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This paper proposes a method to accurately resolve orbit determination (OD) for a 

spacecraft with unknown impulsive maneuvers. The proposed method handles the unknown 

impulsive maneuver by incorporating the magnitude, direction, and time of the impulsive 

maneuver into the estimation parameter vector. First, a modified state transition tensor 

(STT) is proposed via orbit division and segment connection, allowing the orbit to be directly 

propagated under the effects of impulsive maneuver uncertainties. Then, based on the 

modified STT, a second-order measurement model is established with the estimation 

parameter vector as the input. Combining the second-order measurement model with 

observations, a second-order optimal solution is derived to correct the estimation 

parameters. The spacecraft orbit, together with the magnitude, direction, and time of the 

impulsive maneuver, are simultaneously estimated in an iterative framework. The 

performance of the proposed method is validated in a low-Earth-orbit case and a high-

Earth-orbit case. Simulations show that the proposed method outperforms its linear version 

in terms of convergence, accuracy, and uncertainty quantification capacity. Its maneuver 

reconstruction and orbit estimation errors are one order of magnitude less than those of 

competitive methods. Moreover, the proposed method can handle severe conditions and is 

robust to initial guesses. 
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I. Introduction 

CCURATE tracking, estimation, and prediction of a spacecraft orbit are critically important in all space 

missions. Several estimators, for example, the least squared method (LSM) and its variants [1], and the Kalman filter 

(KF) and its variants [2–4], have been widely used in solving the orbit determination (OD) problem. One of the 

complicated and challenging tasks in OD is to determine and predict the orbit of a maneuvering spacecraft, 

especially a noncooperative target with unknown maneuvers [5,6]. Without correctly compensating for unknown 

maneuvers, the OD performance of conventional estimators is significantly degraded, and sometimes these methods 

even fail to converge [7,8]. 

The state-of-the-art means of estimating the orbit of a maneuvering spacecraft can be broadly divided into three 

categories: reinitiation of the OD process, filtering-through approach, and maneuver reconstruction [7]. Reinitiation 

methods estimate the post-maneuver orbit by directly inflating the estimation covariance [9], disregarding the pre-

maneuver measurements and OD solutions. Unknown maneuvers are compensated by the largely inflated initial 

uncertainty during the state update stage. Reinitiation methods are simple and easy to operate. However, their 

performance relies on precise maneuver detection and careful selection of the inflating weights. Thus, they are not 

satisfactory for scenarios with high precision requirements [10]. 

The filtering-through approach is a real-time tracking technique compensating for unknown maneuvers to fit the 

post-maneuver observation into the pre-maneuver orbit [7,11]. According to the methods for compensating the 

unknown maneuver, the filtering-through approach developed thus far can be further cataloged into three groups: the 

single-model-based adaptive KFs, multiple-model algorithms, and decision-based adaptive KFs [12]. The single-

model-based adaptive KFs compensate for the unknown maneuvering accelerations using a single model, including 

the thrust-Fourier-coefficient (TFC) event representation [7,13,14], the polynomial representation [6] and the 

variable structure estimator [15]. The multiple-model algorithms use a bank of Kalman filters with different 

maneuvering submodels in parallel, in which each submodel corresponds to one particular type of maneuver. 

Typical multiple-model algorithms include the interacting multiple model (IMM) algorithm and its variants [16,17]. 

The disadvantage of IMM algorithms is that they only work well when the submodels accurately fit the actual 

maneuvering acceleration. Moreover, the IMM algorithms suffer from algorithm complexity as their computational 

load increases linearly with the number of submodels [18,19]. The decision-based adaptive KF catalogs include the 

equivalent noise approaches [20], the input estimation (IE) approaches [21,22], and the switching model (SM) 
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approaches [23,24]. The equivalent noise approaches and the IE approaches can only be applied to address certain 

types of maneuvers, and their performances significantly degrade when the actual maneuver varies with time [25]. 

The SM approaches use nonmaneuvering and maneuvering dynamics and switch according to the maneuver 

detection results. The SM approaches can perform well but strongly rely on high-frequency observations and 

accurate maneuver detection [15]. A major concern for the filtering-through approaches is that, although 

compensating the unknown maneuvers can help improve the estimation accuracy, it is often expected to obtain more 

information about the maneuver to better track the target, that is, to reconstruct the maneuver [26,27].  

Maneuver reconstruction methods are unified by their characterization in postprocessing. There are many ways 

to reconstruct the unknown maneuver, but all are based on independent estimations of the pre- and post-maneuver 

orbits [27–29]. The weakness of such methods is that they are sensitive to the estimation errors of the pre- and post-

maneuver orbits [29]. In all current maneuver reconstruction methods, the reconstruction process is independent of 

the orbit estimation. Orbit estimation errors are inevitable due to the measurement noise and the scarce knowledge 

of the maneuver. In turn, the orbit estimation errors couple and amplify into the errors of the maneuver 

reconstruction solutions [27,30]. In particular, it is found that the maneuver time is most likely to be distorted by 

position uncertainties [27]. Moreover, compared with the first two categories, the maneuver reconstruction method 

usually has heavy computational overhead [7]. 

The abovementioned methods are mainly developed for ideal OD scenarios, assuming all data preprocessing is 

done. There is also some literature that contributes to solving more difficult and complex versions of maneuvering 

spacecraft OD problems.  Holzinger et al. proposed an optimal control-based estimation (OCBE) method for multi-

maneuvering target tracking [31,32]. The OCBE uses a control effort as a defined metric to correlate target 

observations, detect maneuvers, and characterize maneuvers before estimating the orbit. Hall and Singla developed a 

unified reachability‑based framework for tracking lost-in-space noncooperative maneuvering targets [33,34]. Their 

method uses numerical quadrature methods to efficiently propagate the reachability sets of the maneuvering target 

[35,36], which can be further employed for searching lost-in-space targets and tasking sensors, maneuver detection 

and estimation, and orbit estimation [37].  

The method presented in this paper falls into the maneuver reconstruction category. The key difficulty of the 

impulsively maneuvering spacecraft OD lies in accurately estimating the vector and the time of the unknown 

impulsive maneuver. One single unknown impulsive maneuver is assumed to occur to simplify the problem. The 
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proposed method incorporates the vector and the time of the unknown impulsive maneuver into the estimation 

parameter vector when modeling the OD system. It can estimate the orbits and reconstruct the impulsive maneuver 

simultaneously. As such, the effects of the orbit estimation errors on the maneuver reconstruction are reduced, while 

the accuracy and robustness of the maneuver reconstruction method are improved. This paper first models the 

effects of the impulsive maneuver vector and epoch on the orbits from the view of uncertainty propagation. Under 

the effects of the impulsive maneuver, the orbit of the spacecraft is divided into several segments. A virtual state is 

defined to handle the time uncertainty of the impulsive maneuver. Based on the original state transition tensor (STT) 

technique, a modified second-order STT is proposed for the orbit propagation considering impulsive maneuver 

uncertainties via virtual state reversion and segment connection. Then, based on the modified STT, a second-order 

measurement model is proposed to establish the mapping relationship from the estimation parameter vector to the 

measurements. Starting from the given a priori parameter estimation, the reference orbit is propagated using the 

modified STT, and the residuals between incoming observation data and predicted measurements are calculated. 

Based on the partials provided by the second-order measurement model, the concept of the second-order optimal 

estimation is extended from the conventional least-squares solution. The correction to the a priori parameter 

estimation is made from the second-order optimal estimation. The impulsively maneuvering spacecraft OD problem 

is solved in an iterative framework, and thus, the algorithm efficiency is greatly improved.  

The remainder of this paper is organized as follows. Section II describes the impulsively maneuvering spacecraft 

OD problem. Section III addresses the impulsively maneuvering spacecraft OD problem using the modified STT 

technique. The second-order measurement model and the second-order optimal estimation solution are presented in 

detail. In Section IV, numerical simulations are performed to investigate the performance of the proposed algorithm. 

Finally, conclusions are given in Sec. V. 

II. Preliminaries 

A. Description of an impulsively maneuvering spacecraft OD problem 

Consider an OD problem in which the target executes one unknown impulsive maneuver. Assume that the orbit 

state of the target is labeled as [ ; ]=x r v , where [ , , ]Tx y z=r  and [ , , ]Tx y z=v     denote the position and velocity 

vectors in the Earth-centered equatorial inertial (ECEI) coordinate system, respectively. The OD process begins at 

epoch 0t  and ends at epoch 2t . An impulsive maneuver 1 [ ; ; ]x y zv v v∆ = ∆ ∆ ∆v  is applied at epoch 1t , where 
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1 0 2( , )t t t∈ . The conventional OD process only estimates the orbit of the spacecraft. In this paper, we aim to estimate 

the orbit, and the time and vector of the impulsive maneuver together. Thus, the estimation parameter vector X  is 

written as 

 1 1[ ; ; ; ]t= ∆X r v v . (1) 

The system equation of the impulsively maneuvering spacecraft OD problem is given by 

 
6( , )

( ) d

t = ∈


= + ∈

x y x
z h x ε






, (2) 

where 6( , )t ∈y x   represents the state model, ( ) d∈h x   is the measurement model, d  is the dimension of the 

measurement vector, and d∈ε   is the Gaussian-distributed measurement noise with the covariance matrix 

represented by d d×∈R  . 

Finally, the point mass gravity of Earth and the Earth’s oblateness perturbation J2 are expressed as 
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where 3 2398600.44 km /seµ =  is the gravitational constant of the Earth, and 2 ( )Ja r  is the perturbation acceleration 

of J2, given by 
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where 6378.137 kmeR =  denotes the Earth's radius, and 3
2 1.08264 10J −= × . 

