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1  Introduction

Thiazolidinediones (TZDs), represented by pioglitazone 
(PGZ) and rosiglitazone (ROSI) agents, are a class of oral 
insulin-sensitising agents used to manage type 2 diabetes 
mellitus, or T2DM (DeFronzo et al., 2019; Wajid et al., 
2019). Moreover, TZDs are cost-effective, potent insulin 
sensitisers that pharmacologically mediate their action by 
activating the peroxisome proliferator-activated receptor-
gamma (PPAR-γ) nuclear receptor (Wajid et al., 2019). Inde-
pendent of their metabolic actions, TZDs have been shown 
to exert several pleiotropic effects involving improvements 
in insulin resistance, endothelial dysfunction, dyslipidae-
mia and vascular inflammation (Chaudhury et al., 2017; 
DeFronzo et al., 2019). These polyhedric effects suggest 
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Abstract
Introduction  Thiazolidinediones (TZDs), represented by pioglitazone and rosiglitazone, are a class of cost-effective oral 
antidiabetic agents posing a marginal hypoglycaemia risk. Nevertheless, observations of heart failure have hindered the 
clinical use of both therapies.
Objective  Since the mechanism of TZD-induced heart failure remains largely uncharacterised, this study aimed to explore 
the as-yet-unidentified mechanisms underpinning TZD cardiotoxicity using a toxicometabolomics approach.
Methods  The present investigation included an untargeted liquid chromatography–mass spectrometry-based toxicometabo-
lomics pipeline, followed by multivariate statistics and pathway analyses to elucidate the mechanism(s)of TZD-induced 
cardiotoxicity using AC16 human cardiomyocytes as a model, and to identify the prognostic features associated with such 
effects.
Results  Acute administration of either TZD agent resulted in a significant modulation in carnitine content, reflecting poten-
tial disruption of the mitochondrial carnitine shuttle. Furthermore, perturbations were noted in purine metabolism and amino 
acid fingerprints, strongly conveying aberrations in cardiac energetics associated with TZD usage. Analysis of our find-
ings also highlighted alterations in polyamine (spermine and spermidine) and amino acid (L-tyrosine and valine) metabo-
lism, known modulators of cardiac hypertrophy, suggesting a potential link to TZD cardiotoxicity that necessitates further 
research. In addition, this comprehensive study identified two groupings – (i) valine and creatine, and (ii) L-tryptophan and 
L-methionine – that were significantly enriched in the above-mentioned mechanisms, emerging as potential fingerprint bio-
markers for pioglitazone and rosiglitazone cardiotoxicity, respectively.
Conclusion  These findings demonstrate the utility of toxicometabolomics in elaborating on mechanisms of drug toxicity and 
identifying potential biomarkers, thus encouraging its application in the toxicological sciences. (245 words)
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a cardiovascular protective potential that encourages the 
selection of TZDs in T2DM treatment in parallel with the 
new T2DM treatment paradigm (Association, 2023).

Simultaneous with the encouraging profile of TZDs, 
PGZ and ROSI are widely used globally for the initial 
management of T2DM. Nevertheless, a few years after 
their approval, international T2DM management guide-
lines underwent major revisions (Association, 2023; Wajid 
et al., 2019). The strong recommendation to drop TZDs 
from first-line anti-diabetic agents to second-line options 
was stated due to major cardiovascular concerns, particu-
larly an increased risk of heart failure (HF) associated with 
their usage (Association, 2023; Chaudhury et al., 2017). 
While the mechanisms underpinning TZDs’ undesirable 
cardiotoxic action remain largely unexplained, several 
omics-based approaches have emerged in the toxicological 
sciences, providing new hope for the comprehensive eluci-
dation of chemicals’ adverse effects (Nguyen et al., 2022).

In recent decades, toxicometabolomics has progressively 
been established as a powerful tool in regulatory toxicol-
ogy (Olesti et al., 2021). The monitoring of the pattern of 
metabolic changes in response to stressors over a predefined 
concentration and time enables the application of toxico-
metabolomics in a vast number of applications, including 
(i) the elucidation of toxicity pathways and (ii) the tracking 
of the toxicokinetic and toxicodynamic data of both parent 
drug and biotransformation products, which can further has-
ten the acquisition of mechanistic knowledge (Nguyen et 
al., 2022; Olesti et al., 2021).

