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ABSTRACT 

 

In this study, we aim to improve WECs’ performance for maximizing 

energy absorption through a sub-optimal method of phase control by 

latching is applied to the device.The forecasting of future wave force is 

required for the optimal control command  deducted.An artificial neural 

network, namely LSTM (Long Short-Term Memory) is proposed to 

accurately predict the short-term wave force. The hydrodynamic 

properties of a point absorber is analyzed based on the 3D potential 

flow theory in frequency-domain. Cummin’s equation and a 4th-order 

state-space model are used to efficiently represent the hydrodynamic 

behavior of the WEC under irregular waves in time-domain.The  

Nonlinear Autoregressive  artificial neural network(NAR-ANN) and 

NARx network are used to verify the method proposed in this paper. 

The simulation results show that the mean square error value, root 

mean square error value and R2 value based on the LSTM prediction 

model are better than those of the NAR prediction model. The 

prediction performance of  LSTM is more suitable for processing the 

time series.  

KEY WORDS:  wave force prediction, latching control, wave energy 

converter(WEC), LSTM, NAR-ANN, NARx. 

 

 

INTRODUCTION 

 

Wave energy is a kind of marine renewable energy. It is regarded as a 

forward-looking solution for sustainable power generation because of 

its high power density, high stability, good economic benefits and 

energy flow without intermission.Furthermore,the total exploitable 

amount is the same as the power consumption. A mainstream Wave 

energy converters (WECs) is the Oscillating Buoy(OB).To lower the 

levelized cost of energy (LCOE), a real-time latching control methods 

is being investigated. The latching control was first introduced by 

Budal and Falnes (Budal, 1980). Power absorption is achieved by 

locking and releasing the buoy alternately to keep the phase of WEC 

align with the wave excitation force. Babarit and Clement (Babarit, 

2006) assessed the power extraction of an oscillating-body WEC with 

latching control. Previous studies focus on the optimal control, which 

assumed that the coming wave force was already known. But real-time 

latching control is result in non-causal transfer functions, so it make 

sense only if future wave force is known. Meanwhile, the information 

of future force is difficult to measure directly in real sea state. 

Falnes(Falnes,1995)explained the relation between wave elevation and 

wave excitation force is a non-linear dynamic system. Model predictive 

control (MPC) is a method that solve a series of successive, small time 

horizon, optimal control problems(Tom,2016) which requires the 

prediction of future wave force.The accuracy of the model of the body 

dynamics strongly affect the performance of real-time control methods 

(Anderlini, 2017).So it is  necessary that build a prediction model as 

accurate as possible. A good prediction model includes not only 

suitable artificial neural networks but also MPC parameters match with 

the wave force prediction model. Truong(Truong,2011) has developed 

a wave force prediction model based on modified grey model 

MGM(1,1) for real-time control. ANN has applied to predict MPC 

wave force to improve power efficiency of a heaving point absorber 

WEC by Li(Li,2018). The time series of the elevation and wave 

excitation force have successfully predicted by using a LSTM-

NARX model to achieve more accurate WECs real-time control 

by Zhang(Zhang,2020), the LSTM network is used to predict wave 

elevation and wave excitation force only  by output data and the 

NARX-ANN is used to predict wave elevation by input and output.  
 
In section 2, a numerical time-domain model of heaving point absorber 

is built and expressed by state-space equation. In section 3, a real-time 

latching control algorithm based on MPC is presented and give a more 

insightful understanding of chosen MPC parameters. In section 4, a 

simulation is conducted based on chosen WEC and MPC parameters. 

The motion response of floater suggested by frequency-domain 

hydrodynamic analysis programme WADAM produced by DNV-GL is 

used to verify the WEC dynamic model. The prediction difference 

between NAR and LSTM is presented by different value. The 

simulation results that the MPC and prediction model parameters. 