B. State transition tensor technique 

The STT technique is a classic analytical nonlinear propagation method derived from the higher-order Taylor 

series approach [38–41]. Let 0x  and ( )tx  denote the state at the initial epoch 0t  and an arbitrary future epoch t , 
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respectively. From Eq. (2), the deviation of the state x  from a reference (nominal) orbit can be approximated by the 

N-th order Taylor series expansion at the initial state 0x  as: 

 1 1

0

,
0 0( , )

1

1( )
!

p p
N

i k k ki k
t t

p
x t x x

p
δ δ δ

=

= Φ∑ 

 , (5) 

where ( )ix t  ( {1,2,3,4,5,6}i∈ ) denotes the i-th elements of the state vector ( )tx , 0
jkx  ( {1,2,3,4,5,6}jk ∈ ) is the kj-

th component of the state vector 0x , and 1

0

,
( , )

pi k k
t tΦ   is the p-th order STT from 0t  to t , given by 

 1

0 1

,
( , )

0 0

( )p

p

p i
i k k
t t kk

x t
x x
∂

Φ =
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



. (6) 

Note that in Eqs. (5) and (6) (and the equations in the following parts of this paper), the Einstein summation 

notation is used for all the dummy variables (i.e., 1k , 2k , …, pk ) [42,43]. For example, for the second-order term 

1 2 1 2

0

,
0 0( , )

i k k k k
t t x xδ δΦ , the subscripts 1k  and 2k  traverse from 1 to 6 in the summation, such that  

 1 2 1 2 1 2 1 2

0 0

1 2

6 6
, ,

0 0 0 0( , ) ( , )
1 1

i k k k k i k k k k
t t t t

k k
x x x xδ δ δ δ

= =

Φ = Φ∑∑ . (7) 

The STTs 1

0

,
( , )

pi k k
t tΦ   can be obtained by integrating the differential equations. The differential equations for 

obtaining the STTs (up to second-order) are expressed as 

 1 1 1 1

0 0

, , ,
ref( , ) ( , )

i k i p p k
t t t tyΦ = Φ , (8) 

 1 2 1 1 1 2 1 2 1 1 2 2

0 0 0 0

, , , , , ,
ref ref( , ) ( , ) ( , ) ( , )

i k k i p p k k i p p p k p k
t t t t t t t ty yΦ = Φ + Φ Φ , (9) 

where 1p  and 2p  are dummy variables used for summation convention; 1,
ref

pi k ky   is the partials of the dynamic 

equation ( , )ty x  computed along the reference orbit refx , given by 

 1

1

ref

,
ref

( , )p

p

p i
i k k

kk

y ty
x x =

∂
=
∂ ∂ x x

x




. (10) 

III. Methodology 

This section divides the proposed method of solving the impulsively maneuvering spacecraft OD problem into 

three parts. First, the modified STT for orbit propagation is proposed, considering the impulsive maneuver vector 

and epoch uncertainty. Then the second-order measurement model is derived based on the modified STT. The 

second-order optimal estimation is proposed by combining the second-order measurement model and the incoming 

Orbit determination for impulsively maneuvering spacecraft using a modified state transition tensor

6



observations, and a multiple-iterative solving framework is presented. Finally, the overall procedures of the 

proposed methodology are summarized. 

A. Modified state transition tensor considering impulsive maneuver uncertainty 

Assume that the target executes one unknown impulsive maneuver during 0 2[ , ]t t . The impulsively maneuvering 

spacecraft OD problem is shown in Fig. 1. The states of the real orbit and the reference orbit are labeled by ( )tx  and 

( )tx , respectively. The blue lines represent the reference state ( 0 0( )t=x x , 1
−x , 1

+x  and 2 2( )t=x x ), while the red 

lines represent the real state ( 0 0( )t=x x  , 1
−x , 1

+x  and 2 2( )t=x x  ). The green state ( *
1x ) is named the virtual state, 

which is used as an intermediate variable to assist the formula derivation in this paper.  

As shown in Fig. 1 (a) and (b), the definitions of the virtual state 1
∗x  are different in the cases of 1 0tδ <  and 

1 0tδ ≥ . For the case of 1 0tδ < , the virtual state is defined as the state of ( )tx  at epoch 1t  (see Fig. 1(a)). For the 

case of 1 0tδ ≥ , 1
∗x  is the state obtained by propagating 1

+x  back from epoch 1t  to 1t  (see Fig. 1(b)). Note that for 

the two considered cases, the proposed modified STTs are the same. The reference state can be propagated 

according to the current estimations in an LSM or a KF process. 0x  and 2x  are the state at the beginning epoch and 

the final epoch in the OD process, respectively. 1
−x  and 1

+x  are the states before and after the instance of the 

impulsive maneuver. 1 1 1 3 1 1[ ; ]+ −
×∆ = − = ∆0x x x v  is the impulsive maneuver. 0δ x , 1δ −x , 1δ +x , 1 3 1 1[ ; ]δ δ×∆ = ∆0x v , 

2δ x  and 1tδ  are the deviation states.  

 
a)  
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b)  

Fig. 1 A description of the variables in an impulsive OD problem. a) Case of 1 0tδ < . b) Case of 1 0tδ ≥ . 

Assuming that the dynamics are accurate, the orbit during 0 2[ , ]t t  can be fully determined by 0x , 1t  and 1∆x  

( 1∆v ). With the current estimations 0x , 1t  and 1∆v  obtained, the goal of the impulsive OD is to determine the 

deviations 0δ x , 1 3 1 1[ ; ]δ δ×∆ = ∆0x v  and 1tδ . 

The modified STT is used to analytically model the relationship between the deviation 0 2( ) ( )t t t tδ ≤ ≤x  and the 

deviations 0δ x , 1δ∆x  and 1tδ . According to the definitions of epochs 0t , 1t , 1t  and 2t , in this paper, the orbit of the 

impulsively maneuvering spacecraft during 0 2[ , ]t t  is divided into three segments. The first orbit segment begins 

from the epoch 0t  and ends at the epoch 1t . The second segment is between epochs 1t  and 1t . The third segment is in 

1 2[ , ]t t . The modified STT is proposed by connecting these segments. 

Consider the first segment. In the period 0 1t t t≤ ≤ , the deviation state ( )tδ x  can be represented by a second-

order expression as 

 1 2 1 2

0 0

, ,
0 0 0( , ) ( , )

1( )
2

k k p p k p p p p
t t t tx t x x xδ δ δ δ= Φ + Ψ , (11) 

where 
0

,
( , )
k p
t tΦ  and 1 2

0

,
( , )
k p p
t tΨ  are the first-order STT and second-order STT of the dynamics in Eq. (3), ( )kx tδ  is the k-

th element of the ( )tδ x  , and 0
pxδ  is the p-th element of 0δ x . We use the second-order expression in this study 

because the second-order STTs can adequately capture the nonlinearity of the Earth-centered dynamics [42,44].  

Substituting 1t t=  into Eq. (11), we have 
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 1 2 1 2

0 1 0 1

, ,
1 0 0 0( , ) ( , )

1( )
2

k k p p k p p p p
t t t tx t x x xδ δ δ δ= Φ + Ψ . (12) 

Then, taking the influence of 1tδ  into consideration, the second-order solution to the deviation state 1δ −x  is 

expressed as 
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, , ,
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= + + +
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x

x
, (13) 

where ,
1

kxδ −  is the k-th component of the state vector 1δ −x , and 

 
,

1
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1
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−
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∂
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x , (15) 
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t tt x
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−
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x xx
x x

 . (16) 

Equations (13)-(16) are the proposed second-order propagators of the first segment.  

Now, we investigate the propagation in the second segment. By adding the deviation of the impulsive maneuver 

1δ∆x  into Eq. (13), the deviation state 1δ +x  is expressed as 

 , ,
1 1 1

k k kx x xδ δ δ+ −= + ∆ . (17) 

According to the definition of the virtual state *
1x , the relationship between *

1δ x  and 1δ +x  can be found by 

performing a Taylor series expansion in terms of the state 1
+x , given by 

 , , , , ,
1 1 1 1 1 1 1 11

1
2

k k k k k p p k kx x f t g t t H t x x xδ δ δ δ δ δ δ δ δ+ ∗ ∗ −
+ + += + + + = + ∆ , (18) 

where 

 
,

1
1 1

1
( , )

k
k kxf y t

t

+
+

+
∂

= =
∂

x , (19) 

 
2 ,

1 1 1

1 1 1

( , )k k
k x y tg

t t t

+ +

+
∂ ∂

= =
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x , (20) 

 1 1

1 1

,2 , ,
1( , )1 1 1 1, ,

1( , ), , ,
1 11 1 1 1

[ ( )] ( , )( )
k pk k k
t tk p k p

t tp p p

x x y tH
t tt x x x

++ + +
+

+ + + +
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x xx . (21) 
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The deviation of the virtual state *
1δ x  can be obtained by applying a reversion of series on Eq. (18), which is 

given as 

 , , , , ,
1 1 1 1 1 1 1 1 1 1 1

1 ( )
2

k k k k k k p p k p p px x x f t g t t H f t t H t x xδ δ δ δ δ δ δ δ δ δ δ∗ − −
+ + + + += + ∆ − − + − + ∆ . (22) 

Equation (22) is the obtained second-order orbit propagator for the second segment. Then we connect the 

propagators in the first segment and the second segment. By substituting Eqs. (13)-(16) into Eq. (22) and comprising 

linear and quadratic terms, Eq. (22) can be rewritten as 

 1 2 1 2, , , , ,
1 1 1 1 2 1 1 1 11 0 2 0 0 0 1

1 1
2 2

k k p p k k k p p p p k k p p k p px A x B t x A x x B t t C x t D x tδ δ δ δ δ δ δ δ δ δ δ δ∗ = + + ∆ + + + + ∆ , (23) 

where 
0 1

, ,
1 ( , )
k p k p

t tA = Φ , 1 2 1 2

0 1

, ,
2 ( , )
k p p k p p

t tA = Ψ , 1
k k kB f f− += − , , ,

2 2 2k k k k p p k p pB g g H f H f− + + + + −= − + − , 
0 1

, , , ,
( , )

k p k p k l l p
t tC H H− += − Φ  

and , ,k p k pD H+= − . 