Owing to the rapid advancement in analytical technolo-
gies along with the availability of bioinformatics data mod-
elling, subsequent integration has caused a paradigm shift 
in the scope and delivery of toxicity-related investigations 
(Li et al., 2021; Nguyen et al., 2022). These new approaches 
have shifted the nature of output data from observation-
based outcomes to a more mechanistic and targeted analysis 
of any particular xenobiotic in the human system (Olesti et 
al., 2021). To date, extensive toxicometabolomics studies 
have been devoted to revealing the toxicity modes of vari-
ous drugs (Cabaton et al., 2018; Li et al., 2020). Using the 
aforementioned approach, these studies have successively 
reported the discovery of toxicity biomarkers, while gain-
ing a better understanding of the underpinnings of toxicity 
pathways (Cabaton et al., 2018; Li et al., 2020).

In the present study, an untargeted liquid chromatogra-
phy–mass spectrometry (LC–MS)-based toxicometabolo-
mics approach, followed by multivariate statistics, has been 
performed to elucidate the mechanism of TZD-induced 
cardiotoxicity using AC16 human cardiomyocytes. The pri-
mary aim of this study was to (i) profile the biochemical 
pathways perturbed in TZD-treated AC16 human cardio-
myocytes and (ii) identify biomarker candidates associated 

with such an effect that could serve as potential therapeutic 
targets for TZDs’ undesirable effects.

2  Methods

2.1  Reagents and chemicals

PPARγ agonists, PGZ and ROSI, were purchased from 
Sigma-Aldrich. The reagents used for the LC–MS analy-
sis consisted of high-performance liquid chromatography 
(HPLC)-grade acetonitrile, methanol, analytical-grade 
formic acid and ultrapure water and were purchased from 
Fisher Scientific.

2.2  Cells and cell culture

The AC16 cell line was purchased from Sigma-Aldrich. The 
cells were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM/F-12) supplemented with 12.5% foetal bovine 
serum (FBS), 1% antibiotics (streptomycin and penicillin) 
and 2 mM L-glutamine at 37 °C in a humidified atmosphere 
of 5% CO2 (Bourgault et al., 2011; Wei et al., 2020).

2.3  In vitro cytotoxicity measurements

The cytotoxicity of TZDs on AC16 cells was investigated 
using two mitochondrial assays, each of which carries a 
different endpoint (MTT assay (Cat. No. V13154; Thermo 
Fisher): implication of mitochondrial dehydrogenases; and 
adenosine triphosphate (ATP) assay (Part No. G7570; Pro-
mega): measurement of oxidative phosphorylation. Details 
on the protocol followed for each performed assay are 
included in the supplementary file (Sect. 1.1.1 and 1.1.2).

2.4  Sample preparation and metabolite extraction

To profile changes in the endogenous metabolites, AC16 
cells were seeded at a density of 2 × 106 cells/well in six-
well plates containing 2 mL of medium per well and incu-
bated for 24  h. Following a 24-h incubation period, the 
cells were washed once with phosphate-buffered saline 
(PBS) and supplemented with either a new phenol red-free 
medium alone or exposed to the half-maximal inhibitory 
concentration of either PGZ or ROSI (details on IC50 deter-
mination are included in the Supplementary Sect. 1.1). After 
the 24 h treatment period, the plates were placed on an ice-
cold metal plate, and the AC16 cells were washed with 500 
µL of ice-cold PBS. Using a pre-chilled plastic cell scraper, 
the cells were harvested three times with 500 µL of ice-cold 
methanol/water (50/50, v/v) and aliquoted in microcentri-
fuge tubes. Subsequently, the microcentrifuge tubes were 
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placed in liquid nitrogen. The samples were then allowed to 
sit for a few seconds and vortexed for 2 min. The resultant 
extracts were centrifuged at 12,000 g for 15 min at 4  °C. 
The supernatant was then collected into new microcen-
trifuge tubes and evaporated using a Thermo Scientific™ 
Savant™ SpeedVac™ to form dried metabolite extract pel-
lets, while the recovered sediment pellets were retained for 
total protein quantification using the Bradford assay. The 
dried metabolite pellets were reconstituted in water/0.1% 
formic acid at volumes normalised to the relative protein 
content. Eventually, the reconstituted solutions were trans-
ferred to 300µL fixed insert glass vials for LC-MS analy-
sis. Following sample preparation, quality control (QC) 
and blank samples were prepared. The QC samples were 
prepared by mixing equal volumes of all the prepared and 
tested samples. The blank sample, typically used to monitor 
background contamination or interference acquired through 
sample preparation, was prepared by pooling methanol/
water (50/50, v/v).

