
Autoencoder based image quality metric for
modelling semantic noise in semantic
communications

Prabath Samarathunga, Thanuj Fernando,
Vishnu Gowrisetty, Thisarani Atulugama,
and Anil Fernando✉

Department of Computer and Information Sciences, University of Strath-
clyde, Glasgow, UK
✉E-mail: Anil.Fernando@strath.ac.uk

Semantic communication has attracted significant attention as a key
technology for emerging 6G communications. This paper proposes an
autoencoder based image quality metric to quantify the semantic noise.
An autoencoder is initially trained with the reference image to generate
the encoder-decoder model and calculate its Latent Vector Space (LVS)
and then a semantically generated/received image is inserted into the
same autoencoder to create the corresponding LVS. Finally, both LVS
are used to define the Euclidean space to calculate the mean square er-
ror between two LVS. Results indicate that the proposed model has a
high correlation coefficient of 88% with subjective quality assessment
and commonly used conventional metrics completely failed in semantic
noise modelling.

Introduction: Semantic communication has led to renewed interest in
solving “the semantic problem” in communication systems rather than
further pursuing the limits of solutions to “the technical problem”, giving
rise to the concept of semantic communications, which has now become
an active field of research [1, 2]. The main idea behind semantic com-
munications is that, enabled by shared prior knowledge, a machine can
identify the meaning of a message based on a semantic representation of
the original message. An allegory for this concept in human terms would
be one human being able to reconstruct a vivid picture in their mind of
an event that they cannot see but can hear about from a radio broadcast
or can read about from a printed book. Though, current semantic re-
search is mainly limited to text and speech transmissions, there are some
preliminary image transmissions on semantic communications through
error-prone channels [3] is presented in the recent past. However, still
there is not any objective quality metric available for modelling seman-
tic noise in the semantic channel for image transmission applications.
This has been a major bottleneck in semantic image and video trans-
mission. This paper proposes an autoencoder based objective semantic
quality evaluation model for quantifying the semantic noise in a seman-
tic image transmission system.

Related work: Due to the advancement of machine learning (ML) and
the exponential growth of media applications, it is expected that seman-
tic communication will become the centrepiece of designing end-to-end
media communication systems, mainly for machine-to-machine commu-
nications and 6G [4, 5]. Semantic communication considers integrating
the meaning of the data into various tasks related to processing and trans-
mitting data, which represents a major change from the traditional Shan-
non paradigm [2]. Semantic communication is mainly supported by ML
and artificial intelligence, more specifically deep learning techniques,
which allow machines to comprehend information and extract the se-
mantic, or meaning of the information, mimicking the functionality of
the human brain. While some initial semantic communication research
on text, audio and image transmission has been reported, there is not any
model available for quantifying the semantic noise which is the main cri-
teria for determining the success of the semantic communication system.

There are a few existing semantic quality metrics available for text
and speech transmission including semantic obviousness, semantic sim-
ilarity measurement based on knowledge mining, and self-supervised
contrastive projection learning [5–7]. Semantic communication system
evaluation uses a semantic similarity measure [8] that combines seman-
tic accuracy and completeness of recovered text. Recently, a perceptual
impact of semantic content on image quality has been founded on the
concept of semantic obviousness [5]. This method extracts two types of

Fig. 1 Autoencoder-based semantic noise model framework

Fig. 2 Proposed autoencoder architecture used in the proposed quality
model

features: one for capturing local image characteristics and another for
measuring semantic obviousness. Self-supervised contrastive projection
learning is a key concept proposed by researchers to evaluate the se-
mantic similarity in single-particle diffraction images [6]. Dimensional-
ity reduction is one such strategy, which results in embeddings with se-
mantic meaning that is consistent with physical intuition. Additionally,
researchers have extended the knowledge in artificial neural networks
(ANN) to assess semantic similarity. This research introduces a feature-
based approach that leverages artificial ANNs to simulate the human
similarity ranking process [7]. However, none of these have failed to be
used as an objective quality model for modelling the semantic noise spe-
cially in image transmission applications.