Finally, we investigate the propagation in the third segment. Similar to Eq. (11), in the period 1 2t t t≤ ≤ , the 

deviation ( )tδ x  can be approximated as 

 1 2 1 2

1 1

, , , , ,
1 1 1( , ) ( , )

1( )
2

i i k k i k k k k
t t t tx t x x xδ δ δ δ∗ ∗ ∗= Φ + Ψ , (24) 

which, after substituting for 1
∗x  from Eq. (23), yields 
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δ

δ δ δ δ

δ δ δ
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∆
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  

, (25) 

where 6I  is a 6-dimensional identity matrix; 2 2,
6
k pI  is the element in row 2k  and column 2p , and ( )T   is the 

independent term of the corresponding variables. One can see from Eqs. (23) and (24) that the virtual state *
1x  is an 

important variable in the developed modified STT. Although the virtual state *
1x  is finally removed from the 

equations (as shown in Eq. (25)), it helps build a relationship between ( )tδ x  ( 1t t> ) and 0δ x , 1δ∆v  and 1tδ . The 

difficulty of developing such a modified STT lies in the coupling effects of 1δ∆v  and 1tδ  on orbit deviations. By 
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introducing the virtual state, the proposed modified STT can independently and sequentially address the effects of 

1δ∆v  (using Eq. (17)) and 1tδ  (using Eqs. (21)-(23)). 

Equation (25) is the obtained second-order solution for orbit propagation. For convenience, let 

0 1 1[ ; ; ]tδ δ δ δ= ∆X x v  be the deviation of the estimation parameter vector. Then, rewrite Eqs. (11) and (25) as 

 1( ) ( ) ( )
2

t t tδ δ δ δ= + ⊗ ⊗Φ Ψx X X X , (26) 

where 6 10×∈Φ   and 6 10 10× ×∈Ψ   denote the proposed modified first-order and second-order STTs, respectively, 

and the operator ⊗  denotes the Kronecker tensor product.  

During 0 1[ , ]t t , the modified STTs ( )tΦ  and ( )tΨ  are given as 

 
0 0

,: ,1 ,6
1 3 1 1( , ) ( , )( )i i i

t t t tt × × = Φ Φ Φ 0 0 , (27) 

 

0 0

0 0

,1,1 ,1,6
( , ) ( , )

6 3 6 1
,6,1 ,6,6,:,:

( , ) ( , )

3 6 3 3 3 1

1 6 1 3 1 1

( )

i i
t t t t

i ii
t t t tt

× ×

× × ×

× × ×

 Ψ Ψ
 
 
 Ψ Ψ=
 
 
 
 

0 0
Ψ

0 0 0
0 0 0



  

 . (28) 

During 1 2[ , ]t t , the modified STTs ( )tΦ  and ( )tΨ  are partitioned as 

 
1 1 1 1 1

,: , ,1 , ,6 ,4 ,6 ,
1 1 1( , ) ( , ) ( , ) ( , ) ( , )( )i i k k i k k i i i k k

t t t t t t t t t tt A A B = Φ Φ Φ Φ Φ Φ   , (29) 

 

1 2 1 2 1 2 1 2 1 2 1 2

1 1 11 2 1 2 1 2 1 2

1 1 1 1

1 1 1

1

, ,1 ,1 , ,1 ,6 , ,1
1 1 1 1 1 1( , ) ( , ) ( , ), ,1 ,4 , ,1 ,6

1 6 1 6( , ) ( , ), ,1,1 , ,1,6 , ,1
2 2( , ) ( , ) ( , )

( ,

,:,: ( )

i k k k k i k k k k i k k k k
t t t t t ti k k k k i k k k k

t t t ti k k i k k i k k
t t t t t t

t

i

A A A A A B
A I A I

A A C

t

Ψ Ψ Ψ
Ψ Ψ

+Φ +Φ +Φ

Ψ

=Ψ

 

      

1 2 1 2 1 2 1 2 1 2 1 2

1 11 2 1 2 1 2 1 2

1 1 1 1

1 1 1

1 2 1 2

1

, ,6 ,1 , ,6 ,6 , ,6
1 1 1 1 1 1) ( , ) ( , ), ,6 ,4 , ,6 ,6

1 6 1 6( , ) ( , ), ,6,1 , ,6,6 , ,6
2 2( , ) ( , ) ( , )

, ,1 ,4
1 6( , )

i k k k k i k k k k i k k k k
t t t t ti k k k k i k k k k

t t t ti k k i k k i k k
t t t t t t

i k k k k
t t

A A A A A B
A I A I

A A C
A I

Ψ Ψ
Ψ Ψ

+Φ +Φ +Φ

Ψ Ψ

 



1 2 1 2 1 1

1 1 1 1

1 2 1 2 1 2 1 2 1 1

1 1 1 1 1

1 2 1 2

1

1

, ,6 ,4 ,4,4 ,4,6 , ,4
1 6 1( , ) ( , ) ( , ) ( , )

, ,1 ,6 , ,6 ,6 ,6,4 ,6,6 , ,6
1 6 1 6 1( , ) ( , ) ( , ) ( , ) ( , )

, ,1
1 1( , )

,
( , )

i k k k k i i i k k
t t t t t t t t

i k k k k i k k k k i i i k k
t t t t t t t t t t
i k k k k
t t

i k
t t

A I B

A I A I B
A B

Ψ Ψ Ψ

Ψ Ψ Ψ Ψ Ψ

Ψ

+Φ



      

 

1 2 1 2 1 2 1 2

1 11 1 1 1

1 11 1 1 1

1 1

, ,6 ,
1 1 1 1( , ) ( , ), ,4 , ,6

1 1( , ) ( , ),1 , ,6 ,
2( , ) ( , )

i k k k k i k k k k
t t t ti k k i k k

t t t tk i k k i k k
t t t t

A B B B
B B

C C B

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ψ Ψ 
Ψ Ψ +Φ +Φ  

 

. (30) 

A summary of processes in Eqs. (11)-(30) is provided in Algorithm 1. The pseudo-code presented herein is used 

to clearly describe the derivation process of Eqs. (11)-(30). It doesn’t mean that the modified STTs are repeatedly 

computed when predicting the orbit state deviation ( )tδ x . In practice, once the modified STTs are obtained, the 
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orbit state deviation ( )tδ x  can be analytically predicted without additional numerical integrations. It should also be 

noted that in Eq. (23), the deviation of the virtual state 1δ ∗x , rather than the deviation of the true state 1( )tδ x , is 

predicted. The residual between 1δ ∗x  and 1( )tδ x , i.e., the difference between the red line and green dot in Fig. 1, is 

neglected by the proposed modified STT (Eqs. (26)-(30)). Therefore, the accuracy of the proposed modified STT 

slightly degrades around the epoch 1t . The accuracy performance of the proposed modified STT around the epoch 1t  

will be discussed in Sec. IV.A. 

Algorithm 1: Pseudo-code of calculating the modified STT 
Inputs: initial epoch 0t , final epoch 2t , reference variables 0x , 1t  and 1∆v , and the deviations 0δ x , 1tδ  and 1δ∆v  
Output: the orbit state deviation ( )tδ x  at any given epoch t  ( 0 1[ , ]t t t∈ ), and the modified STTs ( )tΦ  and ( )tΨ  

1 Integrate the STTs 
0

,
( , )
k p
t tΦ  and 1 2

0

,
( , )
k p p
t tΨ  using Eqs. (8)-(10). 

2 Predict ( )tδ x  ( 0 1[ , ]t t t∈ ) and 1( )tδ x  using Eqs. (11) and (12). 
3 Calculate 1δ −x  using Eqs. (13)-(16). 
4 Calculate 1δ +x  using Eqs. (18)-(21). 
5 Calculate the virtual state deviation 1δ ∗x  using Eq. (23). 
6 Predict  ( )tδ x  ( 1 2[ , ]t t t∈ ) using Eq. (25). 
7 Calculate the modified STTs ( )tΦ  and ( )tΨ  using Eqs. (27)-(30). 

B. Second-order measurement model 

Equations (26)-(30) present the relationship between the deviations of the estimation parameter vector δ X  and 

( )tδ x . In this subsection, the transformation from the deviation of the estimation parameter vector δ X  to the 

deviation of the measurement ( )tδ z  at any future epoch t , is derived. According to Eq. (2), the measurement 

deviation ( )tδ z  can be approximated using a second-order Taylor series as 

 1( ) ( ) ( ) ( ) ( ) ( )
2

t t t t t tδ δ δ δ= + ⊗ ⊗z U x Q x x , (31) 

where 

 , ( ( ))( )
( )

i
i k

k

h tU t
x t

∂
=

∂
x , (32) 

 1 2

1 2

2
, ( ( ))( )

( ) ( )

i
i k k

k k

h tQ t
x t x t
∂

=
∂ ∂

x . (33) 

Substituting Eq. (26) into Eq. (31) and neglecting higher-order terms,  

 [ ] ( ) ( )1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

t t t t t t t tδ δ δ δ δ δ= + ⊗ ⊗ + ⊗ ⊗Φ Ψ Φ Φz U X U X X Q X X .   (34) 
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Equation (34) can be further simplified as 

 1( ) ( ) ( )
2

t t tδ δ δ δ= + ⊗ ⊗Ξ Θz X X X , (35) 

where 

 , , ,( ) ( ) ( )i p i k k pt U t tΞ = Φ , (36) 

 1 2 1 2 1 2 1 1 2 2, , , , , ,( ) ( ) ( ) ( ) ( ) ( )i p p i j j p p i k k k p k pt U t t Q t t tΘ = Ψ + Φ Φ . (37) 

Equations (35)-(37) are the derived second-order models that transform from the deviation of the estimation 

parameter vector δ X  to the measurement deviation ( )tδ z . Assume that the estimation parameter vector deviation 