 

DYNAMIC MODEL 
 
According to the difference in working principle, WEC can be divided 
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into the following categories. Oscillating water column (OWC), 

overtopping and oscillating buoy (OB). Most offshore WEC devices 

belong to OB, which are located in deep water, with high energy flow 

density and can exploit more abundant wave energy resources. The 

research environment of this study is located in the deep ocean, using 

offshore oscillating buoy wave energy conversion device, and using 

direct-drive generators. Its energy conversion mechanism is to generate 

energy through the relative motion of a floater subjected to wave loads 

and the substrate fixed on the seabed. Assuming that the fluid is an 

incompressible irrotational ideal fluid, the mass of the buoy body 

dimensions is large and the amplitudes of oscillation are quite small. So 

the linear wave theory is applicable for wave-structure interaction 

analysis.  

 

 

 
Fig. 1  Heaving buoy WEC. 

 

 
As shown in Fig.1 , the floater is a hemisphere constrained in heave 

only, the power take-off(PTO) system is a mechanical oscillation 

system which can be modelled by spring and damping terms. 

Following the Newton’s second  law, the PTO system force analysis is 

shown in Eq.(1).  
 

( ) ( ) ( ) ( )tFtFtFtzm S−−= R
                            (1) 

 

Here 𝐹(𝑡) is assumed external force, 𝐹𝑅(𝑡) = 𝐶�̇�(𝑡)is damping force, 

𝐹𝑆(𝑡) = 𝐾𝑧(𝑡) is restoring force. So the stiffness coefficient K and 

damping coefficient C are employed to represent the PTO force in this 

study. Consequently, the PTO system can be regarded as a damping-

spring system.Vicente(Vicente,2013) showed that the typical stiffness 

of a PTO system is around 10% of the hydrostatic coefficient, so there  

𝐾 = 0.1𝜌𝑔𝜋𝑅2  is adopted in this study. The damping coefficient C 

which maximizes energy absorption efficiency is adopted the same as 

that in the study(Li,2018) because the model parameters are consistent. 

In each load case, the amplitude of the incident regular wave is 1 m.As 

shown, the energy conversion is maximized at C = 8.14 × 105kg/s. 

The power for incident regular wave is as Eq.(2). 
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The power for incident irregular wave is as Eq.(3). 
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Then the average power P extracted by PTO over the interval [0,T] is 

given by Eq.(4).  
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In the same way, the equation of motion for oscillating WEC is 

expressed by Eq.(5). 
 

PTOSex FFFFzm −−−= R
                             (5) 

 
Where 𝑚�̈�  is the inertial force. 𝐹𝑒𝑥  is the excitation force included 

diffraction force and Froude-Krylov force. In this study, since the buoy 

is quite small compared to the incoming wavelength, diffraction force 

is neglected. 𝐹𝑅 is the radiation force which is decomposed into  inertia 

force and damping force. 𝐹𝑆  is the restoring force which is the 

difference between gravity force and buoyancy force caused by 

hydrostatic press. 𝐹𝑃𝑇𝑂 is the force provided by the PTO.  

 

According to the linear wave theory, the irregular wave elevations are 

formed by the superposition of a set of linear regular waves with 

different amplitudes, different frequencies and the random phases of 

regular wave. So the irregular wave elevation is expressed by Eq.(6). 
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Where 𝐴𝑗 ,𝜔𝑗 ,𝜙𝑗 are wave amplitude, the frequency and the phase. In 

this study, we focuses only on amplitude response so it uses the real 

part of the argument. For irregular wave the 𝐴𝑗 is obtained by Eq.(7). 

For regular wave, the 𝐴 is 1m which is the unit amplitude refers to the 

vertical distance from water surface to the crest or the trough in 

Eq.(11). 
 

( ) = ωSAj 2                                     (7) 

 

When the wave develops to a certain stage, its wave energy basically 

remains at a certain value, so the wave energy spectrum in a specific 

sea area has a certain form.𝑆(𝜔) is wave spectral density function are 

given mannually. P-M wave spectrum is used to compute this time 

histories of the wave excitation force in this study and the formula is as 

follow in Eq.(8). 
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response amplitude operators(RAOs) is the transfer function in 

frequency domain which stand for the effect of sea state on floating 

body in water. It is a representative advantage of linear wave theory.   