2.5  LC-MS data acquisition and processing

Metabolite extracts of the AC16 cell biomass and corre-
sponding culture media were randomised and subsequently 
analysed by high-performance liquid chromatography-
electrospray ionisation quadrupole orbitrap mass spec-
trometry (HPLC-ESI-HRMS) using a Thermo Scientific™ 
Vanquish™ binary LC system coupled to a Thermo Scien-
tific™ Orbitrap Exploris™ 240 mass spectrometer. Details 
of the parameters for chromatographic separation and MS 
detection are included in the Supplementary Sect. 1.2.1.

The acquired LC-MS data were processed using Com-
pound Discoverer 3.2 software (Thermo Fisher). Details on 
LC–MS metabolomics data processing are described in the 
Supplementary Sect. 1.2.2.

2.6  Bioinformatics analysis

2.6.1  Univariate and multivariate data analyses

Univariate and multivariate statistical analyses were per-
formed using R v4.3.0 and MetaboAnalyst v6.0 (https://
www.metaboanalyst.ca) webserver. Before the data analy-
ses and through Compound Discoverer 3.2 software, the 
spectral data were filtered by annotation filters (i.e., a full 
match with the predefined databases). This was followed by 
data normalisation using the MSPrep R package (Hughes et 
al., 2014).

Regarding multivariate analysis, principal compo-
nent analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA) were developed to 
inspect the clustering of biological samples and model the 

discriminations between the experimental groups. Further-
more, random forest analysis (RF), was performed to iden-
tify the features that had the highest discriminatory power 
between the two experimental groups. The number of trees 
in this study was set to 500. Univariate analysis, Student’s 
t-test, was conducted to identify differentially expressed 
features (DEFs) between control and TZD-treated groups. 
The p and FDR values were set at 0.05.

Through combining univariate and multivariate analyses 
findings, features that fit on one of the following criteria—
(i) variable importance in the projection (VIP) value > 1 of 
the OPLS-DA model, (ii) discriminant features identified 
by RF and (iii) significant features extracted from univari-
ate analysis (p-value ≤ 0.05)—were labelled in this study 
as characteristic features and hence subjected for debiased 
sparse partial correlation analysis (DSPC)–weighted net-
work analysis, metabolite set enrichment analysis (MSEA) 
and pathway analysis.

2.6.2  DSPC network, MSEA and pathway analyses

To further explore the metabolic alteration underpinning 
treatment conditions, the correlation among the character-
istic features was determined through DSPC weighted net-
work analysis. In addition, MSEA and pathway analyses 
were performed to profile the perturbed biochemical path-
ways in response to TZD treatment. The hypergeometric 
test’s p-values determined the pathway impact and statisti-
cal significance of the identified metabolic pathways.

2.6.3  Selection of biomarker candidates

To identify biomarker candidates associated with the car-
diotoxicity of TZDs, univariate receiver operating charac-
teristic (ROC) curves were applied. Initially, hub feature(s) 
identified from the DSPC network (feature(s) with the 
highest degree score) that were also enriched in pathways 
linked with TZDs’ cardiotoxicity were defined in this study 
as biomarker candidates. Thereafter, ROC curves were con-
structed and the area under the curve (AUC) was calculated 
to evaluate the prognostic potential of these features.

