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Abstract. We consider the numerical approximation of a continuum model of anti-
ferromagnetic and ferrimagnetic materials. The state of the material is described in
terms of two unit-length vector fields, which can be interpreted as the magnetizations
averaging the spins of two sublattices. For the static setting, which requires the solution
of a constrained energy minimization problem, we introduce a discretization based on
first-order finite elements and prove its Γ-convergence. Then, we propose and analyze
two iterative algorithms for the computation of low-energy stationary points. The al-
gorithms are obtained from (semi-)implicit time discretizations of gradient flows of the
energy. Finally, we extend the algorithms to the dynamic setting, which consists of a
nonlinear system of two Landau–Lifshitz–Gilbert equations solved by the two fields, and
we prove unconditional stability and convergence of the finite element approximations
toward a weak solution of the problem. Numerical experiments assess the performance
of the algorithms and demonstrate their applicability for the simulation of physical pro-
cesses involving antiferromagnetic and ferrimagnetic materials.

1. Introduction

Antiferromagnetic (AFM) and ferrimagnetic (FiM) materials, materials in which neigh-
boring magnetic moments tend to align antiparallel to each other (see Figure 1), have
been known for many years. However, they have recently gained renewed interest, because
several theoretical and experimental studies have shown that AFM and FiM materials
have features that could lead to strong improvements of the functionality of spintronics
devices, compared to those based on ferromagnetic (FM) materials [8, 19].

(a) FM (b) AFM (c) FiM

Figure 1. Classes of magnetic materials.

In this work, we consider a continuum model that is the state of the art for micro-
magnetic simulations of devices based on magnetic processes involving of AFM and FiM
materials; see, e.g., the works [25, 26, 29, 32, 28] on AFM materials and [23, 24, 14]
on FiM materials. The main elements of the model, an extension of the classical mi-
cromagnetic model of FM materials [12], are an order parameter, which consists of two
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unit-length vector fields that can be interpreted as the normalized magnetizations averag-
ing the magnetic moments of two sublattices, and an energy functional, which consists of
several contributions, each of them representing a specific physical effect. A key feature
of the model, that is necessary to describe the antiparallel alignment of the spins in AFM
and FiM materials, is a more complex expression of the exchange energy than in FM ma-
terials, which involves not only the classical Heisenberg exchange interaction penalizing
nonuniform configurations, but also the interaction of the two fields with each other (see
the last two terms in the energy functional (1) below). Similarly to the classical micro-
magnetic theory, the static problem consists of minimizing the energy functional over all
pairs of unit-length vector fields, whereas the dynamics of each field out of equilibrium
is governed by the Landau–Lifshitz–Gilbert (LLG) equation (see (9) below), with the
effective field being the Gateaux derivative of the energy with respect to the respective
field. However, due to the energy contributions involving the interaction between the
two fields, both the Euler–Lagrange equations associated with the minimization problem
and the system of LLG equations are nonlinearly coupled systems of nonlinear partial
differential equations.

Building on previous work on the approximation of (the heat flow of) harmonic maps [10]
and of the classical model of FM materials [3, 1], we propose fully discrete numerical
schemes for the approximation of both the static and the dynamic problems.

For the static problem, we propose a discretization based on first-order finite elements
and prove that the discrete energy functional converges to the continuous one in the sense
of Γ-convergence [11]. Moreover, we propose two iterative algorithms for the computation
of low energy stationary points based on time discretizations of the gradient flow of the
energy functional (see Algorithm 4.4 and Algorithm 4.5 below). These two algorithms
differ from each other in the time discretization (fully implicit for Algorithm 4.4, semi-
implicit for Algorithm 4.5). For both algorithms, we prove well-posedness of the iteration,
an energy-decreasing property, termination of the iterative loop, an upper bound for the
error in the unit-length constraint, and (under a restrictive assumption on the coefficients
appearing in the energy functional) convergence toward a stationary point. Moreover,
we perform numerical experiments to compare the two algorithms and to assess their
performance.

Then, we extend the best performing algorithm (and its analysis) to the dynamic
problem and show that the resulting integrator (Algorithm 5.1) is well-posed, stable, and
generates approximations that are unconditionally convergent toward a weak solution of
the coupled system of LLG equations. A by-product of our constructive convergence
proof is the first proof of existence of weak solutions for this problem.

In general, the mathematical literature on AFM and FiM materials is much less devel-
oped than that of FM materials. We refer, e.g., to [6, 7] for works discussing discrete-to-
continuum variational limits of a two-dimensional atomistic model of AFM materials. As
far as the continuum model considered in this work is concerned, to the authors’ knowl-
edge, the only other work addressing it is [21], where extensions of the Gauss–Seidel
projection method [33, 22] have been proposed for its numerical approximation (but no
convergence analysis is discussed).

To sum up, the novel contributions of the present work are the following:
• We provide the first mathematically rigorous formulation of a state-of-the-art model
currently used by applied scientists to simulate processes and devices involving AFM and
FiM materials.
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• Extending the techniques that have been developed for the approximation of the clas-
sical model of FM materials, we introduce and analyze the first convergent numerical
schemes for this model of AFM and FiM materials.

The remainder of the paper is organized as follows: In Section 2, we present the
mathematical model of AFM and FiM materials. In Section 3, we introduce the main
ingredient of our discretization. The algorithms for the static problem, their properties,
and two numerical experiments are discussed in Section 4. In Section 5, we extend one of
the algorithm and its analysis to the dynamic case, and use it to simulate the dynamics of
magnetic skyrmions in antiferromagnets. In Section 6, we collect the proofs of all results
of the work. Finally, in Appendix A, we show how to pass from the formulation of the
model in physical units to the dimensionless setting considered in this work.

2. Mathematical model

Let Ω ⊂ R3 be a bounded Lipschitz domain representing the volume occupied by an
AFM or a FiM material. The magnetic state of the material is described in terms of two
unit-length vector fields, m1 and m2. The total magnetization of the sample is given by
m = ηs,1m1 + ηs,2m2, where ηs,1, ηs,2 > 0 are dimensionless constants.

In what follows, for Lebesgue, Sobolev, and Bochner spaces and norms, we will use the
standard notation [16]. To denote (spaces of) vector-valued or matrix-valued functions,
we use bold letters, e.g., for any domain U , we denote both L2(U ;R3) and L2(U ;R3×3)
by L2(U). Moreover, we will denote by ⟨·, ·⟩ the inner product of L2(Ω) and by ∥·∥
the corresponding norm (any other inner product or norm will be denoted by the same
notation, but supplemented with a suitable subscript). We will denote by ⟨·, ·⟩ also the
duality pairing between H1(Ω) and its dual, and note that it coincides with the inner
product of L2(Ω) if the arguments are in L2(Ω).

2.1. Static problem. Stable magnetic configurations of the sample are described by
minimizers m1,m2 : Ω → S2 of the energy functional

E [m1,m2] =
1

2

2∑
ℓ=1

aℓℓ∥∇mℓ∥2 + a12⟨∇m1,∇m2⟩ − a0⟨m1,m2⟩, (1)

where the material constants a11, a22, a12, a0 ∈ R satisfy the inequalities

a11 + a22 > 0 and a11a22 > a212. (2)

The three contributions in (1) are called inhomogeneous intralattice exchange, inhomo-
geneous interlattice exchange, and homogeneous interlattice exchange, respectively [29].
Minimizers are sought in the set of admissible pairs of vector fields

X : =H1(Ω;S2)×H1(Ω;S2)

= {(m1,m2) ∈H1(Ω)×H1(Ω) : |m1| = |m2| = 1 a.e. in Ω}.
(3)

Note that (2) guarantees that the energy is bounded from below in X , as there holds the
inequality E [m1,m2] ≥ − |a0| |Ω| for all (m1,m2) ∈ X , and that the energy functional is
weakly sequentially lower semicontinuous in H1(Ω)×H1(Ω) (see Proposition 6.1 below).
Hence, existence of minimizers follows from the direct method of calculus of variations.

Stationary points of the energy are admissible pairs (m1,m2) ∈ X which, for all
ℓ = 1, 2, solve

−⟨heff,ℓ[m1,m2],φ− (mℓ ·φ)mℓ⟩ = 0 for all φ ∈H1(Ω) ∩L∞(Ω), (4)
3



where the effective field heff,ℓ[m1,m2] is the (negative) Gateaux derivative of the energy
with respect to mℓ, i.e.,

⟨heff,ℓ[m1,m2],ϕ⟩ : =
〈
− δE [m1,m2]

δmℓ

,ϕ

〉
(1)
= −aℓℓ⟨∇mℓ,∇ϕ⟩ − a12⟨∇m3−ℓ,∇ϕ⟩ + a0⟨m3−ℓ,ϕ⟩.

(5)

Equivalently, a stationary point (m1,m2) ∈ X can be seen as the solution of

−⟨heff,ℓ[m1,m2],ϕ⟩ = 0 for all ϕ ∈ K[mℓ], (6)

where
K[mℓ] = {ψ ∈H1(Ω) :mℓ ·ψ = 0 a.e. in Ω}. (7)

Note that (4) and (6) can be interpreted as variational formulations of the boundary
value problem

−mℓ × heff,ℓ[m1,m2] = 0 in Ω,

∂νmℓ = 0 on ∂Ω,
(8)

where ν : ∂Ω → S2 denotes the outward-pointing unit normal vector to ∂Ω.

2.2. Dynamic problem. Out of equilibrium, the dynamics of the time-dependent vec-
tor fields m1,m2 : Ω × (0,∞) → S2 is governed by a coupled system of two Landau–
Lifshitz–Gilbert (LLG) equations, one for each vector field:

∂tmℓ = −ηℓmℓ × heff,ℓ[m1,m2] + αℓmℓ × ∂tmℓ for all ℓ = 1, 2, (9)

where ηℓ, αℓ > 0 are dimensionless constants. Note that the two LLG equations are cou-
pled to each other via their effective fields. To complete the setting, (9) is supplemented
with a suitable initial condition and the same boundary conditions as in (8), i.e.,

mℓ(0) =m
0
ℓ in Ω and ∂νmℓ = 0 on ∂Ω× (0,∞) for all ℓ = 1, 2, (10)

for some admissible pair (m0
1,m

0
2) ∈ X .

In the following definition, we state the notion of a weak solution to the initial bound-
ary value problem (9)–(10), which naturally extends to the present setting the notion
introduced in [5] for the standard LLG equation.

Definition 2.1 (weak solution). Let (m0
1,m

0
2) ∈ X . A global weak solution of (9)–(10)

is (m1,m2) ∈ L∞(0,∞;X ) such that, for all T > 0, the following properties are satisfied:
(i) mℓ|ΩT

∈H1(ΩT ) for all ℓ = 1, 2, where ΩT := Ω× (0, T );
(ii) mℓ(0) =m

0
ℓ in the sense of traces for all ℓ = 1, 2;

(iii) for all ℓ = 1, 2, for all φ ∈H1(ΩT ), it holds that∫ T

0

⟨∂tmℓ(t),φ(t)⟩ dt

= −ηℓ

∫ T

0

⟨heff,ℓ[m1(t),m2(t)],φ(t)×mℓ(t)⟩ dt+ αℓ

∫ T

0

⟨mℓ(t)× ∂tmℓ(t),φ(t)⟩ dt;

(11)

(iv) it holds that

E [m1(T ),m2(T )] +
2∑

ℓ=1

αℓ

ηℓ

∫ T

0

∥∂tmℓ(t)∥2dt ≤ E [m0
1,m

0
2]. (12)
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The variational formulations in (11) are weak formulations of the LLG equations in (9)
in the space-time cylinder ΩT , while (12) is a weak counterpart of the energy law

d

dt
E [m1(t),m2(t)] = −

2∑
ℓ=1

αℓ

ηℓ
∥∂tmℓ(t)∥2 ≤ 0 for all t > 0,

satisfied by sufficiently smooth solutions of (9).

Remark 2.2. For ease of presentation, we consider a dimensionless form of the energy
functional. We refer to Appendix A.1 for its derivation (starting from the equations in
physical units usually encountered in the physical literature). Moreover, we restrict our-
selves to the case in which the energy comprises only the exchange contribution. This is
sufficient to capture the main mathematical features of the model: First, the analytical
and numerical treatment of standard lower-order energy contributions (e.g., magnetocrys-
talline anisotropy, Zeeman energy, magnetostatic energy, Dzyaloshinskii–Moriya interac-
tion) is well understood (see, e.g., [13, 18]). Second, lower-order terms do not entail the
coupling of the fields (see Appendix A.2 for more details). Hence, even in the presence of
lower-order terms, the Euler–Lagrange equations (4) and the system of LLG equations (9)
are exchange-coupled only.

3. Preliminaries

In this section, we collect the notation and the definitions that are necessary to intro-
duce our numerical schemes.