There exists two types RAOs 𝐻𝑒𝑥(𝜔) and 𝐻(𝜔)in this study. 𝐻𝑒𝑥(𝜔) 

is the transfer function which can be calculated by Eq.(9) (Falnes,1995) 
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for the wave excitation force and wave elevation. 
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Where 𝐵(𝜔) is the damping coefficient. The added mass and damping 

coefficient are the hydrodynamic forces and moments of rigid body in  

harmonic motion. A.Hulme(Hulme,1982) has derived the frequency-

domain hydrodynamic coefficients(added mass and damping 

coefficients) with  the periodic motions of a floating hemi-sphere by an 

empirical formula. The hydrodynamic coefficients in frequency domain 

are obtained by buoy’s parameters and wave number given by the 

positive root of the dispersion relationship 𝜔2/𝑔 = 𝑘𝑡𝑎𝑛ℎ(𝑘ℎ). 

 

𝐻(𝜔) is the ratio of buoy motion response and the response which 

shown below is the displacement to unit wave amplitude(𝐴 = 1𝑚) as 

showed in Eq.(10). 
 

( ) ( )ωAHω =Z                                      (10) 

 

In order to obtain RAO curve 𝐻(𝜔) in Eq.(10) in a given frequency 

range, the motion response 𝑍(𝜔)  needs to be obtained first by 

calculating the state-space equation by Runge-Kutta method and it will 

be mentioned in the next section. It represents the displacement after 

stabilization under the regular incident waves at each single frequency.  

 

When no control is applied, WEC is a linear system. Then the wave 

analysis by diffraction and Morison theory(WADAM) is applicable to 

analyze the interaction between structure and wave. In this study, the 

transfer function under regular waves is obtained by WADAM and the 

excitation force under regular waves is calculated by Eq.(11).The 

irregular wave representation of the excitation force is given by Eq.                

(12).However, the wave excitation force under irreugular wave is 

obtained directly by SIMA produced by DNV-GL in this study. 

 

( ) ( ) ( )tωAHtF rexex sinr=                               (11) 

 

( ) ( ) ( )














= 

=

+
N

j

ti

jexjex
jjeHAtF

1

Re                       (12)                                                                      

 

Where 𝐻𝑒𝑥(𝜔𝑟) is the magnitude of the frequency-domain excitation 

force for a given frequency 𝜔𝑟. The excitation force is very important 

for the following time-domain motion equation of the floater deducted. 

The frequency-domain analysis above help clearly describe dynamic 

model of WEC, while the real sea state is nonlinear rather than linear.  

So we have to convert the frequency-domain model to the time-domain. 

The radiation force is caused by motion of  floater as shown in Eq.(13), 

and Eq.(14) is deduced by conducting Fourier inversion on it. 
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Where 𝑚∞ is added mass when the frequency tends to infinity and ℎ(𝑡) 

is time retardation function or sometimes impluse response function 

which represents the WEC memory effect. It can be calculated by 

added mass or damping coefficient as Eq.(15). The 𝐹𝑆 is the restoring 

force can be obtained from the following foumula Eq.(16). 
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Where 𝐴𝑤 is waterplane area, 𝑧(𝑡) is the displacement of buoy in heave. 

 

 

 

 

REAL-TIME CONTROL 

 

 
Latching Control 
 
Mentioned in the previous section, the oscillating buoy heave with the 

wave to drive the PTO system to convert the kinetic energy into electric 

energy. However, there exists some serious problem if control is not 

applied, such as the efficiency of floater is unsatisfactory, the device 

will be damaged due to excessive amplitude, speed, power and so on. 

According to the difference in control strategies, it can be divided into 

the following two categories. In phase control and amplitude control, 

the former is more common. The energy absorption maximized when 

oscillating velocity in phase with the excitation forces. Phase control 

can be achieved by adjusting the resonant frequency of  PTO device.  