2.7  Statistical analysis

Statistical analysis was conducted using R v4.3.0. Three 
independent experiments were performed, each conducted 
in triplicate (biological replicates), yielding nine samples 
per group. Statistical significance was determined using 
Student’s or Welch’s t-tests when comparing the two groups. 
A non-repeated one-way analysis of variance (ANOVA), 
followed by Dunnett’s post hoc test, was used for multiple 
comparisons. The correlation coefficient was assessed using 
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responsible for clustering separation. With respect to PGZ 
treatment, 9 features were found with VIP scores > 1, as 
listed in Fig. 2c. In contrast, several influential features were 
extracted from the later model in response to ROSI expo-
sure (Fig. 2d), including amino acid-related products (e.g. 
L-glutamine), purines and purine derivatives (hypoxan-
thine), polyamines (spermidine), inosine and others. Fur-
thermore, the putative features were ranked using the mean 
decrease accuracy measure integrated into the RF analysis. 
Regarding the PGZ experiment, the RF classification, as 
shown in Figure S4a, demonstrated an outstanding predic-
tion of the treated group; nevertheless, the classification 
exhibited less accuracy in the control group, with a 0.0556 
out-of-bag (OOB) error rate. The RF variable importance 
plot identified a number of discriminant features important 
in classifying the data, including amino acid products (e.g., 
L-tyrosine, valine), creatine and mitochondrial-derived 
metabolites such as triglylcarnitine (Fig. 2e). However, the 
RF classification model extracted from ROSI data, as illus-
trated in Figure S4b, predicted the control excellently, while 
the prediction of the treated class was less accurate, with a 
0.056 OOB rate. The features identified by RF that had the 
most influence on data classification are listed in Fig. 2f. In 
an attempt to further identify the DEFs, univariate analysis, 
Student’s t-test, was conducted, yielding 16 and 53 DEFs in 
response to PGZ and ROSI exposure, respectively.

Thereafter, a combination of multivariate and univariate 
analyses was performed to define PGZ’s and ROSI’s char-
acteristic features. The combination analysis resulted in 27 
and 63 characteristic features extracted from the PGZ and 
ROSI datasets, respectively, discriminating the experimen-
tal groups.

The relative distribution of these defined characteristic 
features across TZD-treated and control groups was mea-
sured by calculating the z-score using the following formula 
(Wei et al., 2012):

z = (x − µ) /σ

where x indicates sample abundance; µ represents average 
and σ denotes the standard deviation.

The z-score plot of the 27 features in the PGZ-treated 
group relative to the control group, as presented in Fig. 3a, 
exhibited metabolic perturbation in the treated group, with 
a z-score range of − 6 to 14 compared to the control group 
(z-score range: −2 to 2). The relative distribution of the 63 
features altered following ROSI exposure showed z-score 
ranges of (− 15 to 20) and (− 2 to 2) in the treated and con-
trol groups, respectively (Fig. 3b and c). The chemical tax-
onomy classification of the characteristic features of each 
TZD agent is described in Fig. 3d and e.

Pearson and distance correlation analyses. A p-value ≤ 0.05 
was considered statistically significant. All the downstream 
analyses were performed using MetaboAnalyst, otherwise 
delegated to R. A schematic flowchart of the toxicometabo-
lomics pipeline applied for downstream analyses is illus-
trated in Fig. 1.

3  Results

3.1  In vitro characterisation of TZD cytotoxicity 
against AC16

The effects of PGZ and ROSI on cell viability were assessed 
using the MTT assay. AC16 cells were treated with a wide 
range of concentrations of either TZD agents (0.01, 0.1, 0.5, 
1, 5, 10, and 20 µM), and the cytotoxic effect was measured 
after a 24-h incubation period. As shown in Figures S1a 
and S1b, exposure to either TZD resulted in a concentra-
tion-dependent decrease in cell viability, and the IC50 value 
against AC16 cells, calculated using the Hill equation (Gout-
elle et al., 2008), was found to be 4.74 µM (R2 = 0.9969; 
95% CI 3.842–5.894) and 2.05 µM (R2 = 0.9816; 95% CI 
1.270–3.495) in PGZ and ROSI, respectively.