On the other hand, one can consider whether the semantic noise can
be removed from the received image or not. Though there are several
techniques proposed in noise removals in conventional image transmis-
sion applications such as [9], these noise removal techniques cannot be
used in removing the semantic noise since the semantic noise is not
added during the transmission.

Therefore, none of the above methods can be used for semantically
generated images since the concepts of semantics used in the literature
and semantic communication have a significant gap with respect to a
conventional distorted image. In response, this paper proposes the first
such model which can quantify the level of semantic noise in a semanti-
cally generated image, which is a crucial factor in evaluating the effec-
tiveness of image based semantic communication system.

Proposed framework: Figure 1 illustrates the proposed framework for
estimating the semantic noise of the semantic communication system.
As shown in Figure 1, the proposed autoencoder (presents in Figure 2)
is trained with the original or reference (undistorted) image and its
latent vector (Vo) is generated. Once it’s trained, any semantically
generated image or quantised image is considered as the input to the
same autoencoder, and the new latent vector (V1) is derived. Finally, the
Euclidean space between the two vectors (Vo and V1) is considered to
generate the mean square error between the vector space as presented in
Equation (1),

AEQM =
(∑N

i=1 (Vi0 −Vi1)
2

N

)
(1)

where Vi0, Vi1, and N are latent vector of the original image, latent vector
of the distorted image and the size of the latent vector space respectively.

Following subsections illustrate the main features of the proposed
autoencoder-based image transmission system.

Figure 2 presents the autoencoder implemented in the proposed qual-
ity metric introduced in Figure 1. The input layer has the form of
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Fig. 3 Grahical representation of the first convolutional layer

(192 × 256 × 3) pixels and convolutional and de-convolutional layers
are used to define the architecture of the autoencoder. Four convolutional
layers with a rectified linear unit (ReLU) activation function are formed
as encoder layers. The decoder layers include four de-convolutional lay-
ers with a ReLU activation function, followed by a final convolutional
layer with a sigmoid activation function. The autoencoder model is then
defined as a sequential model by combining the encoder and decoder
layers. Finally, the autoencoder model is compiled with the Adam op-
timizer with a learning rate of 0.001 and a binary cross-entropy loss
function before training the model. To optimize the performance and the
complexity, the above hyperparameters are selected based on a series of
experiments. Since the proposed codec uses four convolutional layers,
it has the capability of capturing the image features accurately, which is
considered as the foundation of the proposed quality metric. Since se-
mantic communication uses the semantic meaning rather than the pixel
level distortions in an image, the proposed model has the capability of
evaluating the semantic noise accurately.

The proposed neural network-based architecture adheres to a con-
volutional autoencoder paradigm, featuring a meticulously designed
encoder-decoder structure. The encoder, implemented through a sequen-
tial model, incorporates a sequence of Convolutional 2D (Conv2D) lay-
ers with ascending filter dimensions (32, 64, 128, 256). Each Conv2D
layer employs a 3 × 3 kernel, ReLU activation, and ‘same’ padding,
facilitating hierarchical extraction of intricate spatial features. These
hyperparameters are designed according to the literature [10]. The en-
coding process concludes with a flatten layer, transforming the output
into a flattened vector representation. Conversely, the decoder initiates
with a reshape layer, transitioning the flattened vector into a 3D ten-
sor of dimensions (192, 256, 256). Subsequent Conv2D layers, charac-
terized by diminishing filter dimensions (256, 128, 64, 32), mirror the
encoder’s architecture, utilizing transposed convolution operations with
ReLU activation and ‘same’ padding [11, 12]. This design choice facili-
tates spatial information reconstruction during the decoding phase. The
final Conv2D layer, featuring three filters, employs a sigmoid activation
function and ‘same’ padding, generating a three-channel output repre-
sentative of the reconstructed image.