For the time discretization, we consider uniform partitions of the positive real axis with
constant time-step size τ > 0, i.e., ti := iτ for all i ∈ N0. Given a sequence {ϕi}i∈N0 , for
all i ∈ N0 we define dtϕ

i+1 := (ϕi+1 − ϕi)/τ . We consider the time reconstructions ϕτ ,
ϕ−
τ , ϕ+

τ defined, for all i ∈ N0 and t ∈ [ti, ti+1), as

ϕτ (t) :=
t− ti
τ

ϕi+1 +
ti+1 − t

τ
ϕi, ϕ−

τ (t) := ϕi, and ϕ+
τ (t) := ϕi+1. (13)

Note that ∂tϕτ (t) = dtϕ
i+1 for all i ∈ N0 and t ∈ [ti, ti+1).

The spatial discretization is based on first-order finite elements. We assume Ω to be
a polyhedral domain and consider a family {Th}h>0 of shape-regular tetrahedral meshes
of Ω parametrized by the mesh size h = maxK∈Th diam(K). We denote by Nh the set
of vertices of Th. For any K ∈ Th, let P1(K) be the space of polynomials of degree at
most 1 on K. We denote by S1(Th) the space of piecewise affine and globally continuous
functions from Ω to R, i.e.

S1(Th) =
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th

}
.

It is well known that S1(Th) is a finite-dimensional subspace of H1(Ω) with dimS1(Th) =
Nh := #Nh. Let Ih : C0(Ω) → S1(Th) denote the nodal interpolation operator, i.e., for all
v ∈ C0(Ω), Ih[v] is the unique element of S1(Th) satisfying Ih[v](z) = v(z) for all z ∈ Nh.
We use the same notation to denote its vector-valued counterpart Ih : C0(Ω) → S1(Th)

3,
where the scalar-valued operator is applied to each component of a vector-valued function.

We consider the mass-lumped L2-product ⟨·, ·⟩h defined by

⟨ψ,ϕ⟩h =

∫
Ω

Ih[ψ · ϕ] for all ψ,ϕ ∈ C0(Ω). (14)

We recall that this defines an inner product on S1(Th)
3 and that the induced norm ∥·∥h

satisfies the norm equivalence

∥ϕh∥ ≤ ∥ϕh∥h ≤
√
5 ∥ϕh∥ for all ϕh ∈ S1(Th)

3, (15)
5



see [9, Lemma 3.9]. Moreover, we have that

|⟨ϕh,ψh⟩ − ⟨ϕh,ψh⟩h| ≤ Ch2∥∇ϕh∥L2(Ω)∥∇ψh∥L2(Ω) for all ϕh,ψh ∈ S1(Th)
3, (16)

where C > 0 depends only on the shape-regularity of Th; see again [9, Lemma 3.9].
We conclude this section with a notational remark: In what follows, we will always

denote by C > 0 a generic constant, which will be always independent of the discretization
parameters, but not necessarily the same at each occurrence.

4. Numerical energy minimization

In this section, we introduce a finite element discretization of the energy minimization
problem and show its convergence in the sense of Γ-convergence. Then, we introduce two
fully discrete algorithms to approximate stationary points of the energy functional (1).
We state our results regarding well-posedness, stability, and convergence of the algo-
rithms and underpin our theoretical results with numerical experiments. To make the
presentation of the results concise, all proofs are postponed to Section 6.1.

4.1. Finite element discretization. To discretize the set of admissible pairs in (3),
given a mesh Th and a parameter δ > 0, we consider the set

Xh,δ := {(m1,h,δ,m2,h,δ) ∈ S1(Th)
3 × S1(Th)

3 : for all ℓ = 1, 2,

|mℓ,h,δ(z)| ≥ 1 for all z ∈ Nh and ∥Ih[|mℓ,h,δ|2]− 1∥L1(Ω) ≤ δ}.

Note that, at the discrete level, the unit-length constraint is relaxed [10, 1] and a mild
control of the error is enforced by the inequality involving the parameter δ.

The discrete static problem consists of seeking a minimizer of the energy functional (1)
in the set of discrete admissible pairs in Xh,δ. In the following theorem, we show that the
discrete energy functional Eh,δ[·, ·] := E|Xh,δ

[·, ·] converges toward the continuous one in
the sense of Γ-convergence. We note that our discretization is consistent, i.e., we do not
modify the energy functional, but we restrict the set in which minimizers are sought.

Theorem 4.1 (Γ-convergence). The following two properties hold:
(i) Lim-inf inequality: For every sequence {(m1,h,δ,m2,h,δ)} with (m1,h,δ,m2,h,δ) ∈ Xh,δ

for all h, δ > 0 such that, for some (m1,m2) ∈ X , mℓ,h,δ ⇀ mℓ in H1(Ω) as h, δ → 0
for all ℓ = 1, 2, we have that E [m1,m2] ≤ lim infh,δ→0 Eh,δ[m1,h,δ,m2,h,δ].
(ii) Existence of a recovery sequence: For every (m1,m2) ∈ X , there exists a sequence
{(m1,h,δ,m2,h,δ)} with (m1,h,δ,m2,h,δ) ∈ Xh,δ for all h, δ > 0 such that (m1,h,δ,m2,h,δ) →
(m1,m2) in H1(Ω)×H1(Ω) and Eh,δ[m1,h,δ,m2,h,δ] → E [m1,m2] as h, δ → 0.

A well-known consequence of Γ-convergence is the convergence of discrete global min-
imizers.

Corollary 4.2. Let {(m1,h,δ,m2,h,δ)} be a sequence such that (m1,h,δ,m2,h,δ) ∈ Xh,δ is
a global minimizer of the discrete energy functional Eh,δ[·, ·] for all h, δ > 0. Then, every
accumulation point (m1,m2) of the sequence belongs to X and is a global minimizer of
the continuous energy functional E [·, ·].

We omit the proof of Corollary 4.2 as it is based on standard Γ-convergence arguments;
see, e.g., [11, Section 1.5]. Moreover, we recall that Γ-convergence does not imply the
convergence of local minimizers.
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4.2. Computation of low energy stationary points. Let H be a Hilbert space with
inner product ⟨·, ·⟩H such that X is continuously embedded in H×H. Furthermore, we
suppose that there exists a constant cH ≥ 1 such that

c−1
H ∥ϕ∥ ≤ ∥ϕ∥H ≤ cH∥ϕ∥H1(Ω) for all ϕ ∈H1(Ω). (17)

To find stationary points with low energy, we propose two iterative algorithms that are
based on two discretizations of the dissipative dynamics governed by the H-gradient flow
of the energy

⟨∂tmℓ,ϕ⟩H +

〈
δE [m1,m2]

δmℓ

,ϕ

〉
= 0 for all ϕ ∈ K[mℓ] (ℓ = 1, 2). (18)

The spatial discretization of both methods is based on first-order finite elements as de-
scribed in Section 3. As a discrete counterpart of the space of pointwise orthogonal
vector fields in (7), for mh ∈ S1(Th)

3 with mh(z) ̸= 0 for all z ∈ Nh, we consider the
finite-dimensional space

Kh[mh] :=
{
ϕh ∈ S1(Th)

3 :mh(z) · ϕh(z) = 0 for all z ∈ Nh

}
. (19)

For discrete functions, the pointwise orthogonality of (7) is required to hold only at the
vertices of the mesh. Note that Kh[mh] is a subspace of S1(Th)

3 with dimension 2Nh.
The time discretization is based on two different time-stepping methods.

Remark 4.3. In this section, we refer to the variable t as time (accordingly, we refer to
τ below as the time-step size). However, note that we are considering the static setting,
with the time variable t playing the role of a pseudo-time, introduced only for numerical
purposes.

The first method is proposed in the following algorithm.

Algorithm 4.4 (coupled discrete gradient flow). Discretization parameters: Mesh
size h > 0, time-step size τ > 0, tolerance ε > 0.
Input: Initial guess (m0

1,h,m
0
2,h) ∈ S1(Th)

3 × S1(Th)
3 such that, for all ℓ = 1, 2,∣∣m0

ℓ,h(z)
∣∣ = 1 for all z ∈ Nh.

Loop: For all i ∈ N0, iterate (i)–(ii) until the stopping criterion (stop) is met:
(i) Given (mi

1,h,m
i
2,h) ∈ S1(Th)

3×S1(Th)
3, compute (vi1,h,vi2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h]

such that, for all (ϕ1,h,ϕ2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] and ℓ = 1, 2, it holds that

⟨viℓ,h,ϕℓ,h⟩H + aℓℓτ⟨∇viℓ,h,∇ϕℓ,h⟩ +
a12
2
τ⟨∇vi3−ℓ,h,∇ϕℓ,h⟩ −

a0
2
τ⟨vi3−ℓ,h,ϕℓ,h⟩

= −aℓℓ⟨∇mi
ℓ,h,∇ϕℓ,h⟩ − a12⟨∇mi

3−ℓ,h,∇ϕℓ,h⟩ + a0⟨mi
3−ℓ,h,ϕℓ,h⟩. (20)

(ii) Define
mi+1

ℓ,h :=mi
ℓ,h + τviℓ,h for all ℓ = 1, 2. (21)

(stop) Stop iterating (i)–(ii) if (vi1,h,vi2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] satisfies

max
ℓ=1,2

(
∥viℓ,h∥2H + τ∥∇viℓ,h∥2

)
≤ ε2 |Ω| . (22)

Output: If i∗ ∈ N0 denotes the smallest integer satisfying the stopping criterion (22),
define the approximate stationary point (m1,h,m2,h) := (mi∗

1,h,m
i∗

2,h).

The second method is proposed in the following algorithm.
7



Algorithm 4.5 (decoupled discrete gradient flow). Discretization parameters: Mesh
size h > 0, time-step size τ > 0, tolerance ε > 0.
Input: Initial guess (m0

1,h,m
0
2,h) ∈ S1(Th)

3 × S1(Th)
3 such that, for all ℓ = 1, 2,∣∣m0

ℓ,h(z)
∣∣ = 1 for all z ∈ Nh.

Loop: For all i ∈ N0, iterate (i)–(ii) until the stopping criterion (stop) is met:
(i) Given (mi

1,h,m
i
2,h) ∈ S1(Th)

3×S1(Th)
3, compute (vi1,h,vi2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h]

such that, for all (ϕ1,h,ϕ2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] and ℓ = 1, 2, it holds that

⟨viℓ,h,ϕℓ,h⟩H + aℓℓτ⟨∇viℓ,h,∇ϕℓ,h⟩
= −aℓℓ⟨∇mi

ℓ,h,∇ϕℓ,h⟩ − a12⟨∇mi
3−ℓ,h,∇ϕℓ,h⟩ + a0⟨mi

3−ℓ,h,ϕℓ,h⟩. (23)

(ii) Define
mi+1

ℓ,h :=mi
ℓ,h + τviℓ,h for all ℓ = 1, 2. (24)

(stop) Stop iterating (i)–(ii) if (vi1,h,vi2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] satisfies

max
ℓ=1,2

(
∥viℓ,h∥2H + τ∥∇viℓ,h∥2

)
≤ ε2 |Ω| . (25)

Output: If i∗ ∈ N0 denotes the smallest integer satisfying the stopping criterion (25),
define the approximate stationary point (m1,h,m2,h) := (mi∗

1,h,m
i∗

2,h).

In both Algorithm 4.4 and Algorithm 4.5 the iteration stops when the size of the
updates is sufficiently small (according to (22) and (25), respectively). The algorithms are
characterized by a different treatment of the inhomogeneous and homogeneous interlattice
exchange contributions, which are treated implicitly in Algorithm 4.4 and explicitly in
Algorithm 4.5. One immediate consequence is that in Algorithm 4.4 the two equations
are coupled (as they are in the continuous problem) and one iteration of the algorithm
requires the solution of one 4Nh-by-4Nh linear system, whereas in Algorithm 4.5 the
two equations are decoupled and one iteration of the algorithm requires the solution of
two 2Nh-by-2Nh linear systems (that are independent of each other and thus can be
solved in parallel). This difference will affect the solvability and energetic behavior of the
algorithms, which will be the subject of the following propositions.

In the following proposition, we establish the properties of Algorithm 4.4.

Proposition 4.6 (properties of Algorithm 4.4). There hold the following statements:
(i) Suppose that τ satisfies c2H |a0| τ < 2, where a0 is one of the coefficients in (1) and cH
is the constant in (17). Then, for all i ∈ N0, (20) admits a unique solution (vi1,h,v

i
2,h) ∈

Kh[m
i
1,h]×Kh[m

i
2,h].