Furthermore, the effect of TZD on mitochondrial ATP 
production was investigated using the CellTiter-Glo® assay. 
The administration of PGZ or ROSI at a concentration range 
of (1, 5, 10, 50 and 100 µM), as presented in Figures S2a 
and S2b, markedly depleted mitochondrial ATP production, 
notably in a concentration-dependent manner.

3.2  Overview of cellular metabolome profiling 
under TZD treatment

To unveil TZDs’ cardiotoxic mode of action and delineate 
the perturbation of the cellular metabolome in response to 
their exposure, a toxicometabolomics approach featuring 
untargeted LC–MS followed by computational bioinformat-
ics analyses was introduced, as depicted in Fig. 1.

Univariate and multivariate statistical analyses were per-
formed to decipher the metabolic perturbation in AC16 cells 
following TZD exposure. An unsupervised two-component 
PCA plot was constructed to delineate the overall similari-
ties and heterogeneity in the clustering of the biological 
samples. In both experiments, the PCA scores plots indi-
cated marked separation among the sampling data, showing 
a distinct metabolic profile that was yielded after TZD expo-
sure (Fig. 2a and b). This distinct metabolic profile observed 
by PCA plots was also confirmed following the application 
of the OPLS-DA supervised model illustrated in Figure S3. 
Furthermore, the Variable Importance in Projection (VIP) 
measure was adopted to fingerprint the important features 
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Fig. 1  Flowchart of the toxicometabolomics pipeline applied for 
downstream analyses. The metabolic profiling of AC16 cells produced 
in response to the TZDs was characterised using an untargeted LC-MS 
approach. First, the raw LC-MS data were processed using Compound 
Discoverer, after which further data filtering and normalisation were 
conducted using the MSPrep R package. Thereafter, downstream anal-
ysis, including uni- and multi-variate analyses, was performed on the 
identified features. PCA was performed to identify potential outliers. 
Subsequently, OPLS-DA and RF analysis, both supervised techniques, 
were adopted as feature selectors and classifiers. Alongside the multi-
variate analysis, univariate analysis, Student’s t-test, was conducted to 
identify differentially expressed features (DEFs) between control and 
TZD-treated groups. The p and FDR values were set at 0.05. Accord-
ingly, the characteristic features were first selected by combining 

the univariate and multivariate findings and then subjected to DSPC 
weighted network analysis, metabolite set enrichment analysis and 
pathway analysis. Finally, this study defined the hub features identi-
fied from the DSPC network, which were also observed to be enriched 
in the pathways linked to TZD’s cardiotoxicity pathogenesis, as bio-
marker candidates. Additionally, ROC curves were applied to evaluate 
the prognostic potential of the chosen candidates
LC–MS: liquid chromatography–mass spectrometry; TZDs: thiazoli-
dinediones; DEFs: differentially expressed features; PCA: principal 
component analysis; OPLS-DA: orthogonal partial least squares-dis-
criminant analysis; RF: random forest; DSPC: debiased sparse partial 
correlation; KEGG: Kyoto Encyclopaedia of Genes and Genomes; 
ROC: receiver operating characteristic
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Fig. 2  Multivariate analysis of the metabolomics data. (a) and (b) 
represent the 2D PCA scores plots comparing the LC–MS metabolic 
profiles of the PGZ-treated and ROSI-treated samples relative to the 
control group, respectively. Both were treated at measured IC50 val-
ues of 4.74µM and 2.05 µM in pioglitazone and rosiglitazone, respec-
tively. In both PCA plots, the shaded circles represent 95% confidence 
intervals, while the coloured dots denote the individual samples. (c) 
and (d) illustrate the VIP score plots of the 10 most influential features 
responsible for the separation noted between the PGZ-treated vs. con-
trol groups and the ROSI-treated vs. control groups in the OPLS-DA 

model, respectively. Furthermore, (e) and (f) denote the random forest 
analysis, showing the discriminant features with the highest discrimi-
natory power between the treated and control groups (PGZ in (e) and 
ROSI in (f)). In both the random forest and VIP plots, the colour code 
indicates higher (red) or lower (blue) concentrations
PGZ: pioglitazone; ROSI: rosiglitazone; LC–MS: liquid chromatogra-
phy–mass spectrometry; PCA: principal component analysis; OPLS-
DA: orthogonal partial least squares-discriminant analysis; VIP: vari-
able importance in projection
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(methylguanosine). The main hubs represented in the ROSI 
network include L-tryptophan and L-methionine.