These architectural decisions, arising from an iterative experimental
process, strategically elevate filter dimensions in the encoder (32, 64,
128, 256) to enable the network to capture increasingly complex spa-
tial features [12]. Simultaneously, the symmetrically designed decoder
layers progressively decrease filter dimensions (256, 128, 64, 32), ensur-
ing effective spatial information reconstruction while preserving feature
hierarchy consistency.

The choice of a 3 × 3 kernel size aligns with established practices
in convolutional neural network design, enabling local spatial pattern
capture with computational efficiency [13]. The activation functions,
ReLU in the encoder and sigmoid in the final decoder, contribute to the
network’s non-linearity and complex relationship modelling capabilities
[14]. ‘Same’ padding ensures spatial dimension preservation throughout
convolutional operations [12].

The architecture presented herein, derived from sematic experimen-
tation, strikes a balance between model complexity and efficiency, show-
casing its versatility across diverse images. To further explain the pro-
posed framework, Figure 3 illustrates the convolution operation of the
first convolutional layer in the proposed network as shown in Figure 2a.
Similarly, other convolutional layers can also be explained.

As shown in the Figure 3, the initial convolutional layer processes
the input image by employing 32 filters, each with a 3 × 3 × 3 spatial
configuration, applying ReLU activation function and “same” padding.
This design, influenced by established principles in convolutional neural
network architecture [10], ensures that each filter learns distinct features
within the three colour channels (red, green, blue). The ReLU activation

Table 1. Performance of auto encoder quality model in modelling
quantization noise

Quantization level
Quality
metric Q5 Q10 Q25 Q50 Q75 Q100

PSNR 23.074 25.345 28.058 30.020 32.21 39.49

UQI 0.9750 0.9850 0.991 0.994 0.996 0.998

VIF 0.2025 0.2858 0.397 0.475 0.553 0.824

SSIM 0.6498 0.7436 0.842 0.892 0.927 0.985

SCC 0.1426 0.2361 0.379 0.488 0.583 0.887

MSSIM 0.870 0.9303 0.969 0.983 0.990 0.998

RMSE 24.6725 26.86184 29.61174 31.87951 34.73944 58.2723

NIQE 35.9156 32.49853 41.87518 42.71647 39.54079 38.39094

MSE 262.117 168.4882 92.89267 54.04444 26.28906 0.097072

RASE 907.240 666.1557 446.6824 327.6729 237.6104 23.28838

BRISQUE 85.6743 63.00029 42.16394 35.57152 35.2488 32.8778

AEQM 0.0001 0.000043 0.000016 0.000007 0.000003 0.0000002

Sub. score 2.51 2.98 3.46 4.12 4.45 4.95

function contributes non-linearity to the convolutional operation [13],
while “same” padding is utilized to maintain the spatial dimensions of
the output identical to the input [12]. The resulting feature maps exhibit
consistent spatial dimensions (192 × 256) but with an increased depth
of 32 channels, symbolizing the diverse features learned by individual
filters. This methodology, grounded in foundational convolutional neu-
ral network principles [10, 12, 13], is consistently applied to subsequent
convolutional layers in the network. Each layer will utilize a set of fil-
ters, increasing in number, to capture progressively more abstract and
sophisticated features.