The latching control used in this study belongs to so-called ‘bang-bang 

control’. It helps the kinetic energy not to be dissipated by the wave 

forces. The external latching force 𝐹𝑐  is defined as Eq.(17). Since the 

wave is random, in order to make the buoy’s speed in phase with the 

excitation force, the future change of excitation force must be known 

before latching control be taken to change the speed of the buoy by 

changing the PTO force. Therefore, the system is non-causal. If the 

future wave forces are completely known, the optimal control can be 

achieved.  

 

( ) )(c tzcutF −=                                     (17) 

 

Where 𝑐 is a very large damping coefficient and 𝑐 = 80(𝑚 + 𝑚∞) is 

employed as in A.Babarit’s study(A,Babarit,2006). 𝑢  is the binary 

control variable with 𝑢 = 1 then latching is applied and  𝑢 = 0 when it 

is not. From all above, Eq.(2) can be expanded as Eq.(18) : 
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State-space Model 

 

The simulation of time-domain model mainly lies in the realization of 

convolution term(Cummin,1962). In this study, the state-space equation 
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is used to approximate the convolution term due to its contribution to 

improving computation speed  to solve Eq.(18) out . The state-space 

representation is a mathematical model of dynamic system. As a group 

of input included uncontrollable input 𝐹𝑒𝑥 and controllable input 𝐹𝑃𝑇𝑂, 

output included buoy’s displacement and velocity, state variables , it is 

related by a first-order  

differential equation. In this study, 4th-order-state-space representation 

is defined as: 

 

( ) ( ) ( )txtutu BA


 +=
 
 ,   ( ) ( ) ( )tudzth C


 =− 
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 (19) 

 

Where 𝑢(𝑡) is the state vector with  dimension 4 × 1,𝑥(𝑡) is the input 

with dimension 4 × 1 and  �⃑⃑� , �⃑⃑� , �⃑⃑�  are the coefficient matrix which are 

determined by a system identification process. The convolution term 

represents the output. The WEC motion can be described as Eq.(20) by 

inserting Eq.(19) into Eq(18).  
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Eq.(21) is a first order differential equation which is solved by the 4th 

order Runge-Kutta method. The Hamiltonian is defined as two parts in 

Eq.(22). 

  

( )ZWxλ ++= 2ˆ zCH                                 (22) 

 

Where 𝐶�̇�2 is objective function correspongding to the P in Eq.(4). 
And 𝝀(𝑾 ∙ 𝑥 + 𝒁) is corresponding to the state-space equations. The 𝒙 

is the state vector with dimension 6 × 1. The 𝝀 is the adjoint variable 

with dimension 1 × 6, which can be obtained by adjoint equation as 

Eq.(23) based on Pontragyin’s maximum principle(PMP) .  
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Integrating the equations above we can get Eq. (24). 
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Zhong and Yeung(Zhong, 2017) use the quadratic programming (QP) 

formula to derive the control command. Quadratic programming refers 

to the optimization problem with quadratic objective function and 

constrained conditon. In general, the problem of maximizing energy 

absorbed under constraints can be regarded as an optimization problem 

for solving quadratic programming, which can ensure the existence of 

solutions. The application of PMP means that the optimal command 

time series u is the one that maximizes the Hamiltonian at each time 

step in [0. T].Then, the control command is derived as Eq.(25). 
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To get the control command time series from Eq.(25),we integrated  

Eq.(20) from t = 0 to t = T with the initial condition 𝒁(0) = 0 to obtain 

the motion 𝒁 without latching control. Then Eq.(24) is integrated from 

t = T to t = 0 to obtain the adjoint variable 𝜆 . Finally, repeat the 

iteration process until the calculation converges. Henriques (Henriques, 

2016) use the control command sequence derived at previous time step 

at the current time step, and execute the code within the iteration only 

once in order to ensure that each control does not affect each other and  

the prediction and optimization will be carried out again according to 

the new state at the next time step. 