3.4  MSEA and pathway analysis

To profile the biochemical pathways perturbed in PGZ- and 
ROSI-treated AC16 cells, MSEA and pathway analyses were 
performed by mapping the drug’s characteristic features 
against the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) using the MetaboAnalyst webserver. The MSEA 
analysis revealed that the PGZ’s characteristic features were 
significantly enriched in pathways linked to amino acid 
metabolism, energy metabolism, polyamine biosynthesis, 
metabolism of cofactors and others as listed in Fig. 5a. The 
pathway analysis results, on the other hand, showed that 
the highest number of metabolites were products of various 
amino acid metabolism and amino acid and cofactor biosyn-
thesis (Fig. 5b).

Regarding ROSI, the MSEA, as shown in Fig. 5c, revealed 
that the characteristic features were significantly enriched 
in pathways belonging to amino acid (i.e., methionine 

3.3  DSPC algorithm and correlation network 
construction

Debiased sparse partial correlation (DSPC) was applied to 
explore the connectivity among PGZ’s and ROSI’s char-
acteristic features. The PGZ-constructed network, as illus-
trated in Fig. 4a, revealed dense interactions among amino 
acids, amino acids with purine ribonucleotide (ADP) and 
amino acids with both polyamines (spermine and spermi-
dine). In addition to the identified positive correlations, 
negative interactions were also noted, including valine with 
L-histidine, L-phenylalanine with guanine, and creatine 
with spermidine. Valine and creatine represented the main 
hubs with the highest degree score in the PGZ network.

Conversely, ROSI’s DSPC network, as shown in Fig. 4b, 
revealed dense interactions among amino acids and their 
derivatives, similar to PGZ. Furthermore, kynurenic acid, 
which is a vital bioproduct of tryptophan’s catabolism, has 
demonstrated strong interactions with amino acid deriva-
tives (i.e., acetyl-L-methionine) and purine nucleosides 

Fig. 3  z-score plot of the characteristic features and their chemical 
classification. (a) and (b and c) present z-score plots of the characteris-
tic features altered in the PGZ-treated and ROSI-treated samples rela-
tive to the mean in the control cells, respectively. Each point represents 

one metabolite in one sample, coloured according to the sample group-
ing. (d) and (e) show the chemical classification of the characteristic 
features identified from the PGZ and ROSI datasets, respectively
PGZ: pioglitazone; ROSI: rosiglitazone
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of 0.938 (p < 0.05), as well as creatine with AUC value of 
1 and p < 0.05. Regarding ROSI, the ROC curves had an 
AUC value of 0.802 (p < 0.05) and 0.778 (p < 0.05) for both 
L-tryptophan and L-methionine, reflecting a satisfactory 
overall score performance.

4  Discussion

Toxicometabolomics tools have been successfully and 
widely employed in toxicological studies to reveal novel 
biochemical features and molecular biomarkers underpin-
ning the mode of toxicity of various drugs as evident by 
(Cabaton et al., 2018; Dahabiyeh et al., 2020; Geng et al., 
2020). Nevertheless, toxicometabolomics studies have yet 
to address the toxic effects associated with TZD usage (e.g., 

metabolism), polyamines (spermidine and spermine bio-
synthesis) and betaine metabolism. The pathway-topology 
analysis showed a significant association between the char-
acteristic features and pathways linked to purine metabo-
lism, amino acid metabolism and amino acid biosynthesis, 
as illustrated in Fig. 5d.