Results: The proposed auto encoder quality model (AEQM) is tested
with 11 different image categories (spatial index ranges from very low
to very high) to find out how it is performed against existing most popu-
lar image quality metrics. To compare the performances of the AEQM,
peak signal-to-noise ratio (PSNR [15]); universal quality image index
(UQI [16]); visual information fidelity (VIF [17]); structural similar-
ity index (SSIM [15]); spatial correlation coefficient (SCC [18]); multi-
scale structural similarity index (MSSIM [19]); root mean square er-
ror (RMSE); natural image quality evaluator (NIQE [20]); mean square
error (MSE); (RASE [21]) and blind/reference less image spatial qual-
ity evaluator (BRISQUE [22])) are considered. Out of these state-of-
the-art quality metrics, NIQE and BRISQUE are no-reference metrics
where they do not consider the reference image in predicting the ob-
jective quality of a given image. We have selected these quality metrics
to validate the performance of the AEQM against both full reference
and no reference quality metrics. Table 1 illustrates the performance
comparisons between the AEQM and the above metrics for 11 differ-
ent image groups with different quantization artefacts generated from
a JPEG codec (Level of quantization of 5–100% are considered dur-
ing this experiment). Table 1 also presents the corresponding subjective
quality assessments (DSQA—double stimulus quality assessment) with
50 subjects. Results clearly show that AEQM is highly correlated with
the subjective scores, like the standard image quality metrics considered
(range of all metrics are provided in Table 2). It should be noted that the
no-reference quality metrics’ behaviour is highly unpredictable and do
not correlate with the subjective results and other quality metrics.

Finally, the performance of the AEQM is investigated for semanti-
cally generated images in modelling the semantic noise/distortions. The
models proposed in [3] are considered in generating semantically com-
municated images at the receiver. Generative adversarial network (GAN)
generated images and reference images are used in the model proposed
as shown in the Figures 1 and 2 in calculating the AEQM. For the com-
parison purpose, same images are considered in conventional quality
metrics calculations and Table 2 illustrates the performance compar-
isons. As before, subjective experiments (DSQA) with 50 subjects are
conducted in verifying the proposed objective quality metric. Results in-
dicate that AEQM has a very high correlation coefficient of 88% against
the subjective scores, while all other conventional metrics performed ex-
tremely poor. Conventional image quality metrics are designed for mea-
suring the quantization artifacts of the image rather than the semantics
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Table 2. Performance of auto encoder quality model in modelling
semantic noise

Quality metric Quality score
Lowest
score

Highest
score

Correlation
coefficient

PSNR 12.799 0 dB ∞ dB 30%

UQI 0.779 0 1 31%

VIF 0.059 0 1 21%

SSIM 0.345 0 1 22%

SCC 0.029 0 1 6%

MSSIM 0.385 0 1 25%

RMSE 58.48652 255 0 27%

NIQE 36.482 100 0 15%

MSE 3,600.797 65,025 0 28%

RASE 4,141.667 ∞ 0 12%

BRISQUE 41.956 100 0 14%

AEQM 0.001 1 0 88%

Subjective score 4.891 0 5 N/A

of it, while proposed metric considers both quantization artifacts and
semantics of the images. The proposed encoder has the capability of ex-
tracting the semantics of the image rather than only statistics of the im-
age and compare against the original image, which leads to its superior
performance.

The main disadvantage of the AEQM is the computational power
required in predicting the semantic noise. Since it has four convolu-
tional layers and multiple filters, it consumes a considerable computa-
tional power compared to a simple metric like PSNR. Though AEQM is
computationally expensive compared to other metrics considered, it can
be considered as an objective quality metric in modelling the semantic
noise in semantic based image communications due to its outstanding
performance.

It should be noted that the data(images) have been taken from the
COCO Dataset(train/validation-2017).

Conclusions: Here, an autoencoder based objective quality metric is
proposed for modelling semantic noise in semantic communications.
The proposed autoencoder is trained using an undistorted image, and
its latent vector is compared against the latent vector of the distorted or
generated image in the semantic communication system. Vector spaces
are used in calculating the mean square error between the two vector
spaces and generate a model for quantifying the semantic noise. Results
indicate that the proposed AEQM model exhibits a very high correla-
tion (88%) against the subjective quality assessment in quantifying the
semantic noise and outperforms state-of-the-art traditional image quality
metrics by a significant margin. In the future, the proposed model will
be further developed in modelling the semantic noise in semantic video
communications.
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