δ X  is a zero-mean random vector, and its covariance matrix is represented by 10 10[ ]abP ×=P . The mean 

1( ( )) [ ( ( ))]i
dt m tδ δ ×=m z z  and covariance matrix ( ( )) [ ( ( ))]ij

d dt P tδ δ ×=P z z  of the measurement deviation ( )tδ z  are 

then given as 

 ,

1 1

1( ( )) ( )
2

n n
i i ab ab

a b
m t t Pδ

= =

= Θ∑∑z , (38) 

 

10 10
, ,

1 1
10 10 10 10

, ,

1 1 1 1

( ( )) ( ) ( ) ( ( )) ( ( ))

1 ( ) ( )[ ]
4

ij i a j a i j

a

i ab j ab a b a b

a b a

P t t t P m t m t

t t P P P P P P

α α

α

αβ αβ α β β α

β

δ δ δ
= =

= = = =

= Ξ Ξ −

+ Θ Θ + +

∑∑

∑∑∑∑

z z z
. (39) 

For the sake of simplicity, the nonlinear covariance propagations in Eqs. (38) and (39) are denoted as 

 [ ( ( )), ( ( ))] Propagation( , ( ), ( ))t t t tδ δ = Ξ Θm z P z P . (40) 

C. Second-order optimal estimation 

Starting from a priori estimations (obtained from initial, or prior orbit determination), the reference orbit can be 

propagated using the modified STT in Eqs. (26), and the residuals between the incoming observation data and the 

predicted measurements are obtained. Based on the partial derivatives of the measurements with respect to the 

estimation parameter vector X  in Eqs. (35)-(37), a priori estimations can be corrected. 

Assume that in the period 0 2[ , ]t t , K  observations are obtained using the equipped sensor. The K  observations 

are labeled by 

 ( ) ( ( )) ,  {1,2, , }j j j Kτ τ= + ∈z h x ε
 , (41) 
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where 0 1 2 1 2K Kt tτ τ τ τ−≤ < < < < ≤  are the epoch series when the observations are received. Note that the 

reference orbit state ( )tx  can be computed based on the current estimation 0 1 1[ ; ; ]t= ∆X x v . The predicted 

measurement ( ) ( ( ))i iτ τ=z h x  is then calculated using the reference orbit state ( )iτx  and the measurement model in 

Eq. (2). Thus, the residuals of the K  observations are written as 

 

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( ) ( ) ( ( )) ( ( ))
( ) ( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ( )) ( ( ))K K K K K K

δ τ τ τ τ τ
δ τ τ τ τ τ

δ δ

δ τ τ τ τ τ

− −       
       − −       = = = + = +
       
       

− −       

z z z h x h x ε
z z z h x h x ε

Z h ε

z z z h x h x ε





   



, (42) 

where d
i ∈ε   is the measurement noise of the i-th observation. 

Let 10δ ∈X   be the deviation between the real state 10
0 1 1[ ; ; ]t= ∆ ∈X x v



 
  and the current estimation X . 

According to Eqs. (31)-(37), δh  can be approximated using a series of second-order expressions as 

 

1 1

1

2 2 2

1( ) ( )
2( )
1( ) ( ) ( )
2

( ) 1( ) ( )
2

K

K K

τ δ τ δ δ
δ τ
δ τ τ δ τ δ δ

δ δ

δ τ
τ δ τ δ δ

 + ⊗ ⊗ 
′   

   ′ + ⊗ ⊗   ′= = =
   
   ′   

+ ⊗ ⊗ 
 

Ξ Θ

Ξ Θ

Ξ Θ

X X X
z
z X X X

h Z

z
X X X





. (43) 

The expression of δ ′Z  in Eq. (43) can be further simplified as 

 1
2

δ δ δ δ′ = + ⊗ ⊗Ω ΣZ X X X , (44) 

where 

 :, :, :, :,
1 2[ ( ); ( ); ; ( )]p p p p

Kτ τ τ=Ω Ξ Ξ Ξ , (45) 

 1 2 1 2 1 2 1 2:, :, :, :,
1 2[ ( ); ( ); ; ( )]p p p p p p p p

Kτ τ τ=Σ Θ Θ Θ . (46) 

In this paper, the goal of the OD of the spacecraft under an impulsive maneuver is to determine the optimal δ X  

that can minimize the deviation between δ Z  and δ ′Z . In the remainder of this subsection, the second-order 

optimal estimation, extended from the conventional least-squares solution, is presented to solve the impulsive OD 

method.  

Substituting Eqs. (43) and (44) into Eq. (42) yields 

 1
2

δ δ δ δ δ= + = + ⊗ ⊗ +Ω ΣZ h ε X X X ε . (47) 
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First, the weights of each term should be determined. Note that the covariance matrix of ( )iδ τ′z  is 

 Propagation( ( ), ( ), ( ))i i iδ τ τ′= Ξ ΘP P X , (48) 

which can be obtained using Eqs. (38) and (39). Thus, the uncertainty of ( ) ( )i iδ τ δ τ′−z z  can be represented by a 

covariance matrix iP  as 

 i i′= +P P R . (49) 

Thus, the weights matrix W  is represented by 

 

1

1 ( 2)

( 2) ( 2)

( 2)

d K d d d

K d d K d d

d d d K d k

−

× − ×

− × − ×

× × −

 
 

=  
 
 

0 0
0 0

0 0

P
W

P
 . (50) 

To avoid a numerical singularity when obtaining the optimal solution, W  can be normalized as W W  when 

solving the OD problem. Combining Eqs. (42)-(44) with Eq. (50), the performance metric to be minimized is 

defined as 

 

1 1
2 2

1 1Tr
2 2

T

T
T

J δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

   = − − ⊗ ⊗ − − ⊗ ⊗   
   

    = − − ⊗ ⊗ − − ⊗ ⊗         

Ω Σ Ω Σ

Ω Σ Ω Σ

Z X X X W Z X X X

Z X X X W Z X X X
. (51) 

Similar to the deviation of the LSM, the partial derivative of the metrics J  can be obtained by 

 12
2

TJ δ δ δ δ∂  = − − − ⊗ ⊗ ∂  
Γ Ω ΣW Z X X X

X
, (52) 

where 

 , , ,i k i k i kp pXδΓ = Ω Σ+ . (53) 

The optimal estimation δ X  can be obtained by solving the equation 1 10J ×∂ ∂ = 0X . However, the solution 

cannot be directly computed as Eq. (52) is a high-order system. A method to obtain the second-order optimal 

estimation of δ X  is therefore proposed herein.  

Neglecting the second-order terms of Eq. (44), the performance metric J  is rewritten as 

 ( ) ( ) ( ) ( )( )TrT TTJ δ δ δ δ δ δ δ δ= − − = − −Ω Ω Ω ΩZ X W Z X Z X W Z X . (54) 

where J  is the performance metric containing only first-order terms. 
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By solving the equation 1 10J ×∂ ∂ = 0X , a first-order (linear) optimal solution is obtained by 

 1( )T Tδ δ−= Ω Ω ΩX W W Z . (55) 

Substituting the first-order solution into Eq. (53), the first-order approximation of Γ  is calculated as 

 , , ,i k i k i kp pXδΓ = Ω Σ+ . (56) 

Substituting the approximation in Eq. (56) into the partial derivative of the metrics J , Eq. (52) is written as 

 1 10
12
2

TJ δ δ δ δ ×
∂  = − − − ⊗ ⊗ = ∂  

Γ Ω Σ 0W Z X X X
X

. (57) 

Similar to the operations in Eqs. (34)-(37), Eq. (57) can be simplified as 

 1 10
1
2

δ δ δ δ ×− − ⊗ ⊗ =Ω Σ 0Z X X X , (58) 

where 

 2i ji jk kZ W Zδ δ= − Γ , (59) 

 , 2i p ji jk kpWΩ = − Γ Ω , (60) 

 1 2 1 2, ,2i p p ji jk k p pWΣ = − Γ Σ . (61) 

According to Turner’s method of series reversion [45], the solution of Eq. (58) is approximated by 

 ( ) ( )1 1 1 11ˆ
2

δ δ δ δ− − − − = − ⊗ ⊗ Ω Ω Σ Ω ΩX Z Z Z , (62) 

where ˆδ X  is the approximated second-order optimal estimation. Eq. (62) is the proposed second-order optimal 

estimation of the parameter of interest. Using Eq. (62), the estimation X  can be corrected as ˆδ← +X X X . 