(ii) Under the assumption of part (i), suppose that τ additionally satisfies cHcT |a0| τ < 1,
where cT > 0 is a constant which depends only on the shape-regularity of the family
of meshes. Then, Algorithm 4.4 terminates within a finite number of iterations. In
particular, the approximate stationary point (m1,h,m2,h) is well defined.
(iii) Under the assumption of part (i), for all i ∈ N0, the iterates of Algorithm 4.4 satisfy

E [mi+1
1,h ,m

i+1
2,h ]− E [mi

1,h,m
i
2,h] = −τ

2∑
ℓ=1

∥viℓ,h∥2H − τ 2

2

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2. (26)

In particular, the sequence of energies generated by the algorithm is monotonically de-
creasing, i.e., it holds that E [mi+1

1,h ,m
i+1
2,h ] ≤ E [mi

1,h,m
i
2,h].

(iv) Under the assumptions of part (ii), there exists C > 0 such that the approximate
8



stationary point (m1,h,m2,h) satisfies

∥Ih[|mℓ,h|2]− 1∥L1(Ω) ≤ Cτ

(
1 +

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
for all ℓ = 1, 2.

The constant C > 0 depends only on a11, a12, a22, a0, cH, and the shape-regularity of the
family of meshes.

Corresponding results for Algorithm 4.5 are the subject of the following proposition.

Proposition 4.7 (properties of Algorithm 4.5). There hold the following statements:
(i) For all i ∈ N0, (23) admits a unique solution (vi1,h,v

i
2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h].

(ii) Suppose that τ satisfies cH(cH/2 + cT ) |a0| τ < 1, where a0 is one of the coefficients
in (1), cH is the constant in (17), and cT > 0 is a constant which depends only on the
shape-regularity of the family of meshes. Then, Algorithm 4.5 terminates within a finite
number of iterations. In particular, the approximate stationary point (m1,h,m2,h) is well
defined.
(iii) For all i ∈ N0, the iterates of Algorithm 4.5 satisfy

E [mi+1
1,h ,m

i+1
2,h ]− E [mi

1,h,m
i
2,h] = −τ

2∑
ℓ=1

∥viℓ,h∥2H − τ 2

2

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2

+ a12τ
2⟨∇vi1,h,∇vi2,h⟩ − a0τ

2⟨vi1,h,vi2,h⟩. (27)

Moreover, if τ satisfies c2H |a0| τ ≤ 2, then the sequence of energies generated by the
algorithm is monotonically decreasing, i.e., it holds that E [mi+1

1,h ,m
i+1
2,h ] ≤ E [mi

1,h,m
i
2,h].

(iv) Under the assumptions of part (ii), there exists C > 0 such that the approximate
stationary point (m1,h,m2,h) satisfies

∥Ih[|mℓ,h|2]− 1∥L1(Ω) ≤ Cτ

(
1 +

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
for all ℓ = 1, 2.

The constant C > 0 depends only on a11, a12, a22, a0, cH, and the shape-regularity of the
family of meshes.

Each iteration of Algorithm 4.4 is well defined if the time-step size is sufficiently small.
Moreover, the algorithm unconditionally generates a monotonically decreasing sequence
of energies. Conversely, each iteration of Algorithm 4.5 is unconditionally well defined,
but the sequence of energies it generates is monotonically decreasing only if the time-step
size is sufficiently small. Furthermore, we note that the inequalities in point (iv) of both
Proposition 4.6 and Proposition 4.7 show that if the initial guesses are uniformly bounded
in H1(Ω) (in the sense of (28) below), then the approximate stationary points generated
by the algorithms belong to the set of admissible pairs Xh,δ with δ of the form δ = Cτ .

In the following theorem, we show that the sequence of approximate stationary points
computed with both algorithms converges toward an admissible pair in X as the dis-
cretization parameters go to zero. If we neglect the inhomogeneous interlattice exchange
contribution, we can identify the limit with a stationary point of the energy functional (1).

Theorem 4.8 (convergence of Algorithm 4.4 and Algorithm 4.5). Suppose that there
exists c0 > 0, independent of the discretization parameters h, τ , and ε, such that

sup
h>0

(
2∑

ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
≤ c0. (28)

9



Suppose that τ → 0 and ε → 0 as h → 0. Then, as h → 0, the sequence of approximate
stationary points {(m1,h,m2,h)}h>0 generated by either Algorithm 4.4 or Algorithm 4.5,
upon extraction of a subsequence, converges weakly in H1(Ω) ×H1(Ω) toward a point
(m1,m2) ∈ X . If a12 = 0, the limit (m1,m2) ∈ X is stationary point of the energy
functional (1).

A byproduct of Theorem 4.8 is the existence of weak solutions to the Euler–Lagrange
equations (4) for the case a12 = 0.

Remark 4.9. In our analysis, we can identify the limit of the sequence of approximate
stationary points with a stationary point of the energy only if we assume that a12 = 0,
i.e., if we neglect the inhomogeneous interlattice exchange contribution from the energy.
This restriction is related to the fact that, if a12 ̸= 0, the weak formulation of the approxi-
mate Euler–Lagrange equations satisfied by (m1,h,m2,h) contains a term that involves the
L2-product of ∇m1,h and ∇m2,h. Since (m1,h,m2,h) converges to (m1,m2) only weakly
in H1(Ω)×H1(Ω), we are not allowed to pass this term to the limit. We believe that this
issue comes from the fact that our algorithms do not use any regularization, so that the
stability analysis does not yield any additional regularity (and thus no stronger conver-
gence properties) that would allow us to use arguments based on compensated compactness
(see, e.g., [15, Chapter 5] or [31, Section I.3]). However, we note that our numerical ex-
periments suggest that the algorithms behave well even if a12 ̸= 0. Moreover, in many
situations (see, e.g., [26, 28]), the inhomogeneous interlattice exchange contribution is
of limited physical value and is omitted, so that the current theory already covers many
applications.

4.3. Numerical experiments. Before moving to the dynamic case, we show the ef-
fectivity of the proposed algorithms with two numerical experiments. The computations
presented in this section (and in Section 5.2 below) have been performed with an im-
plementation based on the open-source finite element library Netgen/NGSolve [30] (ver-
sion 6.2.2302). Lower-order energy contributions such as magnetocrystalline anisotropy,
Dzyaloshinskii–Moriya interaction, and Zeeman energy (cf. Section A.2), omitted in our
analysis, are treated explicitly (and thus contribute only to the right-hand-sides of (20)
and (23)); see [13, 1]. The orthogonality constraint in (20) and (23) is enforced using the
null-space method discussed in [27, 20]. The resulting linear systems are solved using the
generalized minimal residual method (GMRES) with an incomplete LU decomposition
preconditioner. We note that in the static case, the use of the conjugate gradient method
is possible due to symmetry, but we use GMRES in these tests to maintain consistency
with the dynamic case (see Section 5.2 below). All computations have been made on an
i5-9500 CPU with 16GB of installed memory. Magnetization configurations are visualized
with ParaView [2].

4.3.1. Comparison of the algorithms. In this experiment, we aim to compare to each
other Algorithm 4.4 and Algorithm 4.5, and to evaluate the impact on their performance
of the choice of the gradient flow metric, i.e., the inner product ⟨·, ·⟩H in (18).

For the dimensionless setting discussed in Section 2, we consider a toy problem on
the unit cube Ω = (−1/2, 1/2)3. The total energy consists of exchange and uniaxial
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anisotropy, i.e.,

E [m1,m2] =
1

2

2∑
ℓ=1

aℓℓ

∫
Ω

|∇mℓ|2 + a12

∫
Ω

∇m1 : ∇m2 − a0

∫
Ω

m1 ·m2

+
q21
2

∫
Ω

[1− (a ·m1)
2] +

q22
2

∫
Ω

[1− (a ·m2)
2],

with exchange constants a11 = 2, a22 = 1, a12 = −1/2, and a0 = −100, anisotropy
constants q1 = 5 and q2 = 10, and easy axis a = (1, 1, 1)/

√
3. It is easy to see that for

this setup the energy minimization problem admits two global minimizers (m±
1 ,m

±
2 ) ≡

±(a,−a) and that the energy value at the minimizers is E [m±
1 ,m

±
2 ] = −100.

For the discretization, we consider a tetrahedral mesh generated by Netgen with mesh
size h ≈ 0.209 (1433 vertices and 6201 elements), and we set τ = 10−3 and ε = 10−4.
Starting from the constant initial guess m0

1,h ≡ (1, 0, 0) and m0
2,h ≡ (0, 1, 0), we run

Algorithm 4.4 and Algorithm 4.5 for three different choices for the gradient flow metric:
the L2-metric ⟨·, ·⟩H = ⟨·, ·⟩, the mass-lumped L2-metric ⟨·, ·⟩H = ⟨·, ·⟩h (see (14)), and
the H1-metric ⟨·, ·⟩H = ⟨·, ·⟩+⟨∇(·),∇(·)⟩. For all six runs (two algorithms, three metrics
each), the iterative algorithm returns as approximate stationary point an approximation
of the minimizer (m−

1 ,m
−
2 ) ≡ (−a,a).

In Table 1, we compare the performance of each combination in terms of
• the final energy E [m1,h,m2,h] of the approximate stationary point (energy);
• the difference E [m̂1,h, m̂2,h] + 100 between the final energy E [m̂1,h, m̂2,h] of the

normalized approximate stationary point (proj. energy err.) and the expected
energy −100, where m̂ℓ,h = Ih[mℓ,h/ |mℓ,h|] for all ℓ = 1, 2;

• the number of iterations necessary to meet the stopping criterion (num. iter.);
• the average solve time per iteration (solve time), measured in s, where the solve

time is defined as the time needed to solve the linear system (20) for Algorithm 4.4
and as the sum of the times needed to solve the two linear systems (23) (one for
ℓ = 1 and one for ℓ = 2) for Algorithm 4.5;

• the error in the unit-length constraint measured in the L1-norm, i.e., errL1 :=
maxℓ=1,2

∥∥Ih

[
|mℓ,h|2

]
− 1∥L1(Ω);

• the error in the unit-length constraint measured in the L∞-norm, i.e., errL∞ :=
maxℓ=1,2∥mℓ,h∥L∞(Ω) − 1.

Moreover, in Figure 2, for all six combinations of algorithms and metrics, we plot the
evolution of the energy during the iteration.

Algorithm 4.4 (coupled) Algorithm 4.5 (decoupled)
H (L2(Ω), ∥·∥) (L2(Ω), ∥·∥h) H1(Ω) (L2(Ω), ∥·∥) (L2(Ω), ∥·∥h) H1(Ω)

energy −111.59 −111.59 −111.59 −111.38 −111.38 −111.38
proj. energy err. 8.56 · 10−11 8.56 · 10−11 8.56 · 10−11 9.90 · 10−11 9.90 · 10−11 9.90 · 10−11

num. iter. 249 249 249 275 275 275
solve time 0.223 0.232 0.376 0.095 0.094 0.209
errL∞ 0.049 0.049 0.049 0.047 0.047 0.047
errL1 0.100 0.100 0.100 9.61 · 10−2 9.61 · 10−2 9.61 · 10−2

Table 1. Experiment of Section 4.3.1: Comparison of algorithms and gradient flow
metrics (constant initial guess).

In the very first part of the gradient flow dynamics (corresponding roughly to the first
15 iterations), the constant initial guess with m1 and m2 perpendicular to each other
evolves to reach a constant state with an antiparallel alignment of the fields. This yields
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Figure 2. Experiment of Section 4.3.1: Evolution of the energy with different al-
gorithms and gradient flow metrics (constant initial guess).

a strong reduction of the a0-modulated homogeneous interlattice exchange contribution
(with the total energy abruptly dropping from an initial value of about 41 to -42). The
rest of the dynamics is slower and consists in a rotation of the pair of constant fields
which make them align to the direction of the easy axis as prescribed by the anisotropy
energy contribution.

Looking at the results, we observe that Algorithm 4.4 and Algorithm 4.5 require ap-
proximately the same number of iterations to fulfill the stopping criterion (those of Algo-
rithm 4.4 are slightly less than those of Algorithm 4.5). The energy decay of Algorithm 4.4
is faster than the one of Algorithm 4.5, but this does not lead to a significantly smaller
number of iterations. On the other hand, the average solve time of Algorithm 4.5 is
about half of the one of Algorithm 4.4, which makes the simulations performed with the
decoupled algorithm significantly faster. The different metrics are practically identical
(except for a minimal difference in the average solve time). For the L2- and mass-lumped
L2-metric, this is unsurprising, since they are equivalent to each other; see (15). We be-
lieve that the equivalence to the H1-metric in this example (with constant initial guess)
is due to the fact that the updates viℓ,h are essentially uniform, and hence their gradients
∇viℓ,h are essentially zero. It follows that in the numerical scheme, the gradient part of
the H1-metric is small, reducing to the L2-metric.