 

 

 

Model Predictive Control 

 

The model predictive control(MPC) is the basic idea of real-time 

control strategy. The main difference in this study between MPC and 

other control methods is that it considers the effect of control quantity 

on the future state, which is realized by rolling optimization.Generally 

speaking, the optimal control needs to be optimized in the entire time 

domain, so as to ensure the optimality.However, since the wave force is 

unknown, we can only achieve sub-optimal control by forecasting the 

wave forces over a short interval [𝑡𝑖 , 𝑡𝑖 + 𝑝] from which the optimal 

control command is obtained under specific constraints. Subsequently, 

apply the command into the next time step [𝑡𝑖+1, 𝑡𝑖+1 + 𝑝]. This means 

that the optimization process is not carried out offline, but repeatedly 

online. This process belongs to closed-loop optimization. 

The choice of MPC parameters will affect the optimization effect, 

optimization time and prediction error in each time step. The input of 

model predictive control is the predicted wave force in the future, so 

the selection of its parameters will also affect the maximization of time-

averaged absorbed power. As shown below, wave excitation force can 

only be predicted within a certain prediction horizon. the predictive 

horizon ∆t is 3.0s in this study, and the time step d𝑡 is 0.01s. Therefore, 

300  future wave force data points are predicted over the prediction 

horizon. 

 

 

PREDICTION MODEL 
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In this section, three methods, based on Deep Learning Dynamic 

Neural Network(NAR, NARX, LSTM) applied to forecast short-term 

wave excitation force in order to evaluate their adequacy, accuracy and 

reliable horizon. In contrast to static neural networks, dynamic neural 

networks are characterized by the presence of feedback or delay. And 

the main application of dynamic neural network is the prediction of 

time series. The dynamic neural network can be classified into two 

categories: feed-forward and recurrent and the recurrent (also known as 

memory Neural network) is mainly used in this study. For the 

prediction model in this study, the inputs are the wave elevation 

information in the past and the outputs are the wave excitation forces 

over the prediction horizon [𝑡𝑖 , 𝑡𝑖 + 𝑝].  
 

The prediction model has several points to pay attention to:  

 

a) The number of hidden layers. A hidden layer is required only if the 

data is non-linear separated. Giorgi(Giorgi, 2015) has shown the  

nonlinear relation between incident wave and excitation force. The 

deeper the number of layers, the stronger the ability to fit the nonlinear 

relation in theory. However, in fact, the deeper layers may bring the 

problem of overfitting, but also increase the difficulty of training and 

make the model difficult to converge. In this study, a two hidden layers 

prediction model is used. 

 

b) The number of neurons for each layer. Each layer has the neurons to 

receive and send signals. In like wise, too few neurons in the hidden 

layer will lead to underfitting, while too many neurons will lead to 

overfitting. In general we take the same number of neurons for all 

hidden layers. In this study, a single hidden layers prediction model is 

confirmed by adjusting the number of layers. 

 

c) The appropriate number of delay. The delay means the number of 

raw data 𝑛 which are used for prediction in each time step. It also can 

be described as the length of history data. For example, the time step is 

0.01s, the delay is 𝑛 = 10, which means that the time length of history 

data  is 0.1s backwards.  

 

To calibrate the optimal number of hidden layers, neurons per layer, 

delay for NAR and NARX model. Several tests have performed range 

from 1 to 3 hidden layer and 1 to 20 neurons. It is worth mentioning 

that increase the number of hidden layer is more helpful to enhance the 

predictive model ability than simply increasing the number of neurons. 

