
pacity retention of 90 % beyond 15,000 cycles at a current density of 5.0 
A/g [110]. Similarly, double-coated hard carbon anodes have proven 
their performance for LIB with a reduction in first irreversibility from 
24.3 to 8.1 % and specific surface area from 10.2 to 2.8 [111]. Similarly, 
various material designs and architectures are now emerging for SIB. A 
soft carbon layer on free-standing hard carbon has shown its potential in 
reducing oxygen-containing groups and therefore achieving ultra-high 
initial Coulombic efficiency of 94.1 % and stable cyclic performance 
as the capacity retains at 99 % beyond 100 cycles at a current density of 
20 mA/g [112]. A multiscale micro-nano hard carbon structure derived 
from filter paper is reported to have a reversible capacity of 286 mAh/g 
at 20 mA/g beyond 100 cycles [113]. Similarly, the decoration of hard 
carbon with silicon nitride nanoparticles has shown regulating electro-
chemical reactions and demonstrated an increase in reversible capacity 
from 284 to 351 mAh/g [114]. The addition of zeolite and carbon black 

[115] as ionic and electronic conducting additives to hard carbon has 
shown improving rate performance and ageing characteristics such as 
cyclic stability and lower Na plating. The zeolite nanomaterial reduces 
the solid-electrolyte interphase on hard carbon and facilitates Na+

mobility. Similarly, sulfur, boron and phosphorus dopings into hard 
carbon have been investigated to modulate interlayer spacing to regu-
late low-potential plateau capacities [116]. 

Fig. 10 shows the plane (Fig. 10A) and cross-sectional (Fig. 10B) 
micrographs of a hybrid MXene and hard carbon film for SIB anodes. The 
incorporation [105] of MXene (Ti3C2Tx) with hard carbon films has 
been shown to promote a three-dimensional conductive network. 
Consequently, the new materials combination has delivered a high ca-
pacity of 346 mAh/g and remarkable stability beyond 1000 cycles. 
Fig. 10C, D, and E present the Cyclic-Voltammetry (CV) curves, the 
relationship between peak current and sweep rate, and diffusion/ 
capacitive contributions as a function of scan rates for MXene and hard 
carbon hybrid films. Usually, CV relationships have similar profiles. The 
addition of MXenes into hard carbon has shown regulating insertion and 
release of Na+ and pseudo-capacitance for CV profiles, a diffusion- 
controlled process for peak current and sweep rate relationship, and 
the significance of capacitive process for SIB. The addition of MXene is 
perceived as a binder to improve structural stability as well. 

SIB performance in extreme weather is oncoming area. Hard carbon- 
based electrodes have shown their ability to perform at − 40 ◦C [117]. 
The hard carbon in combination with perfluoropolyether electrolytes for 
SIB have shown excellent performance of 99.8 % Coulombic efficiency, 
stable rate capacities, and high current density of 80 mA/cm2 [118]. 
Sodium dissolution at interphase is perceived as more intense than LIB 
and causes a reduction in stability and irreversible capacity, electrolyte 
depletion, and continuous side reactions. Hard carbon has been 
perceived as lowering the Coulombic efficiency in past 20 years due to 
the formation of a solid-state electrolyte interface layer [119]. However, 
recent studies have demonstrated improved capabilities to develop a 
stable interphase with capacity retention beyond 90 % after 300 cycles 
at 4.2 V [120]. Hard carbon-based SIB needs systematic investigations 
toward solid-electrolyte interphase design [121] to ensure a stable and 
efficient interface. PVD, PECVD, and atmospheric plasma deposition of 
carbon have an established history for LIB and significant preliminary 
studies have already reported for SIB. The carbon atomic arrangement 
and nanoarchitecture significantly influence the performance of energy 
devices [122,123]. Therefore, there is a need to systematically explore 
the potential of PVD, PECVD, and atmospheric plasma deposition to 
understand the structural-property relationship for hard carbon anodes 
for SIB applications. Advanced techniques such as magnetic resonance 
imaging (MRI), neutron, nano and micro X-ray [124] are being used to 
understand structure of battery materials. Sodiation mechanisms in hard 
carbon are investigated with X-ray [125]. Hence utilization of MRI and 
neutron scattering could have the potential to reveal scientific mecha-
nisms and to support in developing a structure-property relationship. 
Further, there is a wide gap in the implementation of computational 
tools and digital manufacturing approaches to make hard carbon anodes 
for SIB using plasma techniques. Commercial digital twin tools on 
plasma deposition have emerged in recent years which may be com-
bined with machine learning tools to optimize deposition conditions, 
and structural-property relationship hard carbon to make high- 
performance anodes for SIB. There are numerous triggers such as heat, 
magnetic and electric fields, and chemical and mechanistic stress which 
influence atomic-scale chemical dynamics [126]. Hence, there is a need 
to develop next-generation real-time monitoring and diagnostic tools 
[127,128] to ensure SIB safety and long life. 