Comprising only linear and quadratic terms, the associated covariance matrix of the estimation ˆδ X  is given as 

 ˆ ˆ ˆ( ) [( )( ) ]Tδ δ δ δ δ= − −P X E X X X X . (63) 

Substitution of Eq. (62)into Eq. (63) results in 

 ( ) ( )1 1 1 11ˆ
2

δ δ δ δ δ δ− − − − − = − + ⊗ ⊗ Ω Ω Σ Ω ΩX X X Z Z Z . (64) 

Substitute Eq. (47) into Eq. (64), and reserve only the first- and second-order terms. Then ˆδ δ−X X  can be 

expressed as 
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{ }

{ }

1

1 1 1

1

1 1 1

1 1

ˆ ( )
1 ( ) ( ) ( )
2

1( ) ( )
2

1 ( ) ( ) ( )
2

1( ) ( ) ( )
2

T T

T T T T T T

T T

T T T T T T

T T T T T

δ δ δ δ

δ δ

δ δ δ δ

δ δ

δ

−

− − −

−

− − −

− −

− = −

   + ⊗ ⊗   

= − + ⊗ ⊗ +

   + ⊗ + ⊗ +   

= − + ⊗ ⊗

Γ Ω Γ

Γ Ω Γ Σ Γ Ω Γ Γ Ω Γ

Γ Ω Γ Ω Σ

Γ Ω Γ Σ Γ Ω Γ Γ Ω Γ

Γ Ω Γ Γ Ω Γ Σ Γ Ω

X X X W W Z

W W W W Z W W Z

X W W X X X ε

W W X W Wε X W Wε

W Wε W W X W{ }

{ }

{ }

1

1 1

1 1 1

1 ( ) ( )
2
1 ( ) ( ) ( )
2

T

T T T T

T T T T T T

δ

−

− −

− − −

  

 + ⊗ ⊗ 

   + ⊗ ⊗   

Γ

Γ Ω Γ Σ Γ Ω Γ

Γ Ω Γ Σ Γ Ω Γ Γ Ω Γ

Wε

W W W Wε X

W W W Wε W Wε

. (65) 

Substituting the results in Eq. (65) into Eq. (63), the covariance matrix of the second-order estimation ˆδ X  is further 

given as 

 { }1 1 1 1

1 1

ˆ( ) ( ) ( ) ( ) ( )

( ) ( )

TT T T T T T T T T

T T T

δ − − − −

− −

     = =     

=

Γ Ω Γ Γ Ω Γ Γ Ω Γ Γ Ω Γ

Γ Ω Γ Γ Ω Γ

P X W Wε W Wε W Wεε W W

W WRW W

 
. (66) 

Note that the second-order solution in Eq. (62) corresponds to one round of iteration. The estimations in one 

iteration are not sufficiently accurate. Thus, to achieve a certain threshold level, it is necessary to carry out multiple 

iterations so that the algorithm can converge. The convergence performance of the proposed method will be 

presented in the simulation section. 

D. Overall procedure 

A flow diagram outlining the overall procedure of the proposed method for orbit estimation and maneuver 

reconstruction is illustrated in Fig. 2. The inputs of the algorithm include the initial parameter estimation 

(0) (0) (0) (0)
0 1 1[ ; ; ]t= ∆X x v  and its associated covariance matrix 0P , the K observations ( )  {1,2, , }j j Kτ ∈z  , and the 

covariance matrix of the measurement noise R . The superscript ( )i  denotes the results of the i-th iteration. It differs 

from the previous superscripts that represent the elements (for example, the superscripts in Eqs. (59)-(61)) in that it 

has parentheses. The iterations terminate if the Frobenius norm of the optimal solution ( 1)ˆ iδ −X  is smaller than the 

predefined tolerance η , or the maximum iteration maxi  is reached. 

Note that the proposed method is based on the second-order modified STT (Eqs. (26)-(30)) and the second-order 

optimal solution (Eqs. (62) and (66)). The linear version of the solution can be found in Eq. (55). One of the 
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advantages of such a second-order model is that the coupling term of the epoch 1t  and the vector 1∆v  is considered 

(the term 1 1( , )tδ δ∆T x  in Eq. (25)). The epoch and vector of the impulsive maneuver are critical to the impulsive 

maneuvering spacecraft OD problem; thus, considering the coupling term can improve accuracy and convergence of 

the algorithm. A comparison between the linear and second-order solutions will be given in Sec. IV.A.1. 

 
Fig. 2. A flow diagram of the proposed method. 

IV. Numerical Simulations 

To demonstrate protentional use cases for the equations derived in Sec. III, two simple applications, one in the 

low-Earth orbit (LEO) and the other in the geostationary orbit (GEO), are first studied. The orbit estimation and 

maneuver reconstruction performances of the proposed method are analyzed by comparing with several 

conventional maneuvering spacecraft OD algorithms. Then, sensitivity analyses are performed to investigate the 

influences of the initial guess, magnitude of the maneuver, and measurement interval on method performances.  

A. Estimated accuracy analysis 

1. LEO testing case 

Consider two spacecraft in low-Earth orbit, with one being the target and the other being the observer. The 

nominal orbit elements of the target spacecraft and observer spacecraft are listed in Table 1, where h , e , n , i , ω  
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and Ω  label the altitude at apogee, eccentricity, true anomaly, inclination, argument of periapsis, and longitude of 

the ascending node, respectively.  

Table 1 Nominal orbit elements of the target and the observer in the LEO testing case 

Spacecraft h/km e i/deg Ω/deg ω/deg n/deg 
Observer 500 0.01 45.05 29.93 132.9 -107.74 
Target 1000 0.02 45.00 94.80 199.00 -54.13 

Let [ ; ] [ , , , , , ]T
O O O O O O O O Ox y z x y z= =x r v     denote the orbit state of the observer spacecraft. Assume the observer 

observes the target using onboard optical sensors. The line-of-sight (LOS) vector from the observer to the target can 

be obtained by identifying points in the image and extracting the target [46,47]. In this paper, the adopted model for 

representing the angular measurements is given as 

 3[ , , ] OT
x y z l

O
l l l −

= = + ∈
−

r rl ε
r r

 , (67) 

where 3
l ∈ε   is the measurement noise vector, [ , , ]T

x y zl l l=l  denotes the LOS vector, with xl , yl  and zl  

representing the elements along the inertial x-, y-, and z-axes, respectively.  

Three cases are simulated: one standard case, one sparse observation case, and one short-arc case. The conditions 

of these three cases are listed in Table 2. The total navigation period of the standard case is 1800 s, with a 

measurement interval of 10 s. The standard case is used to test the performance of the proposed method in a general 

condition. In addition, the robustness of the proposed method under severe conditions is investigated using the 

sparse observation case and the short-arc observation case. In the sparse observation case, only 11 measurements are 

available, which is used to analyze whether the method is effective for conditions when information is limited. The 

third case has a total navigation period of 300 s, in which the performance of the method under a short observation 

arc is tested. 

Table 2 Simulated conditions of three cases 

Parameter Standard case Sparse observation case Short-arc observation case 

Initial covariance 

Position 102 km2 per axis 
Velocity 12 m2/s2 per axis 

Impulsive vector 52 m2/s2 per axis 
Impulsive epoch 502 s2 102 s2 

Standard deviation of measurement noise 51 10−×  per axis 
Measurement frequency 10 s 180 s 2 s 
Start epoch 0t  0 s 
End epoch 2t  1800 s 1800 s 300 s 
Impulsive maneuver epoch 1t  905 s 905 s 151 s 
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Impulsive maneuver vector  1∆v  [10,10,10]  m/sT  
Before testing the performance of the proposed method, the accuracy of the proposed modified STT in Eq. (26) 

and the second-order measurement model in Eq. (35) is analyzed. The standard case is employed for accuracy 

analysis. The process of testing the accuracy of the modified STT and the second-order measurement model is based 

on 1000 Monte Carlo (MC) runs. Each sample X  is generated randomly from the normal distribution 

( ; , )r XX X P , with rX  being the real state listed in Table 1 and XP  being the covariance 

 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

diag([100  km ,100  km ,100  km ,10  m /s ,10  m /s ,10  m /s ,
                 5  m /s ,5  m /s ,5  m /s ,50  s ])

=XP
. (68) 

For each sample X , the true orbit state ( )tx  from 0t  to 2t  is propagated, and the state deviation ( )tδ x  is 

obtained. Moreover, the measurement deviation ( )tδ z  is calculated. The state deviation ( )tδ x  and the 

measurement deviation ( )tδ z  are also predicted using Eqs. (26) and (35), and the absolute errors (AEs) and the 

relative errors (REs) are obtained. The time history of the mean relative errors (MREs) of the 1000 MC runs is 

shown in Fig. 3. In Fig. 3, the green lines represent the impulsive maneuver epoch. The MREs of the position states 

are smaller than 0.35%, and the MREs of the velocity states are no larger than 6%. The position and velocity vectors 

have spikes in MRE around the maneuver epoch (i.e., the green lines). Re-note that in Eq. (23), the residual between 

1δ ∗x  and 1( )tδ x  is neglected by our equations, making the accuracy of the proposed modified STT slightly 

degrades around the epoch 1t . However, an MRE of 6% is applicable for the modified STT to be used in orbit 

estimation and maneuver reconstruction. 

  
a) b) 

Fig. 3 Time history of the MRE of the modified STT. a) position. b) velocity. 
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To better display the predicted errors of the second-order measurement model, the LOS vectors are converted to 

angles ( )α l  and ( )β l , defined as 

 1 1( ) sin ( ) sinz zl lα − −= =l l , (69) 

 1( ) tan ( )y xl lβ −=l . (70) 

The accuracy testing results of the second-order measurement model are shown in Fig. 4. Fig. 4(a) and (b) illustrate 

the time history of the mean absolute error (MRE) and MRE results of 1000 MC runs. The MREs of  ( )α l  and 

( )β l  smaller than 0.2%.  

  
a) b) 

Fig. 4 Time history of the MRE of the second-order measurement model. a) MAE. b) MRE. 

An independent simulation is first performed to show the convergence process of the proposed method. In the 

independent simulation, the position and velocity estimation errors of the initial guess are set to 10 km per axis and 1 

m/s per axis, respectively. The impulsive vector estimation errors are set to be 5 m/s per axis. The impulsive epoch 

estimation error is given as 50 s. The STD of the LOS measurements is set to be 510−  per axis (approximately 2 

arcsecs). The tolerance is set as 310η −= , and the maximal iteration is set to be max 10i = . The algorithm converges 

after 5 iterations. Table 3 shows the estimated errors of each iteration. The position and velocity estimated errors are 

smaller than 0.23 km and 0.34 m/s, respectively. In addition, the proposed approach can provide estimations of the 

unknown impulsive magnitude and epoch with errors no larger than 0.3 m/s and 0.35 s, respectively. 