There is a significant discrepancy between the value of the energy at the minimizer
(E [m+

1 ,m
+
2 ] = −100) and the one of its approximation (E [m1,h,m2,h] ≈ -111). However,

if we remove the error in the unit-length constraint by normalizing the fields at the
vertices of the mesh, we obtain the desired value up to the tenth digit. This shows that
our projection-free algorithms are perfectly able to identify the minimizers. However,
for a quantitative match of the energy values, the error in the constraint needs to be
removed or reduced (applying a nodal projection to the final configuration or decreasing
the time-step size).

Next, we repeat the experiment, but this time we start from a random initial guess
(the same for all simulations). For all six runs, the iterative algorithm again returns as
approximate stationary point an approximation of the minimizer (m−

1 ,m
−
2 ) ≡ (−a,a).

The results are displayed in Table 2. The faster average solve time of Algorithm 4.5
observed for the case of a constant initial guess is confirmed. However, in this case, we
observe a clear difference between the L2-metrics (with and without mass lumping) and
the H1-metric, with the latter requiring a significantly larger number of iterations (ca
13700 against 200–300), which results in longer computational times. However, as far as
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Algorithm 4.4 (coupled) Algorithm 4.5 (decoupled)
H (L2(Ω), ∥·∥) (L2(Ω), ∥·∥h) H1(Ω) (L2(Ω), ∥·∥) (L2(Ω), ∥·∥h) H1(Ω)

energy -182.36 -158.04 -100.38 -182.70 -158.03 -100.38
proj. energy err. 5.70 · 10−11 6.33 · 10−11 6.02 · 10−9 6.54 · 10−11 7.70 · 10−11 6.02 · 10−9

num. iter. 231 231 13713 252 254 13718
solve time 0.220 0.227 0.347 0.093 0.092 0.170
errL∞ 1.185 0.923 0.004 1.196 0.905 0.004
errL1 0.668 0.433 2.51 · 10−3 0.670 0.428 2.51 · 10−3

Table 2. Experiment of Section 4.3.1: Comparison of algorithms and gradient flow
metrics (random initial guess).

the unit-length constraint is concerned, the H1-metric is characterized by a much better
accuracy.

Overall, our experiments show that the decoupled approach of Algorithm 4.5, due to its
computational efficiency, is preferable over the coupled one of Algorithm 4.4. On the other
hand, the choice of the gradient flow metric is more delicate. While for a constant initial
guess (with low exchange energy) the metrics are essentially equivalent, for a random
initial guess (with large exchange energy) the H1-metric guarantees a significantly smaller
violation of the unit-length constraint at the discrete level (which, however, is obtained
at the price of higher computational costs).

4.3.2. Skyrmion formation. In this experiment, we aim to highlight the capability of our
algorithms to compute stable magnetization configurations in AFM materials.

The domain is an AFM nanodisk of thickness 1 nm (aligned with x3-axis) and diam-
eter 60 nm (aligned with the x1x2-plane). The energy consists of exchange, out-of-plane
uniaxial anisotropy, and interfacial Dzyaloshinskii–Moriya interaction, and reads as

E [m1,m2] =
1

2

2∑
ℓ=1

aℓℓ

∫
Ω

|∇mℓ|2 − a0

∫
Ω

m1 ·m2 +
q2

2

∫
Ω

[1− (a ·m1)
2]

+
q2

2

∫
Ω

[1− (a ·m2)
2] +

∫
Ω

D̂ : (∇m1 ×m1) +

∫
Ω

D̂ : (∇m2 ×m2),

where the dimensionless parameters a11, a22, a0, q and D̂ are obtained from the material
parameters collected in Table 3 as explained in Appendix A.

Parameter Value
Ms,1, Ms,2 376 kA/m
A11, A22 6.59 pJ/m

A12 0
A0 −6.59 pJ/m
a 1 nm
K 0.15MJ/m3

a e3

D D(−e1 ⊗ e2 + e2 ⊗ e1)
D 3mJ/m2

Table 3. Experiment of Section 4.3.2: Material parameters. All values are taken
from [28], except those of a and D. Here, we denote by {e1, e2, e3} the canonical
basis of R3.

For the discretization, we consider a tetrahedral mesh Th generated by Netgen with
mesh size 3.36 nm (1660 vertices and 4694 elements), i.e., well below the exchange length
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of ℓex =
√

2A11/(µ0M2
s,1) = 8.61 nm, Here, µ0 > 0 denotes the vacuum permeability (in

N/A2).

Figure 3. Experiment of Section 4.3.2: Initial guess for Algorithm 4.5. The initial
magnetisation for m0

h,1 (resp., m0
h,2) is shown in red (resp., blue), with the internal

region facing in the e3 (resp., −e3) direction.

As an initial guess, we consider a perturbed skyrmion-like AFM state; see Figure 3.
More precisely, we consider the auxiliary function

finit(x, y, z) :=
1

1 + exp
(
20
(√

x2 + y2 − 10
)) − 1

2

and start from the initial condition m1,2 = (0, 0,±finit). This is then interpolated using
the built-in Oswald-type interpolation of NGSolve before undergoing a nodal projection,
random perturbation (up to 0.3 in each component) and another nodal projection. The
value 10 in the expression of finit corresponds to 10 nm and refers to the radius of the inner
circle. The decay constant 20 makes the transition reasonably sharp before projecting.

Starting from this configuration, we run Algorithm 4.5 (in our opinion, the best per-
forming one in Section 4.3.1) with dimensionless time-step size τ and stopping tolerance
ε both equal to 1 · 10−3.

(a) mh,1 (b) mh,2

Figure 4. Experiment of Section 4.3.2: Stable AFM configurations computed using
Algorithm 4.5 with H1-metric. In the pictures, the color scale refers to the third
component of the fields, which attains values between -1 (blue) and 1 (red).

In Figure 4, we show the stable configurations obtained running Algorithm 4.5 with
H1-metric. We see that both fields are Néel-type skyrmions [17] (with the cores pointing
up for mh,1 and down for mh,2, in line with the orientation of the field in the internal
region for the corresponding initial condition), which is typical for magnetic systems
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characterized by interfacial Dzyaloshinskii–Moriya interaction. Moreover, as expected
for an AFM material, we have that mh,1 ≈ −mh,2.

Algorithm 4.5
H (L2(Ω), ∥·∥) (L2(Ω), ∥·∥h) H1(Ω)

energy −4.362 · 105 −4.287 · 105 −4.256 · 105
num. iter. 17 552 17 704 17 784
solve time 0.060 0.050 0.058
errL∞ 0.165 0.100 0.061
errL1 95.134 44.173 23.411

Table 4. Experiment of Section 4.3.2: Comparison of gradient flow metrics for
Algorithm 4.5.

In Table 4, we compare the performance of the three gradient flow metrics considered
in Section 4.3.1. We see that, in terms of final energy value, number of iterations, and
average solve time, the performance of the three metrics is comparable. On the other
hand, as far as the violation of the unit-length constraint is concerned, the H1-metric
exhibits the best performance.

5. Numerical approximation of the LLG system

In this section, starting from Algorithm 4.5, we introduce a fully discrete algorithm
to approximate solutions of the initial boundary value problem (9)–(10) for the coupled
system of LLG equations modeling the dynamics of AFM and FiM materials. We state
well-posedness, stability, and unconditional convergence of the approximations toward a
weak solution of the problem, and present numerical experiments to show its applicability
for the simulation of the dynamics of magnetic skyrmions in AFM materials. To make
the presentation of the results concise, all proofs are postponed to Section 6.2.

5.1. Numerical algorithm and main results. The method we propose, stated in the
following algorithm, is based on the projection-free tangent plane scheme from [1, 10, 18]
and employs the decoupled approach of Algorithm 4.5. Like in the static case, the spatial
discretization is based on first-order finite elements (see Section 3).

Algorithm 5.1 (tangent plane scheme). Discretization parameters: Mesh size h > 0,
time-step size τ > 0.
Input: Approximate initial condition (m0

1,h,m
0
2,h) ∈ S1(Th)

3 ×S1(Th)
3 such that, for all

ℓ = 1, 2,
∣∣m0

ℓ,h(z)
∣∣ = 1 for all z ∈ Nh.

Loop: For all i ∈ N0, iterate (i)–(ii) until the stopping criterion (stop) is met:
(i) Given (mi

1,h,m
i
2,h) ∈ S1(Th)

3×S1(Th)
3, compute (vi1,h,vi2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h]

such that, for all ℓ = 1, 2, for all (ϕ1,h,ϕ2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h], it holds that

αℓ⟨viℓ,h,ϕℓ,h⟩h + ⟨mi
ℓ,h × viℓ,h,ϕℓ,h⟩h + ηℓaℓℓτ⟨∇viℓ,h,∇ϕℓ,h⟩

= −ηℓaℓℓ⟨∇mi
ℓ,h,∇ϕℓ,h⟩ − ηℓa12⟨∇mi

3−ℓ,h,∇ϕℓ,h⟩ + ηℓa0⟨mi
3−ℓ,h,ϕℓ,h⟩. (29)

(ii) Define
mi+1

ℓ,h :=mi
ℓ,h + τviℓ,h for all ℓ = 1, 2. (30)

Output: Sequence of approximations {(mi
1,h,m

i
2,h)}i∈N0.
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Starting from approximations m0
1,h,m

0
2,h ∈ S1(Th)

3 of the initial conditions, in each
step of Algorithm 5.1, the new approximations are computed updating the current ones
using a predictor-corrector approach. In the predictor step, (29) are discretizations of

αℓ ∂tmℓ +mℓ × ∂tmℓ = ηℓ heff,ℓ[m1,m2]− ηℓ (heff,ℓ[m1,m2] ·mℓ)mℓ for all ℓ = 1, 2,

an equivalent reformulation of (9) that can be obtained using standard vector identities
as well as the relations |mℓ| = 1 and mℓ · ∂tmℓ = 0 [4]. The discrete problems are
posed in the discrete tangent space (19), which yields a natural linearization. Like in
Algorithm 4.5, the inhomogeneous intralattice exchange contribution is treated implicitly,
whereas the interlattice contributions are treated explicitly. By doing this, the system of
LLG equations is decoupled and one has to solve two, independent of each other, 2Nh-
by-2Nh linear systems per time-step. The corrector step (30) is a simple projection-free
first-order time-stepping.

In the following proposition, we show that Algorithm 5.1 is well-defined.

Proposition 5.2 (well-posedness of Algorithm 5.1). For all i ∈ N0, (29) admits a unique
solution (vi1,h,v

i
2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h]. In particular, each iteration of Algorithm 5.1

is well-defined.

In the following proposition, we characterize the energy behavior of Algorithm 5.1.

Proposition 5.3 (discrete energy law and stability of Algorithm 5.1). There hold the
following statements:
(i) For all i ∈ N0, the approximations generated by Algorithm 5.1 satisfy the identity

E [mi+1
1,h ,m

i+1
2,h ]− E [mi

1,h,m
i
2,h] = −τ

2∑
ℓ=1

αℓ

ηℓ
∥viℓ,h∥2h −

τ 2

2

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2

+ a12τ
2⟨∇vi1,h,∇vi2,h⟩ − a0τ

2⟨vi1,h,vi2,h⟩. (31)

(ii) If τ < 2max{α1, α2}/ |a0|, for all j ∈ N, the approximations generated by Algo-
rithm 5.1 satisfy the inequality

2∑
ℓ=1

∥mj
ℓ,h∥

2
H1(Ω) + τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2h + τ 2
j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2 ≤ C. (32)

The constant C > 0 depends only on the problem data and the shape-regularity of the
family of meshes.

The discrete energy law of Algorithm 5.1 is an approximation of the one satisfied
by weak solutions (see (12)). The LLG-inherent energy dissipation, modulated by the
damping parameters α1 and α2, is enhanced by the dissipation coming from the second
term on the right-hand side, which is due to the implicit treatment of the homogeneous
intralattice exchange contribution. The last two terms on the right-hand side of (31), in
general unsigned, are perturbations arising from the explicit treatment of the interlattice
exchange contributions.

With the sequence of approximations delivered by Algorithm 5.1, for ℓ = 1, 2, we define
the piecewise affine time reconstruction mℓ,hτ : [0,∞) → S1(Th)

3 as

mℓ,hτ (t) :=
t− ti
τ
mi+1

ℓ,h +
ti+1 − t

τ
mi

ℓ,h for all i ∈ N0 and t ∈ [ti, ti+1]

(see (13)). In the following theorem, we state the convergence of the finite element
approximations toward a weak solution of (9) in the sense of Definition 2.1.
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Theorem 5.4 (convergence of Algorithm 5.1). Suppose thatm0
1,h →m0

1 andm0
2,h →m0

2

in H1(Ω) as h → 0. Then, there exist (m1,m2) ∈ L∞(0,∞;X ) and a (nonrelabeled)
subsequence of {(m1,hτ ,m2,hτ )} which converges toward (m1,m2) as h, τ → 0. In par-
ticular, as h, τ → 0, for all ℓ = 1, 2 it holds that mℓ,hτ

∗
⇀ mℓ in L∞(0,∞;H1(Ω)). If

a12 = 0, the limit (m1,m2) is a weak solution of (9) in the sense of Definition 2.1.