 

 

Data pre-process 

 

Because different evaluation indicators often have different dimensions 

and ranges, this situation will have a bad effect on the results of data 

analysis. In order to eliminate the dimensional impact between 

indicators in training neural network, it is necessary to date pre-process 

which named normalization in this study in original data. It help find 

the optimal solution by gradient descent method faster and improve the 

calculation progress. Min-MaxNormalization is used in this study as 

Eq.(24) which is a linear transformation of the raw data. The data is in 

the range of  [0, 1] after the normalization process and can be compared 

together. 
 

minmax

min*

yy

yy
y

−

−
=                                        (26) 

 
NAR-ANN Model 

 

Non-linear Autoregresive artificial neural network model is an special 

dynamic neural network based on back propagation algorithm which 

can deal with time series non-linear problem. NAR model is used when 

it only have the output data of time series such as wave excitation force 

exported by SIMA.The NAR model in which the current output is only 

described as a linear combination of previous output of the time series. 

 

( ) ( ) ( ) ( )( )nty,,ty,tyft −−−= 21y                   (27) 

 

Where 𝑦(𝑡) is the output, 𝑦(𝑡 − 1), 𝑦(𝑡 − 2),⋯ , 𝑦(𝑡 − 𝑛)are the past 

wave excitation force value of the time series and the n is the number 

of  past output called delay used in the NAR model. 𝑓 is the nonlinear 

function obtained by network. Because the output weight of each time 

step is different, the outputs are not simply added.  

 

NAR prediction model is divided into two parts: train and prediction. 

Open-loop network is used to train and validate and it is an one-step-

ahead prediction network as shown in Fig. 2. 

 

 
 

Fig. 2  The NAR-ANN open-loop network (From:MATLAB) 

 

Closed-loop network is used to make multi-step prediciton as shown in 

Fig. 3. 

 

 
 

Fig. 3  The NAR-ANN closed-loop network (From:MATLAB) 

 

 

The specific training and prediction process is as follows: First, input 

the wave excitation force data of the first n time steps. Then, replaces 

the data of the first time step with the first prediction output as the 

feedback input and continue to output the next prediction result through 

the close-loop network. So multi-step prediction can be implemented 

forward by gradually replacing the actual points in input regressor with 

predicted points. And the iterative times are called prediction horizon 

∆𝑡 as shown in Fig. 4. By predicting a little distance each time, it is 

nested into a large cycle for complete prediction. 

 

 

����
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Fig. 4  Multi-step prediction application 

 

In the validation of NAR neural network, the prediction results are in 

good agreement with the sample values. However, it cannot be said that 

this prediction model is good enough, because even a poor model 

model will perform similar to it. The reason is that the relationship 

between the two values in each time step is only a one-step prediction 

through open-loop network, and there is no connection between each 

time step. 

 

 

Interpolation strategy application  

 

Due to the shortcomings of the prediction method itself, the prediction 

results will accumulate the error. This determines that the number of 

prediciton steps called prediction horizon ∆𝑡 is very limited. As shown 

in Fig. 5, only the prediction data of the first 0.3s is relatively accurate. 

And the longer the prediction steps are, the greater the error will be. 

But in fact, we can’t take a quite small value in the prediction horizon 

∆𝑡 to obtain the more accurate prediction results. Because in the real-

time control strategy, we use the optimal control theory to obtain the 

control sequence of wave force in the next time step and it need a quite 

long prediction horizon to get this control command. In order to give 

consideration to the effect of prediction and control, use the 

interpolation strategy to expand the number of forecasts. The strategy is 

implemented by uniform partition the delay vector when the neural 

network is trained and then interpolate the divided prediction results. 

 

 
 

Fig. 5  Comparison of NAR-ANN predicted data and raw force data 

 

 

As shown in Fig. 6 the prediction horizon ∆𝑡 is longer than before. It 

meets the requirements of both prediction and control, so it determined 

as ∆𝑡 = 3𝑠 in this paper. 