Table 3 Estimation errors of the second-order solution in one simulation of the standard case 

 Position / km Velocity / (m/s) Impulsive vector / (m/s) Epoch / s 
0( )x t  0( )y t  0( )z t  0( )x t  0( )y t  0( )z t  xv∆  yv∆  zv∆  1t  

Initial guess 10 10 10 1 1 1 5 5 5 50 
Iteration 1 -0.4714 -0.2973 0.0704 0.7431 -0.3589 -0.4346 -0.6602 0.8008 0.0316 8.2821 
Iteration 2 -0.1981 -0.1066 0.0129 0.2929 -0.2040 -0.1040 0.0201 0.3238 -0.1968 -0.3289 
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Iteration 3 -0.2242 -0.1313 0.0128 0.3294 -0.1843 -0.1082 0.0228 0.2927 -0.2124 0.3388 
Iteration 4 -0.2249 -0.1318 0.0129 0.3305 -0.1844 -0.1085 0.0226 0.2929 -0.2128 0.3455 
Iteration 5 -0.2248 -0.1318 0.0129 0.3304 -0.1844 -0.1085 0.0226 0.2929 -0.2128 0.3457 

The same independent simulation is carried out using the linear solution in Eq. (55). The linear algorithm 

converges using eight iterations, with the results detailed in Table 4. The position and velocity estimated errors are 

more than 0.3 km and 0.47 m/s, which are 1.5 times larger than those in Table 3. Additionally, the impulsive epoch 

errors of the linear solution (2.7603 s) are approximately one time of magnitude larger than that of the proposed 

second-order solution (0.3457 s).  

Table 4 Estimation errors of the linear solution in one simulation of the standard case 

 Position / km Velocity / (m/s) Impulsive vector / (m/s) Epoch / s 
0( )x t  0( )y t  0( )z t  0( )x t  0( )y t  0( )z t  xv∆  yv∆  zv∆  1t  

Initial guess 10 10 10 1 1 1 5 5 5 50 
Iteration 1 -5.8014 -4.0957 0.9770 8.9495 -3.2535 -3.7784 2.9264 3.6605 -2.8009 40.3799 
Iteration 2 -1.1504 -0.8357 0.1950 1.7704 -0.4382 -0.6944 -0.1674 0.4406 -0.4714 8.7904 
Iteration 3 -0.4955 -0.3501 0.0906 0.7761 -0.1350 -0.3091 -0.0425 0.2629 -0.3175 3.5572 
Iteration 4 -0.4396 -0.3136 0.0794 0.6895 -0.0872 -0.2701 -0.0622 0.1965 -0.2814 3.4616 
Iteration 5 -0.3156 -0.2258 0.0557 0.4969 -0.0155 -0.1859 -0.1219 0.2274 -0.2155 2.8066 
Iteration 6 -0.3038 -0.2175 0.0534 0.4790 -0.0081 -0.1778 -0.1284 0.2219 -0.2088 2.7618 
Iteration 7 -0.3033 -0.2171 0.0533 0.4782 -0.0078 -0.1774 -0.1287 0.2217 -0.2085 2.7604 
Iteration 8 -0.3033 -0.2171 0.0533 0.4782 -0.0078 -0.1774 -0.1287 0.2216 -0.2085 2.7603 

Monte Carlo simulations are further performed to investigate the estimation accuracy of the proposed algorithm. 

Note that the MC simulations performed herein differ from those shown in Fig. 3 and Fig. 4, as the MC simulations 

in Fig. 3 and Fig. 4 only examine the accuracy of the modified STT and the second-order measurement model. The 

state estimated errors of the 100 MC runs (using the second-order solution) of the standard case are shown in Fig. 5. 

It should be noted that the proposed method can only estimate 0x , 1∆v  and 1t . The state estimated errors (i.e., the 

blue lines) in Fig. 5 are obtained by propagating the estimations ( 0x , 1∆v  and 1t ) and then comparing them with the 

true orbits. Moreover, the 3-STD ( 3σ ) bounds of the estimated errors, which are calculated numerically using these 

MC points, are presented by the solid red lines. The position and velocity estimated errors of the 100 MC runs are 

smaller than 0.75 km and 1.2 m/s, respectively. The distributions of the estimations of 1∆v  and 1t  using the second-

order solution are presented in Fig. 6. In Fig. 6, the blue and red boxes represent the results of the second-order and 

linear solutions, respectively, and the circles represent the outliers. Using the second-order solution, the absolute 

errors of estimations of the impulsive epoch 1t  are no larger than 4 s. The estimation errors of the impulsive vector 

1∆v  are less than 0.5 m/s per axis. Additionally, the results of the linear solution are shown in Fig. 6 as a 
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comparison. As shown in Fig. 6, the distributions of the red boxes are larger than those of the blue boxes, indicating 

that the linear solution has a poor maneuver reconstruction performance.  

 
Fig. 5 Monte Carlo simulation results of the proposed method in the standard case. 

 
Fig. 6 Estimated error distributions of the impulsive vector and impulsive epoch in the standard case. 

To investigate the uncertainty quantification (UQ) capacities of the proposed method, the Mahalanobis distances 

(MD) are calculated in the MC simulations. The MD is defined as 

 1ˆ ˆ ˆMD ( ) ( )T
r r

−= − −X X P X X , (71) 

where X̂  and rX  are the estimated and true parameter vector (including the initial orbit state, and impulsive 

maneuver epoch and vector), respectively, and P̂  is the covariance matrix predicted by the algorithm. As shown in 

Eq. (71), MD Xn=  ( 10Xn =  is the dimension of the parameter vector rX ) indicates that the estimated error 
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ˆ
r−X X  lies on the 1σ  boundary of the covariance P̂ , whereas MD 3 Xn=  means that the estimated error lies on 

the 3σ  boundary of the covariance. The MD results of the second-order and linear solutions are plotted in Fig. 7. In 

Fig. 7, the blue and red boxes represent the MD results of the second-order and linear solutions, respectively, and the 

circles represent the outliers. Both two solutions have MDs smaller than 3 Xn , and the true estimated errors are 

inside the 3σ  ellipsoid of the covariance predicted by the algorithm. This means that the proposed algorithm (Eq. 

(66)) can effectively quantify the estimated uncertainties. Additionally, the linear solution has larger MD values, 

showing that its UQ capacity is poorer than that of the second-order solution [36]. Thus, one can see from Table 4, 

Fig. 6, and Fig. 7 that the second-order solution outperforms the linear version in terms of convergence, accuracy, 

and uncertainty quantification capacity. In the following of this paper, the second-order solution is employed. 

 
Fig. 7 Mahalanobis distance results of the MC simulation. 

To better investigate the performance of the proposed method, comparison simulations are performed: the 

extended Kalman filter (EKF) [48], the adaptive extended Kalman filter (AEKF) [9], the thrust-Fourier-coefficient 

based extended Kalman filter (TFC-EKF) [7,14] and the TFC-EKF with an LSM smoother (TFC-EKF-Smoother). 

The EKF is the basic method without any improvement to handle unknown maneuvers, the AEKF belongs to the 

OD reinitiation method, and the TFC-EKF pertains to filtering-through approaches. Additionally, the TFC-EKF-

Smoother belongs to the batch method. In the TFC-EKF-Smoother, upon the impulse maneuver is detected by the 

TFC-EKF, pre- and post-maneuver ODs are performed using the LSM. The standard case is simulated, and 100 MC 

runs are performed for each method. The metric used to evaluate the performance of different methods is the root 

mean square error (RMSE). The RMSE results of the 100 MC runs of the different methods are shown in Table 5 

and Fig. 8. The RMSE results of the proposed methods are labeled ‘STT-LSM’ as the modified STT is proposed 

based on the STT technique and the second-order optimal solution is extended from the LSM. The AEKF and TFC-
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EKF perform better than the standard EKF method but are much worse than the proposed method. The RMSEs of 

the proposed STT-LSM are at least one order of magnitude less than those of the TFC-EKF. By adding an LSM 

smoother to the TFC-EKF, the estimated errors are significantly reduced. However, the estimated errors of the TFC-

EKF-Smoother are still larger than those of the proposed method. It is because the TFC-EKF-Smoother estimates 

the pre- and post-maneuver orbits independently, whereas the proposed method uses both pre- and post-maneuver 

measurements. In addition, the performance of the LSM smoother can also be impacted by the maneuver detection 

errors of the TFC-EKF. 

 
Fig. 8 Time history of the RMSEs of different methods in the standard case. 

Table 5 RMSE results of different methods in the standard case 

Method Position RMSE / km Velocity RMSE / (m/s) 
x y z x y z 

STT-LSM 0.1111 0.1942 0.0142 0.2499 0.1329 0.0568 
EKF 1.8178 3.4492 0.8160 1.6217 3.1456 2.5982 
AEKF 2.2430 4.0539 0.2580 3.6178 2.3817 0.9778 
TFC-EKF 0.8198 1.3074 0.1275 1.7901 1.0748 0.6871 
TFC-EKF-Smoother 0.2035 0.3424 0.0211 0.3438 0.2721 0.0803 

One of the main purposes of the proposed method is to accurately reconstruct the unknown impulsive maneuver. 

The maneuver reconstruction performance of the proposed method is compared with the other four competitive 

methods based on 100 MC runs. To better virtualize the results, the impulsive maneuver 1∆v  is represented using 

four parameters: the time 1t , magnitude 1∆v , declination 1
1 1( ) sin ( )zvα −∆ = ∆ ∆v v , and right ascension 

1( ) tan ( )y xv vβ −∆ = ∆ ∆v . The two angles 1( )α ∆v  and 1( )β ∆v  are used to describe the direction of the impulsive 

maneuver in the ECEI coordinate. Following [27], the methods for reconstructing the impulsive maneuver based on 
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the estimations of the EKF, AEKF, TFC-EKF, and TFC-EKF-Smoother are given as follows. First, the orbit 

estimation at the initial epoch 0t  is propagated forward, and the orbit estimation at the final epoch 2t  is propagated 

backward. Then, the time when the two orbits cross or come closest together (with minimum separation distance) is 

determined as the estimated time of the impulsive maneuver 1t . The estimated time of the impulsive maneuver 1t  is 

obtained as 

 1 pre postarg min ( ) ( )t t t= −r r , (72) 

and the estimated impulsive is expressed as 

 1 post 1 pre 1( ) ( )t t∆ = −v v v . (73) 

where pre pre pre( ) [ ( ); ( )]t t t=x r v  and post post post( ) [ ( ); ( )]t t t=x r v  are the pre- and post-maneuver orbit, respectively. 