3.5  Identification and validation of biomarker 
candidates for TZDs’ cardiotoxicity

The hub features identified through PGZ’s and ROSI’s 
DSPC networks that were also enriched in pathways linked 
with TZDs’ cardiotoxicity were subjected to ROC analysis 
to evaluate their prognostic potential (Fig. 6). The ROC find-
ings revealed excellent biomarker prediction for PGZ’s hub 
features; these results included valine with an AUC value 

Fig. 4  DSPC correlation network using characteristic features. (a) and 
(b) denote the DSPC network using PGZ’s and ROSI’s characteristic 
features, respectively. In both networks, the nodes represent metabo-
lites, the red lines indicate a direct positive correlation between fea-
tures, and the blue lines signify an inverse correlation. The thickness 
of the lines donates significance. The DSPC network analysis was per-
formed on the basis of the graphical lasso modelling procedure, with 

the significance cutoff for correlation (p-value) set to 0.01. The range 
specified for the correlation coefficients was from − 1 to 1. The con-
structed networks were exported to the Cytoscape software platform 
(Cytoscape; https://cytoscape.org; v3.10.1) for visualisation
DSPC: debiased sparse partial correlation; PGZ: pioglitazone; ROSI: 
rosiglitazone
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b. Thereafter, the supervised methods OPLS-DA and RF 
analysis were carried out as feature identifiers and classi-
fiers. By combining the univariate and multivariate analysis 
findings, the characteristic features of each experiment were 
identified. In both experiments, these features predomi-
nantly include modulation in amino acids (e.g., glutamine, 
glycine, valine and asparagine); energy metabolites, includ-
ing glutamate; and lipid content, including prenol lipids, 
glycerophospholipids and glycerolipids. The common and 
unique characteristic features, MSEA and pathway findings 
isolated from each experiment are illustrated via an UpSet 
plot in Figure S5. The modulation in characteristic features 
expression following TZD treatment suggests perturbation 
in the following major biological processes: cardiac energy 
metabolism and cardiac hypertrophy.

cardiotoxicity). Thus, this study was designed to employ 
an untargeted, LC-MS-based toxicometabolomics pipeline 
for comprehensive metabolic profiling of the AC16 cellular 
metabolome in response to the acute exposure of TZDs as 
a means to elucidate the uncharacterised patho-mechanistic 
basis of TZDs’ cardiotoxicity.

4.1  Interpretation of results

The heterogeneity and similarity between the metabolic 
fingerprints of the drug-treated and control groups were 
assessed using multivariate statistical analyses. PCA was 
initially performed to inspect the clustering of the biological 
samples and determine potential outliers. The PCA model 
identified group separation, as illustrated in Fig.  2a and 

Fig. 5  The MSEA and metabolic pathways of the characteristic fea-
tures. The top 25 enriched pathways of (a) PGZ’s and (c) ROSI’s 
characteristic features. (b) and (d) denote the pathway analysis of the 
characteristic features identified from the PGZ and ROSI datasets, 
respectively. The size and colour of each circle in (a) and (c) reflect the 

enrichment ratio and significance, respectively, while those in (b) and 
(d) represent the pathway impact value and the p-value, respectively
PGZ: pioglitazone; ROSI: rosiglitazone; MSEA: metabolite set enrich-
ment analysis
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associated with TZD administration secondary to disruption 
in the carnitine shuttle system and a decrease in substrate 
oxidation. To date, a cumulative amount of evidence has 
linked disruption in the carnitine profile with HF pathogen-
esis in both human and rodent models (Schenkl et al., 2023). 
Furthermore, our analysis findings revealed an increase in 
D-glucose levels, which could be interpreted as a compen-
satory mechanism to meet the energy demand in response to 
the disruption of fatty acid oxidation.