The oncoming challenges are also associated with structure-property 
relationships by developing multi-material doping and multi-layered 
anode designs and electrolyte interfaces to uplift capacities and over-
all performance, and innovating next-generation digital tools for 
monitoring, diagnosing, and self-repairing of high-performance long-life 
sodium-based batteries. Fig. 11 presents the proposed framework for 
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plasma-derived hard carbon for sodium-ion battery applications. The 
evolution phase starts with developing process-property-performance 
relationships. Systematic investigations are required considering the 
numerous indices of plasma processing methods by technology, material 
design, deposition conditions, and post-deposition treatments of hard 
carbon, that correspond to atomic and microstructures produced with a 
variety of porosities, interplanar spacings, defects, active sites, and 
regulate sodium-ion battery performance on the basis of capacities, 
rates, and cyclic life etc. The plasma processing of hard carbon for 
sodium-ion batteries may have more than 100 combinations for each 
plasma processing method. Therefore, experimental synthesis and in- 
situ measurements need to be blended with material informatics. 
Atomistic simulations, virtual synthesis, and machine learning [41] 
based optimization models are emerging for hard carbon to suggest 
unique structure-property relations for high-performance sodium bat-
teries. Similarly, creating digital twins [129] of plasma-based 
manufacturing processes for real-time monitoring and control over the 
synthesis process is desirable to make superior energy storage batteries 
with minimal cost and resources. 

In summary, plasma-derived hard carbon have proven their potential 
for sodium batteries, however, warrant a detailed and systematic un-
derstanding of process-property-performance relationships to unleash 
their full potential for sodium batteries. Plasma processing is a high- 
potential candidate as a scalable and sustainable method to meet the 
rising demands of hard carbon for energy storage applications. Plasma 
processing is perceived as an expensive technology, which may raise 
concerns over expensive hard carbon for lower-capacity SIB. The 

plasma-driven hard carbon will be applicable for a range of energy 
storage systems as hard carbon is trending for many post‑lithium bat-
teries. Plasma processing is enough established to coat tiny articles to a 
few meters’ large panels in a one-step process. Hence, it is capable of 
deposit hard carbon on large batches and roll-to-roll deposition to 
reduce the cost per unit article. Further, the application of plasma pro-
cessing can also contribute to balancing the demand and supply of 
critical materials for energy storage products. 

7. Conclusions 

This review article briefly introduces hard carbon and its current 
standing for SIB. The mechanism and structural models of hard carbon 
from Franklin (1951) to fresh atomistic simulations are discussed. The 
potential role of ongoing material informatics drive in promoting hard 
carbon research is highlighted. The carbon atomic structure, sp2 and sp3 

variations, significance of aromatic rings, chain structures, and atomic 
disorder of plasma-driven carbon and their relevance with SIB are dis-
cussed. Further, mechanisms of core plasma manufacturing techniques, 
such as PVD, PECVD, and atmospheric plasma deposition methods, and 
the influence of their operational parameters in the context of SIB are 
described. Plasma processing has been shown to uplift Coulombic effi-
ciency by 33 % and specific capacity by 44 %, respectively. Particularly, 
spark sintering plasma has shown initial Coulombic efficiency of ~90 % 
reversible capacity of ~300 mAh/g and rate capacity of 136.6 mAh/g at 
5 A/g. The last section describes the future aspects of plasma methods to 
perform multi-material doping, in-situ nanoarchitecture fabrications, 

Fig. 10. Micrographs of MXene and Hard Carbon for Sodium-Ion Battery from (A) Plane and (B) Cross-sectional view after 100 cycles. (C) Cyclic-Voltammetry 
curves, (D) Peak current and Sweep rate, and (E) diffusion/capacitive contributions as a function of scan rates show the performance of MXene/hard carbon. 
Reproduced with permissions: Copyright 2022, Elsevier [105]. 
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and challenges around SIB functioning in extreme environments, and 
the development of real-time robust monitoring and diagnostic tools to 
make safe, stable, and high-performance SIB with long life. Further, a 
data-driven manufacturing framework is proposed by integrating ma-
terial informatics with experimental protocols for virtual synthesis of 
hard carbon; estimating material formulations, manufacturing methods, 
process-property-performance relationship, and limitations before 
physical manufacturing of high-performance sodium batteries. 
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