The maneuver reconstruction results of the 100 MC runs are presented in Fig. 9, alongside zoomed in plots 

around the true values to clearly show the results obtained by the proposed method. In Fig. 9, the blue square 

represents the true value, and the results of the STT-LSM, the EKF, the AEKF, the TFC-EKF, and the TFC-EKF-

Smoother are colored black, red, blue, green, and magenta, respectively. Fig. 9 (a) shows the projections of the time 

1t  and the magnitude 1∆v , and Fig. 9 (b) shows the projections of the two angles 1( )α ∆v  and 1( )β ∆v . The blue 

square depicts the real parameters of the impulsive maneuver. The estimations using the proposed method, the EKF, 

the AEKF, the TFC-EKF, and the TFC-EKF-Smoother are shown by the black crosses, red squares, blue diamonds, 

green circles, and magenta triangles, respectively. Moreover, the 3σ  bounds (obtained from the MC distributions) 

of the estimations are shown using the dashed lines with the corresponding colors. The detailed mean values and the 

STD of the maneuver reconstruction errors of 100 MC runs using different methods are listed in Table 6.  
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a) b) 

  
c) d) 

Fig. 9 Maneuver reconstruction results of different methods in the standard case. a) Projections of time 1t  and 
magnitude 1∆v . b) Projections of directions 1( )α ∆v  and 1( )β ∆v . c) Larger plot of a). d) Larger plot of b). 

Table 6 Maneuver reconstruction results in the standard case 

 1  / st  1  / (m/s)∆v  1( ) / degα ∆v  1( ) / degβ ∆v  

STT-LSM Mean error -0.2589 -0.00859 0.0265 0.0281 
STD 1.8367 0.0992 0.6783 0.9341 

EKF Mean error -107.75822 5.9618 -20.9953 -18.2323 
STD 434.6810 7.9098 28.2661 35.5231 

AEKF Mean error -198.3669 5.8019 -9.7565 -11.0394 
STD 389.3845 8.7222 21.2337 30.7164 

TFC-EKF Mean error -257.6306 2.7789 0.2638 -11.2264 
STD 429.0699 7.9837 25.4283 41.8890 

TFC-EKF-Smoother Mean error -0.3562 0.0198 0.0644 -0.0057 
STD 19.1759 0.5534 1.9219 1.2253 

Fig. 9 and Table 6 show that the magnitude of the maneuver reconstruction errors of the proposed method are 

typically two orders of magnitude smaller than those of the EKF, AEKF, and TFC-EKF. The predicted times of the 
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impulsive maneuver using the EKF, AEKF, and TFC-EKF seriously deviate from the true value. This is because 

these filters cannot accurately estimate the spacecraft orbit, especially the segments close to the maneuver. In turn, 

the time when the pre- and post-maneuver orbits are crossed may be distorted by the position estimated uncertainty 

[27]. In addition, although an LSM smoother can significantly improve the maneuver reconstruction accuracy, the 

reconstruction errors of the TFC-EKF-Smoother are more than one order of magnitude larger than those of the 

proposed method. 

To investigate the computational cost of the proposed method, the time of the 100 MC runs is recorded. Fig. 10 

illustrates the distributions of the time cost of 100 MC runs of different methods. The histogram represents the mean 

time cost. The lower and upper bounds of the error bar denote the minimal and maximal computational times, 

respectively. The detailed mean, minimal, and maximal time costs are listed in Table 7. The EKF and AEKF have 

similar time costs, which are lower than 0.2 s. The mean time costs of the proposed method and TFC-EKF-Smoother 

are 3.6524 s and 1.0982 s. The proposed method has the highest time consumption, which is 18 times as much as the 

EKF costs and 3.6 times as much as the TFC-EKF-Smoother costs. Note that the proposed method is a 

postprocessing method that determines the spacecraft orbit using both pre- and post-maneuver measurements. 

Moreover, the proposed method calculates second-order terms, whereas the TFC-EKF-Smoother only computes 

linear terms. Therefore, it is reasonable that the proposed method has the best accuracy and a higher computational 

cost. However, the computational time is relatively small compared with the whole navigation period. Therefore, the 

proposed method remains applicable for real-time use. The above simulations are performed using MATLAB 

R2022a on a personal computer with a 2.5 GHz processor (12th Gen Intel(R) Core(TM) i5-12500H) and 16 GB 

RAM. 
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Fig. 10 Distribution of the time consumption of different methods. 

Table 7 Mean, maximal, and minimal of different methods 

Method Mean run time / s Maximal run time / s Minimal run time / s 
STT-LSM 3.6524 5.5091 2.6073 
EKF 0.1920 0.2143 0.1840 
AEKF 0.1904 0.2281 0.1852 
TFC-EKF 0.8531 2.0004 0.7853 
TFC-EKF-Smoother 1.0982 2.8082 0.9539 

The proposed method and four other competitive methods are used to solve the OD problem of the sparse 

observation case. The conditions of the sparse observation case are listed in Table 2. Monte Carlo simulations with 

100 runs are performed for the five methods, with the maneuver reconstruction results shown in Table 8. Compared 

with the standard case, the maneuver reconstruction accuracy of the proposed method degrades in the sparse case. 

However, the proposed method still outperforms the other four methods, with maneuver reconstruction errors at 

least one order of magnitude less than those of the TFC-EKF-Smoother. 

Table 8 Maneuver reconstruction results in the sparse observation case 

 1  / st  1  / (m/s)∆v  1( ) / degα ∆v  1( ) / degβ ∆v  

STT-LSM Mean error 0.4188 0.0237 0.1643 -0.6248 
STD 7.5933 0.3661 2.1781 3.3343 

EKF Mean error -74.7257 5.5660 -17.7931 -14.3302 
STD 326.4619 7.73082 25.2547 36.4788 

AEKF Mean error -69.2292 10.4335 -18.2300 -8.2055 
STD 383.0920 8.3188 28.4933 33.6777 

TFC-EKF Mean error -339.9047 1.2827 5.7918 -30.2353 
STD 390.4735 7.0658 21.4907 56.4150 

TFC-EKF-Smoother Mean error 3.9087 0.2467 3.0784 -0.1293 
STD 87.7816 2.7239 11.9606 6.7121 

Finally, the performance of the proposed method in handling short-arc observations is validated via comparing it 

with the EKF, AEKF, TFC-EKF, and TFC-EKF-Smoother. The maneuver reconstruction results of the MC 
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simulations are shown in Table 9. In the short-arc observation case, the performance of the TFC-EKF-Smoother 

degrades seriously as only 2.5 minutes of measurements are available for the TFC-EKF-Smoother to estimate the 

pre- and post-maneuver orbits. However, the proposed method can make full use of all measurements, and thus, its 

maneuver reconstruction errors are much smaller. Compared with the standard case, the 1t  estimated STD of the 

proposed method increases from 1.8367 s to 2.3514 s, and the 1∆v  estimated STD of the proposed method 

increases from 0.0992 m/s to 2.455 m/s. The measurement interval impacts the reconstruction performance of the 

proposed method, which will be discussed in Sec. IV.B.3 in detail.  

Table 9 Maneuver reconstruction results in the short-arc observation case 

 1  / st  1  / (m/s)∆v  1( ) / degα ∆v  1( ) / degβ ∆v  

STT-LSM Mean error 0.1245 0.1772 0.6833 0.8030 
STD 2.3514 2.4550 8.3861 4.7656 

EKF Mean error 41.2572 -3.1996 -8.6799 -60.8419 
STD 130.5298 2.7911 17.1934 16.0249 

AEKF Mean error 127.8097 33.5385 -26.8495 -52.2776 
STD 59.3794 15.7191 9.9017 11.4083 

TFC-EKF Mean error 55.1615 6.8669 -13.6974 -50.0177 
STD 127.6545 5.6651 13.0772 8.8832 

TFC-EKF-Smoother Mean error 35.7830 8.5508 -6.8496 -37.6454 
STD 129.7907 9.0153 10.4966 47.3876 

2. GEO testing case 

One LEO testing case is not thorough enough to analyze the performance of the proposed method, and a GEO 

testing case is added herein. A target entering a GEO from a geostationary transfer orbit (GTO) and an observer 

moving on a GTO are considered in this example, with their orbit parameters listed in Table 10. An impulsive 

maneuver, with a magnitude of approximately 1.4773 km/s, is executed by the target to enter the GEO at the epoch 

1 10830 st = . The measurement interval is set as 60 s. Note that the intent of this example is to demonstrate the 

proposed method’s capacity for accurately estimating the orbit and reconstructing the unknown impulsive maneuver 

for a GEO spacecraft. In practice, an impulsive assumption is poor when the magnitude is on the order of 1 km/s. In 

this case, continuous maneuver assumption is actually more true-to-life, and methods like the OCBE [31], minimum 

model error estimation (MME) [49], and TFC-EKF [7] may be more effective. 

Table 10 Nominal orbit elements of the target and the observer in the GEO testing case 

Spacecraft Orbit type h / km e i / deg Ω / deg ω / deg n / deg 

Observer 
GTO ( 0 0 st = ) 17993.0215 0.7301 0 0 0 180 

GEO ( 1 10830 st = ) 35786.0816 0 0 0 0 0 
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Target GTO ( 0 0 st = ) 17993.0215 0.7301 0 0 0 170 
The proposed method and the four competitive methods are employed to resolve the OD problem in this GEO 

testing case. The initial estimated errors, the tolerance, and the maximal iteration of the proposed method are set the 

same as those in the LEO testing case. One hundred MC runs are performed for each method, with the averaged 

RMSEs provided in Table 11 and the maneuver reconstruction results shown in Fig. 11 and Table 12. In Fig. 11, the 

blue square represents the true value, and the results of the STT-LSM and the TFC-EKF-Smoother are colored black 

and magenta, respectively. The maneuver construction results of the EKF, AEKF, and TFC-EKF are not plotted in 

Fig. 11, as their estimations seriously deviate from the true values. The state estimated RMSEs and the maneuver 

reconstruction errors of the proposed method are half of those of the TFC-EKF-Smoother and are one-thousandth of 

those of the EKF, AEKF, and TFC-EKF.  