Like in the stationary case, we need to assume that a12 = 0 to be able to show that the
limit toward which the finite element approximations are converging satisfies the vari-
ational formulation (11) (cf. Remark 4.9). Under this assumption, Theorem 5.4 shows
existence of a weak solution to (9) and convergence (without rates) of the time recon-
structions generated using the snapshots computed using Algorithm 5.1 toward it.

5.2. Numerical experiments. In this section, we aim to show the capability of Algo-
rithm 5.1 to simulate dynamic processes involving AFM materials.

5.2.1. LLG-based energy minimization. Starting from the observation that the dynam-
ics of m1 and m2 governed by the system of LLG equations (9) is dissipative, with
the energy dissipation being modulated by the damping parameters α1 and α2, we re-
peat the experiment of Section 4.3.1, but to compute low-energy stationary points we
use Algorithm 5.1 (instead of the gradient flow-based approaches of Algorithm 4.4 and
Algorithm 4.5). More precisely, we consider the same setup and the same spatial dis-
cretization of Section 4.3.1 and run Algorithm 5.1 with η1 = η2 = 1, different damping
parameters α1 = α2 = α ∈ {1, 1/2, 1/4, 1/8, 1/16}, and τ = 10−3, using the constant
fields m0

1,h ≡ (1, 0, 0) and m0
2,h ≡ (0, 1, 0) as initial condition. The iteration is stopped

when the α-independent stopping criterion (22) with ∥·∥2H = ∥·∥2h and ε = 10−4 is satis-
fied.

Alg. 4.5 Algorithm 5.1
α 1 1 1/2 1/4 1/8 1/16

energy −111.38 −112.26 −126.64 −160.60 −214.79 −998.44
proj. energy err. 9.90 · 10−11 1.03 · 10−10 4.81 · 10−11 8.27 · 10−11 6.13 · 10−11 3.64 · 10−11

num. iter. 275 310 334 600 2954 46698
solve time 0.094 0.093 0.095 0.098 0.097 0.094
errL∞ 0.047 3.932 · 10−2 9.497 · 10−2 0.219 0.408 6.705
errL1 9.61 · 10−2 8.019 · 10−2 0.199 0.486 0.982 3.995

Table 5. Experiment of Section 5.2.1: Comparison of Algorithm 4.5 (with mass-
lumped L2-metric and α = 1) with Algorithm 5.1 (with α = 1, 1/2, 1/4, 1/8, 1/16).

We display the results of our computations in Table 5. Noting that Algorithm 5.1
coincides with Algorithm 4.5 with mass-lumped L2-metric if η1 = η2 = α1 = α2 = 1
and the precession term ⟨mi

ℓ,h × viℓ,h,ϕℓ,h⟩h is omitted from (29), in the first column of
the table we include the results from Section 4.3.1 of this instance of Algorithm 4.5 for
the sake of comparison. We see that as α is lowered, the final energy is further from
the expected value of −100, which is due to the slower dissipation resulting in lengthier
dynamics (larger number of iterations) and more rotations (as the precession term is made
stronger in a relative sense) before reaching the minimizing state, thereby increasing the
average length of mh,1 and mh,2 (as seen in the error rows). Similarly to Table 1 we
see that after applying a nodal projection, the energy is within 10 decimal places of
−100, indicating that a minimizer is still identified. As expected the average solve time
is independent of α. For α = 1/16 we see that the violation of the unit-length constraint
and the number of iterations are significantly larger. We suppose that this is related to a
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possible instability of Algorithm 5.1, since, as shown Proposition 5.3(ii), stability requires
τ to be sufficiently small, with the threshold for the time-step size being proportional to
the damping parameter. Indeed, for α = 1/16, we observe that it is sufficient to reduce
τ to regain a good performance of the algorithm.
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(a) Alg. 4.5, α = 1.
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(b) Alg. 5.1, α = 1.
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(c) Alg. 5.1, α = 1/2.
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(d) Alg. 5.1, α = 1/4.

0 1,000 2,000 3,000

−1

0

1

iteration

(e) Alg. 5.1, α = 1/8.
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(f) Alg. 5.1, α = 1/16.

Figure 5. Experiment of Section 5.2: Evolution of ⟨m1(t) · e1⟩ (red) and ⟨m2(t) ·
e1⟩ (blue). (a) Algorithm 4.5 with mass-lumped L2-metric and α = 1. (b)–(f)
Algorithm 5.1 with α = 1, 1/2, 1/4, 1/8, 1/16.

The fact that lowering the value of α results in less dissipation can also be seen in
Figure 5, where we display the evolution of the average first component of both fields, i.e.,
⟨mℓ(t) ·e1⟩ = |Ω|−1 ∫

Ω
mℓ(t) ·e1 for all ℓ = 1, 2, for all cases. Interestingly, we see that the

gradient flow dynamics and the LLG dynamics for α = 1/8, 1/16 return as approximate
stationary point an approximation of the minimizer (m−

1 ,m
−
2 ) ≡ (−a,a), whereas the

LLG dynamics for α = 1, 1/2, 1/4 return an approximation of (m+
1 ,m

+
2 ) ≡ (a,−a). This

is not surprising, since different dynamics can result in convergence to different stationary
points, even with the same initial condition. As far as the LLG dynamics is concerned,
we see that the oscillations of the average first components increase as α is lowered, which
can be explained by the greater relative weight of the precessional term on the right-hand
side of the LLG equation for smaller values of α.

5.2.2. Skyrmion dynamics. Inspired the experiment in [18, Section 4.3], we simulate the
dynamics of isolated magnetic skyrmions in an AFM nanodisk in response to an applied
field pulse.

The setup (domain, energy, and material parameters) is the same as in Section 4.3.2,
which we complete with the additional parameters needed for the dynamic case, i.e., the
rescaled gyromagnetic ratios γ1 = γ2 = γ0 ≈ 2.21 · 105m/(A s) and the Gilbert damping
parameters α1 = α2 = 5 · 10−3 (see (51) below). Given the same spatial discretization
(mesh) as in Section 4.3.2, as initial conditions m0

1,h and m0
2,h for Algorithm 5.1, we
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consider the nodal projections of the Néel-type skyrmions shown in Figure 4. Moreover,
for the time discretization, we use of a constant time-step size of 2 fs.

Starting from this configuration, we perturb the system from its equilibrium by ap-
plying an in-plane pulse field of the form Hext(t) = (H(t), 0, 0) of maximum intensity
µ0Hmax = 100mT for 150 ps; see Figure 6(a). Then, we turn off the applied external field,
i.e., Hext(t) ≡ (0, 0, 0), and let the system relax to equilibrium. The overall simulation
time is 1 ns.

0 0.150 1

0

Hmax

t (ns)

H(t)

(a) Applied pulse field.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

·10−3

t (ns)

(b) ⟨m(t) · e1⟩.

Figure 6. Experiment of Section 5.2.2: (a) Structure of the applied pulse field. (b)
Time evolution of ⟨m(t) · e1⟩.

In Figure 6(b), we show the time evolution of the average first component of the total
magnetization m = m1 +m2. We see a perfect match between the applied pulse field
and the total magnetization. When the field is turned off, the state immediately comes
back to the initial configuration, which confirms its stability.

6. Proofs

In this section, we collect the proof of all results presented in the paper.

6.1. Static problem. We start with showing the weak sequential lower semicontinuity
of the energy functional.

Proposition 6.1. The energy functional (1) is weakly sequentially lower semicontinuous
inH1(Ω)×H1(Ω), i.e., if {(m1,k,m2,k)}k∈N ⊂H1(Ω)×H1(Ω) and (m1,m2) ∈H1(Ω)×
H1(Ω) are such that (m1,k,m2,k) ⇀ (m1,m2) in H1(Ω) × H1(Ω) as k → ∞, then
E [m1,m2] ≤ lim infk→∞ E [m1,k,m2,k].

The result is a special case of the following lemma.

Lemma 6.2. Let V and H two Hilbert spaces such that V ⊂ H with compact inclusion.
Let a : V ×V → R be a continuous bilinear form satisfying a so-called Gårding inequality,
i.e., there exists C1 > 0 and C2 ∈ R such that

a(v, v) ≥ C1∥v∥2V − C2∥v∥2H for all v ∈ V. (33)
Then, the quadratic functional J : V → R defined by J [v] := a(v, v) for all v ∈ V is
weakly sequentially lower semicontinuous in V , i.e., if {vk}k∈N ⊂ V and v ∈ V are such
that vk ⇀ v in V as k → ∞, then J [v] ≤ lim infk→∞ J [vk].
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Proof. Let {vk}k∈N ⊂ V and v ∈ V be such that vk ⇀ v in V as k → ∞. From the
compact inclusion V ⊂ H, it follows that vk → v in H. Using (33), we see that

C1∥v − vk∥2V −C2∥v − vk∥2H ≤ a(v − vk, v − vk) = a(v, v)− a(vk, v)− a(v, vk) + a(vk, vk).

We now take the liminf as k → ∞ of this inequality. For the left-hand side we have that

lim inf
k→∞

(
C1∥v − vk∥2V − C2∥v − vk∥2H

)
≥ 0.

For the right-hand side, noting that vk ⇀ v in V implies that a(vk, v) → a(v, v) as
k → ∞, we have that

lim inf
k→∞

[a(v, v)− a(vk, v)− a(v, vk) + a(vk, vk)] = −a(v, v) + lim inf
k→∞

a(vk, vk)

= −J [v] + lim inf
k→∞

J [vk].

This shows that J [v] ≤ lim infk→∞ J [vk] and thus concludes the proof. □

We now prove Theorem 4.1 establishing the Γ-convergence of our finite element dis-
cretization.

Proof of Theorem 4.1. Part (i) of the theorem immediately follows from the weak sequen-
tial lower semicontinuity of the energy functional established in Proposition 6.1.

To show part (ii), let (m1,m2) ∈ X be arbitrary. SinceC∞(Ω;S2) is dense inH1(Ω;S2)
(see [31, Theorem III.6.2]), for all k ∈ N there exists (m1,k,m2,k) ∈ C∞(Ω;S2) ×
C∞(Ω;S2) such that ∥mℓ −mℓ,k∥H1(Ω) ≤ 1/k for all ℓ = 1, 2.

Let ε > 0. The above convergence guarantees the existence of k ∈ N such that
∥mℓ −mℓ,k∥H1(Ω) ≤ ε/2. Define mℓ,k,h := Ih[mℓ,k] for all ℓ = 1, 2. By construction, for
all ℓ = 1, 2, |mℓ,k,h(z)| = 1 for all z ∈ Nh and 0 = ∥Ih[|mℓ,k,h|2]−1∥L1(Ω) ≤ δ for all δ > 0.
Hence, (m1,k,h,m2,k,h) belongs to Xh,δ for all δ > 0. Moreover, a classical interpolation
estimate yields that ∥mℓ,k − mℓ,k,h∥H1(Ω) ≤ Ch∥D2mℓ,k∥. Therefore, we have that
∥mℓ,k −mℓ,k,h∥H1(Ω) ≤ ε/2 if h is chosen sufficiently small. Using the triangle inequality,
we thus obtain that ∥mℓ −mℓ,k,h∥H1(Ω) ≤ ε. Since ε > 0 was arbitrary, this shows that
the sequence {(m1,h,δ,m2,h,δ)} defined by (m1,h,δ,m2,h,δ) := ((m1,k,h,m2,k,h)) ∈ Xh,δ

satisfies the desired convergence property toward (m1,m2) as h, δ → 0 (note that our
construction is independent of δ, so the limit δ → 0 is trivial). This implies also that
Eh,δ[m1,h,δ,m2,h,δ] → E [m1,m2] as h, δ → 0 and concludes the proof. □

In view of the analysis of the discrete gradient flows presented in Section 4, we now
introduce the following algorithm.

Algorithm 6.3 (general discrete gradient flow). Discretization parameters: Mesh
size h > 0, time-step size τ > 0, tolerance ε > 0, parameters 0 ≤ θ1, θ2, θ3 ≤ 1.
Input: Initial guess (m0

1,h,m
0
2,h) ∈ S1(Th)

3 × S1(Th)
3 such that, for all ℓ = 1, 2,∣∣m0

ℓ,h(z)
∣∣ = 1 for all z ∈ Nh.