 
 
Fig. 6  Comparison of NAR-ANN interpolated predicted data and raw 

force 

 
 

NARX Model 

 

The Nonlinear Autoregressive model with exogenous input (NARX) 

added one or more exogenous covariate based on the NAR. Only the 

time history of  the output is used for the NAR model and both input 

and output data are used for the NARX model. And the input data is 

equivalent to an auxiliary input which can improve accuracy by 

predicting the input first and then predicting the output. In this study, 

the history wave elevation is regarded as the exogenous variable input, 

and the history wave excitation force is regarded as the output. The 

future excitation force prediction is realized by inputting the future 

wave elevation.  
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( ) ( ) ( ) ( )( ，，，， yntytytyft −−−= 21y                          

( ) ( ) ( ))untututu −− ，，， 1                          (28) 

 
Where 𝑢(𝑡) is the input and 𝑦(𝑡) is the output as NAR, the 𝑛𝑦  is the 

number of  past output called delay used in the NAR model.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7  Structure model of NARX neural network 

 

As shown in Fig. 7, a NARX-ANN with a single hidden layers has 

been used in in this study. According to the analysis of Autocorrelation, 

the parameter of delay n=10 can be conducted. And it is very important 

to data pre-process that wave elevation and wave excitation force are in 

different order of magnitude. If data pre-process is not taken, the 

autocorrelation of error will be very large. So in NARX model, data 

pre-process and interpolation are combined use. 

 

 

The number of neurons per hidden layer is estimated according to the 

following heuristics: 

 

amNN +++= 112
                            (29) 

 

Where 𝑁1 is number of  input neuron, 𝑚  is number of  output neuron, 

𝑎 can be chosen in 1 to 10. Generally, the neurons 𝑁2 of each hidden 

layercan be taken as the same.  
 

 

Table 1. Parameters applied in NAR and NARX prediction model  

 

Parameters Value 

Layer  3 

Neurons per layer 25 

Delay 10 

Cost function RMSE 

Learning rate 0.001 

Activation function  Sigmoid 

Time step 0.01s 

Training set ratio 70% 

Test set ratio  15% 

 

 

LSTM Model 

 

However, in the process of BP back propagation, it is necessary to take 

the derivative of the activation function, in which gradient explosion 

and gradient vanish will occur. Hochreiter first proposed LSTM in 

1997. Compared to NAR and NARX, LSTM is a special recurrent 

neural network which has the inner loop and be able to solve the 

problem of long-term dependencies and the network state is updated in 

real-time.And instead of neurons, LSTM networks have memory unit 

that are connected through layers. It is characterized by the new added 

cell state 𝑐  in hidden layer which can save long-term status. The 

transmission of LSTM memory unit is shown as Fig. 8.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  The transmission in LSTM memory unit 

 
The neuron of LSTM transmits two types of information:cell state 𝑐 

and hidden state ℎ forward in time. In my opinion, cell state likes a 

highway, only the past information can transmit in it. But the hidden 

state like a ordinary road and current information mainly transmit in it. 

To solve the accumulated error, it has two methods to solve the 

problem of error accumulation. The first is to use the observed value 

instead of the predicted value to predict the next one, and its external 

network state is updated in real time. Three types of gates are used to 

control both the cell state and the hidden state of the layer. The detailed 

description between gates (input gate, output gate, forget gate) and the 

corresponding architecture which is the internal structure in the figure 

can be found in Zhang(2020). Because the feature extraction ability of 

LSTM is very strong, the three-Layers structure is generally enough. 

 

 
Fig. 9  Train and multi-step prediction of LSTM neural network  

 

In this study, we use dynamic approach that update the model from the 

prediction value and use the concept of “delay” mentioned in NAR-

ANN to transform the LSTM network. In Fig. 9, a “sequence to 
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sequence” is constructed in the training part for univariate prediction 

and it alternated the data set by one time step into XTrain and YTrain. 

And now it use the current time(t-1), as well as prior times (t-1),(t-2),(t-

3),...,(t-9),(t-10) to predict the value at the next time instead of just 

using the value in the sequence(t-1) as Fig. 9 shown. For example, 

XTrain is [[1 2 3 4 5 6 7 8 9 10] [2 3 4 5 6 7 8 9 10 11]] , and the 

YTrain is [[11] [12]].Use the last step of training to predict the first 

predicted value. Then rolling prediction is used to make multi-step 

prediction. So like every prediction method that use rolling prediction, 

it also will accumulate the error. 