Table 11 RMSE results of different methods in the GEO testing case 

Method Position RMSE / km Velocity RMSE / (m/s) 
x y z x y z 

STT-LSM 0.3966 0.6584 0.0110 0.0713 0.0549 0.0022 
EKF 1515.1264 5739.9999 0.0483 269.9595 614.3749 0.0324 
AEKF 1712.6599 6978.8532 0.0468 444.0001 596.6479 0.0466 
TFC-EKF 571.4159 2478.5652 0.1055 158.7369 265.6733 0.6964 
TFC-EKF-Smoother 0.6361 1.2656 0.0125 0.1214 0.0989 0.0027 

 

  
a) b) 

Fig. 11 Maneuver reconstruction results in the GEO testing case. a) Projections of time 1t  and magnitude 

1∆v . b) Projections of directions 1( )α ∆v  and 1( )β ∆v . 

Table 12 Maneuver reconstruction results in the GEO testing case 

 1  / st  1  / (m/s)∆v  1( ) / degα ∆v  1( ) / degβ ∆v  
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STT-LSM Mean error 0.0058 0.0012 3.2463e-6 7.1319e-5 
STD 0.0796 0.0741 1.4851e-4 1.0335e-3 

EKF Mean error 2542.7791 -476.3840 -0.0041 -87.8977 
STD 47.9845 3.32307 0.0552 0.1422 

AEKF Mean error 2248.1761 -466.6020 -0.0021 -89.9403 
STD 48.8883 3.4697 0.0537 0.1478 

TFC-EKF Mean error 2006.46444 -263.2457 0.0036 -15.7540 
STD 586.0104 62.9861 0.0576 4.8190 

TFC-EKF-Smoother Mean error 0.01617 0.0029 5.8849e-6 -1.1871e-4 
STD 0.8991 0.1868 1.5210e-3 0.0069 

It also should be noted that, compared with the LEO testing case, the proposed method has a better maneuver 

reconstruction performance when applied to the GEO testing case. The STD of the estimated errors of 1t  in the GEO 

testing case is less than 0.1 s, whereas, in the LEO testing case, it is approximately 2 s. This performance 

improvement mainly owes to the fact that the GEO testing case has a larger impulsive maneuver. A larger impulsive 

maneuver changes the orbits more obviously, and in turn, it is easier to reconstruct the maneuver from the 

measurements. On the contrary, if the impulsive maneuver is very small, its impacts on the orbit can be absorbed by 

the measurement noise, making it difficult to be reconstructed. The effects of the magnitudes of the impulsive 

maneuver will be discussed in Sec. IV.B.2. 

B. Sensitivity analysis 

1. Sensitivity to the initial guess 

The proposed method requires an initial estimation of 1∆v  and 1t . In this subsection, an analysis of the 

sensitivity of the method to the accuracy of initial estimations (0)
1∆v  and (0)

1t  is presented. The standard case in the 

LEO testing case is taken as the simulated example. First, we investigate the effects of the accuracy of (0)
1t  on the 

method’s performance. The initial estimation (0)
1t  can come from maneuver detections. We traverse (0)

1t  from the 

initial epoch 0t   to the end epoch 2t , with an interval of 50 s. For each (0)
1t , the direction of estimation (0)

1∆v  is 

randomly generated, and the magnitude of estimation (0)
1∆v  is fixed as (0)

1 30 3 m/s∆ =v , which is three times of 

the true value. Monte Carlo simulation with 100 runs is carried out for each (0)
1t . One run of the Monte Carlo 

simulation is considered a successful computation if the following conditions are satisfied: the position and velocity 

estimated errors along any axis are smaller than 1 km and 1 m/s, respectively; the algorithm converges in 10 

iterations. 

For each (0)
1t , the convergence ratio (CR) is defined as 
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 successful computationCR 100%
100

N
= × , (74) 

where successful computationN  is the number of successful runs. The CR and the average number of iterations with respect 

to the initial estimation of the impulsive maneuver epoch are shown in Fig. 12(a). In Fig. 12(a), the blue rectangle 

represents the feasible range (i.e., CR is 100%), and the red dashed line denotes the true value. The results when 

(0)
1 600 st <  are not displayed as the proposed method fails to converge in all MC runs. When (0)

1t   has an error of no 

more than 500 s, the convergence ratio is 100%. The CR degrades when the error of (0)
1t  is larger than 600 s or is 

smaller than -150 s. The length of 750 s is large compared with the total navigation period (1800 s), which is not a 

harsh requirement to satisfy. Moreover, it is found that the method needs more iterations as the absolute error of (0)
1t  

increases. When the error of (0)
1t  is 50 s, 5 iterations are used, while more than 7 iterations are required when the 

error of (0)
1t  is 600 s. Compared with the condition when (0)

11t t> , the convergence properties under the condition 

(0)
11t t<  are poorer. It is because when the initial guess of the maneuver epoch is anterior to when it actually is, there 

exists a gap between the virtual state and the true state (as shown in Fig. 1(b)), making the developed modified STT 

slightly inaccurate around the maneuver epoch. However, the nonconvergence under this condition is innocuous for 

the method, as in a true-to-life, a maneuver will likely always be detected after it is executed. 

  
a) b) 

Fig. 12 Performance of the proposed method under different initial estimations of 1t . a) Convergence. b) 
Maneuver reconstruction performance. 

In addition, the maneuver reconstruction performances of the proposed method under different (0)
1t  are shown in 

Fig. 12(b). In Fig. 12(b), 1 1 1 1ˆ( ) 100%ς ∆ = ∆ −∆ ∆ ×v v v v  represents the relative error of the impulsive maneuver 

vector. The nonconvergence runs are removed when computing the RMSEs of 1t  and 1( )ς ∆v . As is shown in Fig. 
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12(b), the initial guess of 1t  will not influence the maneuver reconstruction performance provided that the proposed 

algorithm can converge. 

Then, MC simulations are implemented for different (0)
1∆v . For each (0)

1∆v , the initial estimation of the 

impulsive maneuver epoch is set to be (0)
11 300 st t= + . The results are presented in Fig. 13. For any given (0)

1∆v , 

the convergence ratio is 100%, and the average number of iterations is no more than 7. The proposed method can 

converge even when (0)
1∆v  is 10 times larger than the true value. The initial guess of the maneuver magnitude does 

not impact the maneuver reconstruction performance. 

  
a) b) 

Fig. 13 Performance of the proposed method under different initial estimations of 1∆v . a) Convergence. b) 
Maneuver reconstruction performance. 

2. Sensitivity to the magnitude of the impulsive maneuver 

Influences of the maneuver magnitude on the convergence and maneuver reconstruction performance are 

demonstrated in Fig. 14. The true impulsive maneuver is given as 1λ∆v , where λ  is a scaling factor. For each given 

λ , the initial guesses are given as (0)
11 300 st t= +  and (0)

1 13λ∆ = ∆v v . As shown in Fig. 14(a), the proposed 

method requires more iterations when the maneuver magnitude is smaller. It fails to converge in some runs when 

1λ < . However, these runs are judged as ‘nonconvergence’ as the proposed method fails to converge in ten 

iterations rather than it diverges. Additionally, one can see from Fig. 14(b) that the maneuver reconstruction 

performance is better when the maneuver magnitude is larger. The reconstruction relative errors are lower than 0.2% 

when the impulsive maneuver is 100 m/s per axis, whereas the relative errors are larger than 20% when the 

impulsive maneuver is 1 m/s per axis. Smaller maneuvers will more likely be absorbed by the measurement noises. 
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a) b) 

Fig. 14 Performance of the proposed method under different maneuver magnitude. a) Convergence. b) 
Maneuver reconstruction performance. 

3. Sensitivity to the measurement interval 

The convergence and maneuver reconstruction performance of the proposed method under different 

measurement intervals are presented in Fig. 15. The proposed method converges in all runs. The required number of 

iterations increases, and the maneuver reconstruction performance degrades as the measurement interval dt  

increases. When 1 sdt = , the time estimation RMSE is approximately 0.5 s, whereas the time estimation errors are 

larger than 8 s when 180 sdt = . Shortening measurement intervals and adding more measurements can improve 

maneuver reconstruction accuracy.  

  
a) b) 

Fig. 15 Performance of the proposed method under different measurement intervals. a) Convergence. b) 
Maneuver reconstruction performance. 

V. Conclusion 

The proposed method can accurately estimate the orbit and can precisely and directly reconstruct the direction, 

magnitude, and epoch of an impulsive maneuver during the orbit determination process. The core of the proposed 

method is the modified state transition tensor (STT) for directly propagating the orbit under impulsive maneuver 
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uncertainties. Accuracy analysis indicates that the modified STT has a relative error of no more than 6%. Monte 

Carlo simulations show that using the proposed method, convergence is achieved in a few iterations (no more than 

seven). The maneuver reconstruction errors of the proposed method are at least one order of magnitude less than 

those of the competitive methods. The time consumption of the proposed method is higher than that of the 

conventional extended Kalman filter but is still applicable for real-time use. The proposed method can effectively 

handle severe cases such as sparse or short-arc observations, with estimated errors of less than 10% of competitive 

methods. Sensitivity analysis shows that the proposed method does not rely on accurate maneuver detection and can 

converge even when the initial guess is 10 times larger than the true value. In addition, increasing maneuver 

magnitude and shortening measurement interval can improve the maneuver reconstruction performance of the 

proposed method.  
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