Loop: For all i ∈ N0, iterate (i)–(ii) until the stopping criterion (stop) is met:
(i) Given (mi

1,h,m
i
2,h) ∈ S1(Th)

3×S1(Th)
3, compute (vi1,h,vi2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h]

such that, for all (ϕ1,h,ϕ2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] and ℓ = 1, 2, it holds that

⟨viℓ,h,ϕℓ,h⟩H + aℓℓθ1τ⟨∇viℓ,h,∇ϕℓ,h⟩ + a12θ2τ⟨∇vi3−ℓ,h,∇ϕℓ,h⟩ − a0θ3τ⟨vi3−ℓ,h,ϕℓ,h⟩
= −aℓℓ⟨∇mi

ℓ,h,∇ϕℓ,h⟩ − a12⟨∇mi
3−ℓ,h,∇ϕℓ,h⟩ + a0⟨mi

3−ℓ,h,ϕℓ,h⟩. (34)

(ii) Define
mi+1

ℓ,h :=mi
ℓ,h + τviℓ,h for all ℓ = 1, 2. (35)
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(stop) Stop iterating (i)–(ii) if (vi1,h,vi2,h) ∈ Kh[m
i
1,h]×Kh[m

i
2,h] satisfies

2∑
ℓ=1

(
∥viℓ,h∥2H + τ∥∇viℓ,h∥2

)
≤ ε2 |Ω| . (36)

Output: If i∗ ∈ N0 denotes the smallest integer satisfying the stopping criterion (36),
define the approximate stationary point (m1,h,m2,h) := (mi∗

1,h,m
i∗

2,h).

The parameters 0 ≤ θ1, θ2, θ3 ≤ 1 modulates the ‘degree of implicitness’ in the treat-
ment of the three contributions of the energy. It is easy to see that Algorithm 4.4 and
Algorithm 4.5 are special instances of Algorithm 6.3, where θ1 = 1 (backward Euler) and
θ2 = θ3 = 1/2 (Crank–Nicolson) in Algorithm 4.4, whereas θ1 = 1 (backward Euler) and
θ2 = θ3 = 0 (forward Euler) in Algorithm 4.5.

For ease of presentation, in Section 4, we have decided not to present Algorithm 6.3 in
its full generality, but we have restricted ourselves to two of its instances. This has been
motivated by the following two reasons: First, we believe that the two proposed cases
are the most relevant in practical computations. Second, the properties and the analysis
of the algorithm for general θ1, θ2, θ3 resemble the ones of the two presented prototypical
cases (excluding the combinations involving values θ1, θ2 < 1/2, which require severe
restrictions of the form τ = O(h2) for stability and therefore have been ignored).

In the following proposition, we show well-posedness of each iteration of Algorithm 6.3.

Proposition 6.4. Suppose that θ1, θ2, θ3, and τ satisfy the following conditions:

θ1 > 0, a11a22θ
2
1 > a212θ

2
2, and c2H |a0| θ3τ < 1, (37)

where a11, a22, a12, and a0 are the coefficients in (1), whereas cH is the constant in (17).
Then, for all i ∈ N0, (34) admits a unique solution (vi1,h,v

i
2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h].

Proof. Let i ∈ N0. The sum of the left-hand sides of (34) for ℓ = 1, 2 yields a bilinear
form bi : (Kh[m

i
1,h]×Kh[m

i
2,h])× (Kh[m

i
1,h]×Kh[m

i
2,h]) → R, which is defined by

bi((ψ1,h,ψ2,h), (ϕ1,h,ϕ2,h)) = ⟨ψ1,h,ϕ1,h⟩H + ⟨ψ2,h,ϕ2,h⟩H
+ a11θ1τ⟨∇ψ1,h,∇ϕ1,h⟩ + a22θ1τ⟨∇ψ2,h,∇ϕ2,h⟩
+ a12θ2τ⟨∇ψ2,h,∇ϕ1,h⟩ + a12θ2τ⟨∇ψ1,h,∇ϕ2,h⟩
− a0θ3τ⟨ψ2,h,ϕ1,h⟩ − a0θ3τ⟨ψ1,h,ϕ2,h⟩

for all (ψ1,h,ψ2,h), (ϕ1,h,ϕ2,h) ∈ Kh[m
i
1,h] × Kh[m

i
2,h]. Owing to the second inequality

in (17), the bilinear form is bounded with respect to the H1-norm. To show coercivity,
for an arbitrary (ϕ1,h,ϕ2,h) ∈ Kh[m

i
1,h]×Kh[m

i
2,h], we first compute

bi((ϕ1,h,ϕ2,h), (ϕ1,h,ϕ2,h)) = ∥ϕ1,h∥2H + ∥ϕ2,h∥2H − 2a0θ3τ⟨ϕ2,h,ϕ1,h⟩
+ a11θ1τ∥∇ϕ1,h∥2 + a22θ1τ∥∇ϕ2,h∥2

+ 2a12θ2τ⟨∇ϕ2,h,∇ϕ1,h⟩.
The terms involving the gradients of (ϕ1,h,ϕ2,h) make up a quadratic form, which is
positive definite if and only if the underlying 2-by-2 matrix is positive definite, which is
true if and only if the first two inequalities in (37) hold.

Thanks to (17), it holds that

∥ϕ1,h∥2H + ∥ϕ2,h∥2H − 2a0θ3τ⟨ϕ2,h,ϕ1,h⟩ ≥ (c−2
H − |a0| θ3τ)

(
∥ϕ1,h∥2 + ∥ϕ2,h∥2

)
.

This shows that the L2-part of the bilinear form is coercive if the third inequality in (37)
holds.
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Hence, we conclude that the bilinear form bi(·, ·) is coercive with respect to the H1-norm
if (37) is satisfied. Observing that the sum over ℓ = 1, 2 of the right-hand sides of (34)
defines a bounded linear form, well-posedness of (34) then follows from the Lax–Milgram
theorem. □

In the following proposition, we establish the discrete energy law satisfied by the ap-
proximations generated by Algorithm 6.3.

Proposition 6.5. Let θ1, θ2, θ3, and τ satisfy the assumptions of Proposition 6.4. For
all i ∈ N0, the iterates of Algorithm 6.3 satisfy

E [mi+1
1,h ,m

i+1
2,h ]− E [mi

1,h,m
i
2,h] = −τ

2∑
ℓ=1

∥viℓ,h∥2H − (2θ1 − 1)

2
τ 2

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2

− a12(2θ2 − 1)τ 2⟨∇vi1,h,∇vi2,h⟩ + a0(2θ3 − 1)τ 2⟨vi1,h,vi2,h⟩. (38)

Suppose that θ1, θ2, θ3, and τ satisfy also the following conditions:

θ1 ≥ 1/2, a11a22(2θ1 − 1)2 ≥ a212(2θ2 − 1)2, and c2H |a0| |2θ3 − 1| τ ≤ 2. (39)

Then, the sequence of energies generated by Algorithm 6.3 is monotonically decreasing,
i.e., it holds that E [mi+1

1,h ,m
i+1
2,h ] ≤ E [mi

1,h,m
i
2,h] for all i ∈ N0.

Proof. Let i ∈ N0. Testing (34) with ϕℓ,h = viℓ,h ∈ Kh[m
i
ℓ,h] for ℓ = 1, 2 and summing

the resulting equations, we obtain that
2∑

ℓ=1

(
∥viℓ,h∥2H + aℓℓθ1τ∥∇viℓ,h∥2

)
+ 2a12θ2τ⟨∇vi1,h,∇vi2,h⟩ − 2a0θ3τ⟨vi1,h,vi2,h⟩

=
2∑

ℓ=1

(
−aℓℓ⟨∇mi

ℓ,h,∇viℓ,h⟩ − a12⟨∇mi
3−ℓ,h,∇viℓ,h⟩ + a0⟨mi

3−ℓ,h,v
i
ℓ,h⟩
)
.

(40)

It follows that
E [mi+1

1,h ,m
i+1
2,h ]

(35)
= E [mi

1,h,m
i
2,h] +

1

2
τ

2∑
ℓ=1

aℓℓ
(
2⟨∇mi

ℓ,h,∇viℓ,h⟩ + τ∥∇viℓ,h∥2
)

+ a12τ
(
⟨∇mi

1,h,∇vi2,h⟩ + ⟨∇mi
2,h,∇vi1,h⟩ + τ⟨∇vi1,h,∇vi2,h⟩

)
− a0τ

(
⟨mi

1,h,v
i
2,h⟩ + ⟨mi

2,h,v
i
1,h⟩ + τ⟨vi1,h,vi2,h⟩

)
(40)
= E [mi

1,h,m
i
2,h]− τ

2∑
ℓ=1

∥viℓ,h∥2H − (2θ1 − 1)

2
τ 2

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2

− a12(2θ2 − 1)τ 2⟨∇vi1,h,∇vi2,h⟩ + a0(2θ3 − 1)τ 2⟨vi1,h,vi2,h⟩,

which is (38). Arguing as in the proof of Proposition 6.4, it is easy to see the right-hand
side of (38) is nonpositive if the inequalities in (39) are satisfied. This shows that the
sequence of energies generated by the algorithm is monotonically decreasing and concludes
the proof. □

In the following lemma, we prove two auxiliary estimates, which will be useful in the
proof of convergence of Algorithm 6.3.
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Lemma 6.6. For all ℓ = 1, 2, for all j ∈ N, the iterates of Algorithm 6.3 satisfy

c−1
T ∥Ih[

∣∣mj
ℓ,h

∣∣2]− 1∥L1(Ω) ≤ τ 2
j−1∑
i=0

∥viℓ,h∥2 (41)

c−1
T ∥mj

ℓ,h∥
2 ≤ |Ω|+ τ 2

j−1∑
i=0

∥viℓ,h∥2, (42)

where cT > 0 depends only on the shape-regularity of the family of meshes.

Proof. We follow [10]. Let ℓ = 1, 2 and j ∈ N. For all i = 0, . . . , j − 1, from (35), since
viℓ,h ∈ Kh[m

i
ℓ,h], we deduce that

∣∣mi+1
ℓ,h (z)

∣∣2 =
∣∣mi

ℓ,h(z)
∣∣2 + τ 2

∣∣viℓ,h(z)∣∣2 for all z ∈ Nh.
Iterating in i and using that

∣∣m0
ℓ,h(z)

∣∣ = 1 for all z ∈ Nh, we obtain that

∣∣mj
ℓ,h(z)

∣∣2 = 1 + τ 2
j−1∑
i=0

∣∣viℓ,h(z)∣∣2 .
Then, both (41) and (42) follow from the equivalence of the Lp-norm of discrete functions
with the weighted ℓp-norm of the vector collecting their nodal values (with equivalence
constants depending only on the shape-regularity of the family of meshes); see, e.g., [9,
Lemma 3.4]. □

In the following lemma, we prove stability of Algorithm 6.3.

Lemma 6.7. Let θ1, θ2, θ3, and τ satisfy the assumptions of Proposition 6.4 as well as
the inequalities

θ1 > 1/2, a11a22(2θ1 − 1)2 > a212(2θ2 − 1)2, and c2H |a0| |2θ3 − 1| τ < 2. (43)

Then, there exists a threshold τ0 > 0 such that, if τ < τ0, the iterates of Algorithm 6.3
satisfy, for all j ∈ N, the stability estimate

2∑
ℓ=1

∥mj
ℓ,h∥

2
H1(Ω) + τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H + τ 2
j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2 ≤ C

(
1 +

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
.

(44)
The threshold τ0 depends on a0, θ3, cH, and the shape-regularity of the family of meshes,
whereas the constant C > 0 depends only on |Ω|, a11, a12, a22, a0, θ1, θ2, θ3, cH, and the
shape-regularity of the family of meshes.

Proof. Let j ∈ N. For all i = 0, . . . , j − 1, we apply Proposition 6.5, which yields (38).
Summing (38) over i = 0, . . . , j − 1, we obtain that

E [mj
1,h,m

j
2,h] + τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H +
(2θ1 − 1)

2
τ 2

j−1∑
i=0

2∑
ℓ=1

aℓℓ∥∇viℓ,h∥2

+ a12(2θ2 − 1)τ 2
j−1∑
i=0

⟨∇vi1,h,∇vi2,h⟩ − a0(2θ3 − 1)τ 2
j−1∑
i=0

⟨vi1,h,vi2,h⟩ = E [m0
1,h,m

0
2,h].