 

 

Table 2. Parameters applied in LSTM prediction model 

 

Parameters Value 

Layer  3 

Neurons per layer  300 

Cost function RMSE 

Initial learn rate 0.001 

Activation function  Sigmoid 

MaxEpochs 1200 

Time step 0.01s 

 

 
Root Mean Square Error(RMSE) are used to evaluate the performance 

of  the prediction model. In fact, we need to take the appropriate weight 

𝜔 and bias 𝑏  to minimize the loss function which is represented by 

RMSE. Because the process of training the model is the process of 

optimizing the cost function. 

 

( )( )
=

−=
N

i

i)i( xfy
1

2

N

1
RMSE                            (30) 

 
Where N is the number of prediction data,  y(i) is the true value, and  

f(xi) is the prediction output. In fact, we need to take the appropriate 

weight ω  and bias b  to minimize RMSE. the lower RMSE values 

means better results.  
 

 

SIMULATION RESULT 

 
Table 3. Parameters applied in simulation  

 

Parameters Value 
Density of the sea water ( ρ ) 1025 kg/m3 

Acceleration of gravity ( g ) 9.81 m/s2 

Radius ( R ) 5 m 

Damping  coefficient (C ) 814000 kg/s 

Stiffness ( K ) 78974 N/m 

Buoy mass ( m ) 268344 kg 

Added mass ( m ) 134275 kg 

Significant wave height (
sH ) 4 m 

Time step ( dt ) 0.01 s 

Time prediction horizon ( Δt ) 3 s 

Simulation time ( t ) 80 s 

Regular waves 

 

To verify the real-time control algorithm and prediction model, the 

dynamic model is compared in the case of control and no control. Valé

rio(Val é rio, 2007) has revealed that aligning the peaks of WEC 

velocity and excitation force in irregular waves will improve the energy 

capture. Fig.10 has proved that the buoy is under the optimal control, 

the velocity of WEC is in phase with the excitation wave force, just like 

when resonance occurs, its energy is at its maximum. And the results 

obtained refer to 1 m amplitude incident waves.  

 
Fig.10 Phase between velocity and wave force in regular wave 

(ω = 0.3rad/s) 

 
Irregular waves 

 

If  the device performs efficiently in regular waves over a frequency 

range, then it should be operate efficiently as well in irregular waves. 

Fig. 11 has shown the optimal control under the assumption that the 

excitation wave force is already known. From Fig. 11 we can see the 

wave force is more closely associated with velocity with control. It 

means that the velocity and the wave forces reach the maximum energy 

absorption with the real-time control. Because when the real-time 

control is implemented, the wave excitation forces mostly do positive 

work to buoy. 
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Fig. 11  Response of WEC based on optimal control 

 
Fig. 12  Response of WEC based on NAR prediction model 

 

 
Fig. 13  Response of WEC based on NARx prediction model 

 

 
Fig. 14  Response of WEC based on LSTM prediction model 

CONCLUSIONS 

 

A real-time control of WECs Based on LSTM Artificial Neural 

Network is set up. Derived the value of optimal PTO control force to 

maximized the absorption of energy. Meanwhile, a reasonable 

prediction horizon is suggested. Simulation using MATLAB are 

conducted based on state-space model and wave excitation force data 

derived from Wadam, Sima, P-M wave spectrum. The numerical 

results show that optimal control strategy has a great performance 

improvement on power capture and the effect of sub-control based on 

types of prediction model is quite close to the optimal control. But due 

to the low data frequency and large time span of the wave excitation 

force itself, the prediction is not accurate enough. Compared with the 

single sequence (only the wave excitation force) in this paper, multi 

sequence prediction can ensure that there will not be too much 

deviation in prediction due to rolling prediction. Therefore, there is still 

room for progress in prediction of multi sequence. 
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