Using (43) and arguing as in the proof of Proposition 6.4, one can show that

E [mj
1,h,m

j
2,h] + λ1τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H + λ2τ
2

j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2 ≤ E [m0
1,h,m

0
2,h]
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for some positive values λ1 = λ1(a0, θ3) and λ2 = λ2(a11, a12, a22, θ1, θ2). From (2) and
Young’s inequality, it follows that

E [mj
1,h,m

j
2,h] ≥ λ3

2∑
ℓ=1

∥∇mj
ℓ,h∥

2 − |a0|
2

2∑
ℓ=1

∥mj
ℓ,h∥

2

for some λ3 = λ3(a11, a12, a22) > 0. Moreover, it holds that

E [m0
1,h,m

0
2,h] ≤ λ4

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω)

for some λ4 = λ3(a11, a12, a22, a0) > 0. Altogether, we thus obtain that

λ3

2∑
ℓ=1

∥∇mj
ℓ,h∥

2 − |a0|
2

2∑
ℓ=1

∥mj
ℓ,h∥

2 + λ1τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H + λ2τ
2

j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2

≤ λ4

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω). (45)

From Lemma 6.6 and (17), we deduce that

|a0|
2∑

ℓ=1

∥mj
ℓ,h∥

2 ≤ 2cT |a0| |Ω|+ cT |a0| cHτ 2
j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H, (46)

where cT > 0 is the constant appearing in (42) (which depends only on the shape-
regularity of the family of meshes). Combining (45) and (46), we thus obtain that

λ3

2∑
ℓ=1

∥∇mj
ℓ,h∥

2 +
|a0|
2

2∑
ℓ=1

∥mj
ℓ,h∥

2 + (λ1 − cT |a0| cHτ)τ

j−1∑
i=0

2∑
ℓ=1

∥viℓ,h∥2H

+ λ2τ
2

j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2 ≤ 2cT |a0| |Ω|+ λ4

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω).

Hence, if τ < τ0 := λ1/(cT |a0| cH), all terms on the left-hand side are nonnegative and
we obtain (44), where the (explicitly computable) constant C > 0 depends only on |Ω|,
a11, a12, a22, a0, θ1, θ2, θ3, cH, and cT . □

In the following proposition, combining the results we have proved so far, we establish
the main properties of Algorithm 6.3

Proposition 6.8. Let θ1, θ2, θ3, and τ satisfy the assumptions of Lemma 6.7. If the
time-step size τ is sufficiently small, then Algorithm 6.3 is well defined: Each iteration
is well defined and the stopping criterion (36) is met in a finite number of iterations. In
particular, the approximate stationary point (m1,h,m2,h) is well defined. Moreover, for
all ℓ = 1, 2, it holds that

∥Ih[|mℓ,h|2]− 1∥L1(Ω) ≤ Cτ

(
1 +

2∑
ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
, (47)

where the constant C > 0 depends only on |Ω|, a11, a12, a22, a0, θ1, θ2, θ3, cH, and the
shape-regularity of the family of meshes.
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Proof. The well-posedness of each iteration of the algorithm is a consequence of Propo-
sition 6.4. Now, let τ0 > 0 be the threshold guaranteed by Lemma 6.7. If τ < τ0,
then (44) holds. Since the left-hand side of (44) is nonnegative and the right-hand side
is independent of j, we deduce that the series

∞∑
i=0

2∑
ℓ=1

(
∥viℓ,h∥2H + τ∥∇viℓ,h∥2

)
is convergent. It follows that

∑
ℓ=1,2∥viℓ,h∥2H+τ∥∇viℓ,h∥2 → 0 as i → ∞, which guarantees

that the stopping criterion (36) is satisfied if i is sufficiently large. Estimate (47) is a
consequence of (44) and (41) from Lemma 6.6. This concludes the proof. □

In the following theorem, we show the convergence of the sequence generated by Algo-
rithm 6.3.

Theorem 6.9. Let θ1 and θ2 satisfy the inequalities

θ1 > 1/2, a11a22θ
2
1 > a212θ

2
2, and a11a22(2θ1 − 1)2 > a212(2θ2 − 1)2.

Suppose that there exists c0 > 0, independent of the discretization parameters h, τ , and
ε, such that

sup
h>0

(
2∑

ℓ=1

∥m0
ℓ,h∥2H1(Ω)

)
≤ c0. (48)

Suppose that τ → 0 and ε → 0 as h → 0. Then, as h → 0, the sequence of approximate
stationary points {(m1,h,m2,h)}h>0 generated by Algorithm 6.3, upon extraction of a
subsequence, converges weakly in H1(Ω) × H1(Ω) toward a point (m1,m2) ∈ X . If
a12 = 0, the limit (m1,m2) is a stationary point of the energy functional (1).

Proof. Since τ → 0, we can assume that it is sufficiently small such that the algo-
rithm is well defined (cf. Proposition 6.8) and that the stability estimate (44) holds (cf.
Lemma 6.7). Together with (48), it thus follows that the sequence {(m1,h,m2,h)}h>0 is
uniformly bounded in H1(Ω)×H1(Ω). Hence, there exists (m1,m2) ∈H1(Ω)×H1(Ω)
and a (nonrelabeled) weakly convergence subsequence of {(m1,h,m2,h)}h>0 such that
(m1,h,m2,h) ⇀ (m1,m2) in H1(Ω)×H1(Ω) and (m1,h,m2,h) → (m1,m2) in L2(Ω)×
L2(Ω). Combining (48) with (47), we see that, for all ℓ = 1, 2, ∥Ih[|mℓ,h|2]− 1∥L1(Ω) → 0
as h → 0. Hence, applying [9, Lemma 7.2], we obtain that (m1,m2) ∈ X .

To conclude the proof, it remains to show that, if a12 = 0, (m1,m2) ∈ X satisfies (4).
We start with observing that each approximate stationary point (m1,h,m2,h) generated
by Algorithm 6.3 satisfies the variational formulation

−aℓℓ⟨∇mℓ,h,∇ϕℓ,h⟩ + a0⟨m3−ℓ,h,ϕℓ,h⟩ = Rℓ,h(ϕℓ,h)

for all ϕℓ,h ∈ Kh[mℓ,h] and ℓ = 1, 2, where the reminder terms on the right-hand side are
given by

Rℓ,h(ϕℓ,h) = ⟨vi∗ℓ,h,ϕℓ,h⟩H + aℓℓθ1τ⟨∇vi
∗

ℓ,h,∇ϕℓ,h⟩ − a0θ3τ⟨vi
∗

3−ℓ,h,ϕℓ,h⟩

and satisfy
∣∣Rh(ϕℓ,h)

∣∣ ≤ Cε∥ϕℓ,h∥H1(Ω) for all ϕℓ,h ∈ H1(Ω); see (34) and (36). Here,
C > 0 depends only on a11, a22, a0, and |Ω|. Note that, since ε → 0 as h → 0, we
have that Rh → 0 in H1(Ω)∗ as h → 0. Let ψ ∈ C∞(Ω). Choosing the test function
ϕℓ,h = Ih[mℓ,h × ψ] ∈ Kh[mℓ,h] in (34) and passing to the limit as h → 0 (using the
available convergence results as in the proof of [9, Theorem 7.6]), we obtain that

−aℓℓ⟨∇mℓ,mℓ ×∇ψ⟩ + a0⟨m3−ℓ,mℓ ×ψ⟩ = 0 (49)
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for all ℓ = 1, 2. Since ψ was arbitrary, by density we have that this identity holds for
all ψ ∈ H1(Ω). Finally, let φ ∈ H1(Ω) ∩ L∞(Ω) be arbitrary. Choosing ψ = mℓ × φ
in (49) and performing simple algebraic manipulations based on the identities a×(b×c) =
(a·c)b−(a·b)c (for all a, b, c ∈ R3), |mℓ| = 1 (a.e. in Ω, for all ℓ = 1, 2) and ∂imℓ·mℓ = 0
(a.e. in Ω, for all i = 1, 2, 3 and ℓ = 1, 2), we obtain that (m1,m2) ∈ X solves (4) for the
case a12 = 0. This shows that (m1,m2) is a stationary point of the energy and concludes
the proof. □

6.2. Dynamic problem. In this section, we aim to present the proofs of the results
concerning Algorithm 5.1 discussed in Section 5. However, for the sake of brevity, we
omit those of Proposition 5.2 and Proposition 5.3, because they can be obtained following
line by line those of Proposition 6.4, Proposition 6.5, and Lemma 6.7. We focus on the
proof of the main convergence result.

Proof of Theorem 5.4. We follow the argument of the seminal paper on the tangent plane
scheme [3], which we adapt in order to take the projection-free update (30) (see also [1,
18]) and the different expression of the energy into account. For the sake of clarity, we
split the proof into three steps:

• Step 1: Existence of the limit (m1,m2) ∈ L∞(0,∞;X ).

Let T > 0 be arbitrary. From the stability estimate (32) (cf. Proposition 5.3), which holds
uniformly in h and τ (if τ is sufficiently small), it follows that, for all ℓ = 1, 2, the piecewise
affine time reconstruction mℓ,hτ and the piecewise constant time reconstructions m±

ℓ,hτ

(defined according to (13)) are both uniformly bounded in L∞(0,∞;H1(Ω)). Moreover,
mℓ,hτ |ΩT

is uniformly bounded in H1(ΩT ). By compactness, successive extractions of
(nonrelabeled) subsequences and standard Sobolev embeddings yield the existence of
m1,m2 ∈ L∞(0,∞;H1(Ω)) ∩H1(ΩT ) such that, for all ℓ = 1, 2, as h, τ → 0 we have
the convergences mℓ,hτ |ΩT

⇀m|ΩT
in H1(ΩT ), mℓ,hτ |ΩT

→m|ΩT
in Hs(ΩT ) for all s ∈

(0, 1), mℓ,hτ ,m
±
ℓ,hτ

∗
⇀ mℓ in L∞(0,∞;H1(Ω)), mℓ,hτ ,m

±
ℓ,hτ ⇀ mℓ in L2(0,∞;H1(Ω)),

mℓ,hτ |ΩT
,m±

ℓ,hτ |ΩT
→ mℓ in L2(0, T ;Hs(Ω)) for all s ∈ (0, 1), mℓ,hτ |ΩT

,m±
ℓ,hτ |ΩT

→ mℓ

in L2(ΩT ) and pointwise almost everywhere in ΩT . From the projection-free updates (30),
arguing as in the proof of Lemma 6.6, we obtain that (41) holds for all ℓ = 1, 2 and for
all j ∈ N, from which it follows (see Step 3 of the proof of [18, Proposition 6]) that
|m1| = |m2| = 1 a.e. in Ω× (0,∞). This shows that (m1,m2) ∈ L∞(0,∞;X ). Finally,
from the stability estimate, it also follows that, for all ℓ = 1, 2, τ∇(∂tmℓ,hτ )|ΩT

→ 0 in
L2(ΩT ) as h, τ → 0.

• Step 2: If a12 = 0, (m1,m2) satisfies the variational formulation (11).

Let φ ∈ C∞(ΩT ) be an arbitrary smooth test function. We consider the smallest integer
j ∈ N satisfying T ≤ jτ and extend φ by zero in (T, tj). Let ℓ = 1, 2. For all i =
0, . . . , j − 1, we choose ϕℓ,h = Ih[m

i
ℓ,h ×φ(ti)] ∈ Kh[m

i
h] in (29), we obtain

αℓ⟨viℓ,h, Ih[m
i
ℓ,h ×φ(ti)]⟩h + ⟨mi

ℓ,h × viℓ,h, Ih[m
i
ℓ,h ×φ(ti)]⟩h

+ ηℓaℓℓτ⟨∇viℓ,h,∇Ih[m
i
ℓ,h ×φ(ti)]⟩

= −ηℓaℓℓ⟨∇mi
ℓ,h,∇Ih[m

i
ℓ,h ×φ(ti)]⟩ + ηℓa0⟨mi

3−ℓ,h, Ih[m
i
ℓ,h ×φ(ti)]⟩,

Due to the properties of the mass-lumped scalar product, we can remove the nodal
interpolant from the first two terms on the left-hand side without altering the value of
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the integrals. Multiplication by τ and summation over i = 0, . . . , j − 1 then yield

αℓ

∫ tj

0

⟨∂tmℓ,hτ (t),m
−
ℓ,hτ (t)×φ

−
τ (t)⟩hdt

+

∫ tj

0

⟨m−
ℓ,hτ (t)× ∂tmℓ,hτ (t),m

−
ℓ,hτ (t)×φ

−
τ (t)]⟩hdt

+ ηℓaℓℓτ

∫ tj

0

⟨∇∂tmℓ,hτ (t),∇Ih[m
−
ℓ,hτ (t)×φ

−
τ (t)]⟩dt

= −ηℓaℓℓ

∫ tj

0

⟨∇φ−
τ (t),∇Ih[m

−
ℓ,hτ (t)×φ

−
τ (t)]⟩dt

+ ηℓa0

∫ tj

0

⟨m−
3−ℓ,hτ (t), Ih[m

−
ℓ,hτ (t)×φ

−
τ (t)]⟩dt,

where we note that we have rewritten the equation in terms of the time reconstruc-
tions (13). Using (16) and the approximation properties of the nodal interpolant, in all
integrals we substitute the mass-lumped inner products by L2-products and remove the
nodal interpolant (see [3]). Moreover, exploiting the fact that the integrands are all uni-
formly bounded, we modify the domain in integration in time from (0, tj) to (0, T ). All
these actions generate an error which goes to zero in the limit as h, τ → 0. In particular,
we obtain

αℓ

∫ T

0

⟨∂tmℓ,hτ (t),m
−
ℓ,hτ (t)×φ

−
τ (t)⟩dt

+

∫ T

0

⟨m−
ℓ,hτ (t)× ∂tmℓ,hτ (t),m

−
ℓ,hτ (t)×φ

−
τ (t)]⟩dt

+ ηℓaℓℓτ

∫ T

0

⟨∇∂tmℓ,hτ (t),∇[(m−
ℓ,hτ (t)×φ

−
τ (t)]⟩dt

= −ηℓaℓℓ

∫ T

0

⟨∇φ−
τ (t),∇[m−

ℓ,hτ (t)×φ
−
τ (t)]⟩dt

+ ηℓa0

∫ T

0

⟨m−
3−ℓ,hτ (t),m

−
ℓ,hτ (t)×φ

−
τ (t)⟩dt+ o(1).

Using the convergence results available from Step 1, we can pass this formulation to the
limit as h, τ → 0 and obtain that the last term on the left-hand side goes to zero, whereas
all other terms converge toward the corresponding ones in (11). For the details of the
argument, we refer to [3] for all terms but the second one on the left-hand side, which, due
to the omission of the nodal projection from (30), requires a more careful treatment (see
Step 2 of the proof of [18, Theorem 1]). This shows that, for all ℓ = 1, 2, mℓ satisfies (11)
for all φ ∈ C∞(ΩT ). By density, the result then holds for all φ ∈H1(ΩT ).

• Step 3: (m1,m2) satisfies the energy inequality (12).

We start from the discrete energy law (31) established in Proposition 5.3. Using (2) and
a combination of Cauchy–Schwarz’ an Young’s inequalities, we obtain that

E [mj
1,h,m

j
2,h]+τ

j−1∑
i=0

2∑
ℓ=1

(
αℓ

ηℓ
− |a0| τ

2

)
∥viℓ,h∥2h+λτ 2

j−1∑
i=0

2∑
ℓ=1

∥∇viℓ,h∥2 ≤ E [m0
1,h,m

0
2,h],

27



where λ > 0 is the minimum eigenvalue of the 2-by-2 matrix
(
a11 a12
a12 a22

)
. The last term

on the left-hand side is nonnegative and can be omitted. Rewriting the inequality in
terms of the time reconstructions (13), we get

E [m+
1,hτ (T ),m

+
2,hτ (T )] +

2∑
ℓ=1

(
αℓ

ηℓ
− |a0| τ

2

)∫ T

0

∥∂tmℓ,hτ (t)∥2h dt ≤ E [m−
1,hτ (0),m

−
2,hτ (0)].

Passing to the limit as h, τ → 0, using the convergence results available from Step 1,
standard lower semicontinuity arguments yield (12). This concludes the proof. □
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Appendix A. The equations in physical units

In this appendix, for the convenience of all interdisciplinary readers, we present the
model in physical units (used for physical investigations, e.g., in [25, 23, 26, 24, 28, 29,
32, 14]) and show how to obtain from it the dimensionless setting described in Section 2
and analyzed in the paper. By doing this, we also justify the setup and the choice of the
material parameters in the numerical experiments presented in the work.

A.1. Nondimensionalization. Let Ω ⊂ R3 be the volume occupied by an AFM or
FiM material. Let the vector field M : Ω → R3 denote the total magnetization of the
sample (in A/m). The total magnetization can be decomposed asM =M 1+M 2, where
M 1,M 2 : Ω → R3, the magnetization vectors of two sublattices (in A/m), satisfy the
constraints |M 1| = Ms,1 and |M 2| = Ms,2. The constants Ms,1,Ms,2 > 0 are the sublattice
saturation magnetizations (in A/m). Let m1,m2 : Ω → S2 be the dimensionless unit-
length vector fields m1 =M 1/Ms,1 and m2 =M 2/Ms,2. The total Gibbs free energy (in
J) of the system (assumed, for simplicity, to include only exchange contributions in this
section) reads as

E [m1,m2] = Eex[m1,m2]

=
2∑

ℓ=1

Aℓℓ

∫
Ω

|∇mℓ|2 + A12

∫
Ω

∇m1 : ∇m2 −
4A0

a2

∫
Ω

m1 ·m2,
(50)

where the exchange constants A11, A22 > 0 and A12, A0 ∈ R are in J/m, whereas a > 0
is the lattice constant (in m). The first contribution in (50) is called inhomogeneous in-
tralattice exchange and models the classical ferromagnetic exchange for m1 and m2. The
second term is called inhomogeneous interlattice exchange, which arises from a nearest-
neighbor approximation of the exchange interaction between spins. The last contribution
is called homogeneous interlattice exchange and takes the local interaction between m1

and m2 into account.
The dynamics of m1 and m2 is governed by a coupled system of two LLG equations

∂tmℓ = −γℓmℓ ×Heff,ℓ[m1,m2] + αℓmℓ × ∂tmℓ for ℓ = 1, 2, (51)

where γℓ > 0 (in m/(A s)) and αℓ > 0 (dimensionless) are the sublattice rescaled gy-
romagnetic ratios and Gilbert damping parameters, respectively. In (51), the effective
fields Heff,ℓ[m1,m2] (in A/m) are equal, up to a negative multiplicative constant, to the
functional derivatives of the total energy with respect to mℓ, i.e.,

Heff,ℓ[m1,m2] = − 1

µ0Ms,ℓ

E [m1,m2]

δmℓ

,

where µ0 is the vacuum permeability (in N/A2). Assuming no flux boundary conditions,
the strong form of the resulting effective fields reads as

Heff,ℓ[m1,m2] =
2Aℓℓ

µ0Ms,ℓ

∆mℓ +
A12

µ0Ms,ℓ

∆m3−ℓ +
4A0

µ0Ms,ℓ a2
m3−ℓ.

We now start the nondimensionalization. Let Ms > 0 and γ0 > 0 be some reference satu-
ration magnetization (in A/m) and rescaled gyromagnetic ratio (in m/(A s)), respectively.
For all ℓ = 1, 2, define the positive dimensionless parameters ηs,ℓ := Ms,ℓ/Ms and ηγ,ℓ :=
γℓ/γ0. The dimensionless total magnetization is given by m =M/Ms = ηs,1m1+ηs,2m2.

Let L > 0 is some intrinsic length of the problem. We rescale the space and time
variables to obtain the dimensionless variables x′ = x/L and t′ = γ0Ms t. Accord-
ingly, we rescale also the domain Ω′ = Ω/L. We consider the rescaled unit-length
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vector fields m′
ℓ(x

′, t′) = mℓ(Lx
′, t′/(γ0Ms)) (ℓ = 1, 2) and the rescaled total magne-

tization m′(x′, t′) =m(Lx′, t′/(γ0Ms)). Moreover, we rescale the energy as E ′[m′
1,m

′
2] =

E [m1,m2]/(µ0M
2
s L

3), which yields the expression

E ′[m′
1,m

′
2] = E ′

ex[m
′
1,m

′
2]

=
1

2

2∑
ℓ=1

2Aℓℓ

µ0M2
s L

2

∫
Ω′
|∇′m′

ℓ|
2
+

A12

µ0M2
s L

2

∫
Ω′
∇′m′

1 : ∇′m′
2 −

4A0

µ0M2
s a

2

∫
Ω′
m′

1 ·m′
2.

Defining the dimensionless coefficients aℓℓ = 2Aℓℓ/(µ0M
2
s L

2) > 0 (ℓ = 1, 2), a12 =
A12/(µ0M

2
s L

2) ∈ R, and a0 = 4A0/(µ0M
2
s a

2) ∈ R, and omitting all ‘primes’ for sim-
plicity, we obtain the dimensionless energy functional (1) of Section 2. By construction,
the dimensionless rescaled effective fields defined in (5) are related to the ones in physical
units according to the relation

heff,ℓ[m
′
1,m

′
2]

(5)
= −δE ′[m′

1,m
′
2]

δm′
ℓ

=
η2s,ℓ
Ms,ℓ

Heff,ℓ[m1,m2] for all ℓ = 1, 2.

Rescaling the LLG equations in (51) according to the above change of variables and
introducing all dimensionless quantities, we obtain

∂t′m
′
ℓ = −ηγ,ℓ

ηs,ℓ
m′

ℓ × heff,ℓ[m
′
1,m

′
2] + αℓm

′
ℓ × ∂t′m

′
ℓ for all ℓ = 1, 2,

Defining the dimensionless parameter ηℓ := ηγ,ℓ/ηs,ℓ > 0 and omitting all ‘primes’, we
obtain the dimensionless system (9) of LLG equations of Section 2.

A.2. Lower-order energy contributions. In practically relevant simulations, to be
able to describe complex physical processes involving AFM and FiM materials, more
energy contributions (in addition to the exchange ones) need to be taken into account
in (50):

• The magnetocrystalline anisotropy energy incorporates the existence of preferred
directions of alignment for the fields. In the uniaxial case, it reads as

Eani[m1,m2] = K1

∫
Ω

[1− (a1 ·m1)
2] +K2

∫
Ω

[1− (a2 ·m2)
2],

where K1, K2 > 0 are physical constants (in J/m3), whereas a1,a2 ∈ S2 are the
so-called easy axes of the material (usually it holds that K1 = K2 and a1 = a2).

• The Dzyaloshinskii–Moriya interaction is used to incorporate chiral effects into
the model. Its general expression for AFM and FiM materials is given by

EDMI[m1,m2] =

∫
Ω

D1 : (∇m1 ×m1) +

∫
Ω

D2 : (∇m2 ×m2),

where D1,D2 ∈ R3×3 are the so-called spiralization tensors (with coefficients in
J/m2), whereas, for ℓ = 1, 2, ∇mℓ×mℓ denotes the matrix with columns ∂jm×m
for j = 1, 2, 3 (again, usually it holds that D1 =D2).

• The Zeeman energy models the interaction of the total magnetization with an
applied external field (assumed to be magnetization-independent) and reads as

Eext[m1,m2] = −µ0

∫
Ω

Hext · (Ms,1m1 +Ms,2m2),

where Hext ∈ R3 denotes an applied external field (in A/m).
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• The magnetostatic energy can be understood as the energy associated with the
interaction of the total magnetization with the stray field Hs ∈ R3, which solves
the magnetostatic Maxwell equations

∇ ·Hs = −∇ · [χΩ(Ms,1m1 +Ms,2m2)] and ∇×Hs = 0 in R3.

The energy contribution is given by

Eext[m1,m2] = −µ0

2

∫
Ω

Hext · (Ms,1m1 +Ms,2m2),

where χΩ : R3 → {0, 1} denotes the indicator function of the domain Ω.
Note that in all the above energy contributions the two fields are decoupled (for the
magnetostatic energy, this is a consequence of the fact that the operator mapping the
total magnetization to the solution of the magnetostatic Maxwell equations is linear).
Hence, even in the presence of the above contributions, the system of Euler–Lagrange
equations associated with the minimization problem and the system of LLG equations
are only exchange-coupled.

In the numerical experiments of the work (see Sections 4.3 and 5.2), we considered
dimensionless forms of magnetocrystalline anisotropy energy, Dzyaloshinskii–Moriya in-
teraction and Zeeman energy, namely

Eani[m1,m2] =
q21
2

∫
Ω

[1− (a1 ·m1)
2] +

q22
2

∫
Ω

[1− (a2 ·m2)
2],

EDMI[m1,m2] =

∫
Ω

D̂1 : (∇m1 ×m1) +

∫
Ω

D̂2 : (∇m2 ×m2),

Eext[m1,m2] = −
∫
Ω

hext · (ηs,1m1 + ηs,2m2) = −
∫
Ω

hext ·m.

In these expressions, which can be obtained rescaling the energy contributions as de-
scribed in the previous section, the dimensionless parameters are related to the physical
ones via the relationships qℓ =

√
2Kℓ/(µ0M2

s ), D̂ℓ = Dℓ/(µ0M
2
s L) (ℓ = 1, 2), and

hext =Hext/Ms.
To conclude, we note that for AFM and FiM materials, differently from what happens

for FM materials, the Zeeman and the magnetostatic energies are usually of limited
physical importance, because they depend on the total magnetization of the sample,
which is in general very small.
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