In the same context, our analysis revealed alterations 
in purine metabolites, including inosine, hypoxanthine, 
adenosine, and adenosine monophosphate/diphosphate 
(AMP/ADP), suggesting modulation in purine biosynthe-
sis/catabolism pathways accompanying TZD treatment. 
It is well established that purine nucleotides play crucial 
roles in the synthesis of the genetic material and the energy 
currency of the cells, ATP (Lane & Fan, 2015). The cross-
linking between the modulation in purine metabolites and 
TZD treatment is explained through the need to compen-
sate for the shortage of cellular ATP. The elevated levels 

4.1.1  TZDs and cardiac energetics

It is well acknowledged that a cardiac energy deficit is a 
hallmark characteristic of HF. The contractile and mechani-
cal properties of the myocardium demand a substantial, 
steady energy supply; hence, any disruption in the energy 
metabolic pathways results in drastic reduction in efficient 
cardiac function. Our toxicometabolomics analysis revealed 
modulation in the carnitine pool, including L-carnitine and 
triglylcarnitine, which are crucially integrated in mitochon-
drial fatty acid oxidation. The carnitine pool represents 
mitochondrial-derived metabolites primarily responsible for 
importing long-chain fatty acids into the mitochondria for 
subsequent beta-oxidation, providing roughly 70–90% of 
cardiac adenosine triphosphate (ATP), a process referred to 
as the carnitine shuttle (McCann et al., 2021). The analysis 
findings showed a decrease in the carnitine pool associated 
with TZD treatment. Of importance, enrichment in beta oxi-
dation of very long-chain fatty acids was noted with MSEA 
findings, reinforcing the potential of cardiac energy failure 

Fig. 6  Receiver operating characteristic curves and box-plot repre-
sentation for the hub features of the TZDs. (a) and (b) illustrate the 
receiver operating characteristic curves, along with the corresponding 
AUC and considering 95% confidence intervals, for PGZ’s chosen bio-

markers, while (c) and (d) indicate the receiver operating characteristic 
analysis findings for ROSI’s biomarker candidates
TZD: thiazolidinedione; PGZ: pioglitazone; ROSI: rosiglitazone; 
AUC: area under the curve
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including the progression to HF. In our analysis, the modu-
lation of a number of putative features that are evidently 
associated with cardiac hypertrophy was identified. For 
instance, elevated levels of polyamines, spermine and sper-
midine, noted in our analysis, have been linked through 
numerous in vivo models with cardiac hypertrophy (Gior-
dano et al., 2010; Meana et al., 2016). Several mechanisms 
have been postulated to explain the cross-link association, 
one of which is attributed to the intrinsic ability of poly-
amines to modulate β-adrenoceptor signalling pathways 
and therefore cardiac remodelling (Giordano et al., 2010). 
In addition, modulation of amino acids has been associ-
ated with cardiac remodelling (Geng et al., 2020; Karwi & 
Lopaschuk, 2023). The high levels of BCAAs found in our 
toxicometabolomics analysis have been reported to acti-
vate the mammalian target of the rapamycin (mTOR) sig-
nalling pathway, a crucial hypertrophic signalling pathway 
implicated in HF patho-mechanisms (Xiong et al., 2022). 
L-tyrosine is another amino acid that has been hooked with 
cardiac hypertrophy, as its involvement was supported by a 
recent study performed to investigate the pathophysiologi-
cal process of doxorubicin-induced cardiotoxicity (Geng et 
al., 2020). Furthermore, low levels of the nonproteinogenic 
amino acid γ-aminobutyric acid (GABA) were detected with 
TZDs. GABA is well recognized as a major inhibitory neu-
rotransmitter with vital biological roles that are not restricted 
to the central nervous system but also function in peripheral 
tissues (Rashmi et al., 2018). In spontaneously hypertensive 
rats, the oral administration of GABA led to a reduction 
in cardiac hypertrophy (Lin et al., 2012). Hence, the low 
levels of GABA found in our analysis could be secondary 
to TZD-induced modulation of amino acid metabolism, an 
additional contributor factor involved in TZD cardiotoxic-
ity. While the above-mentioned findings provide a valuable 
starting point, additional experiments are crucial to validate 
the cross-link between TZDs and cardiac hypertrophy and 
unravel the specific molecular pathways involved.

4.2  Limitations and future directions

When all the results are taken together, some limitations 
should be addressed before drawing conclusions. Initially, 
in accordance with the 3Rs principle of animal experimen-
tation, the transition in toxicological research is evolving 
towards animal-free in vitro and in silico approaches (Yu et 
al., 2020). This also explains the rationale behind selecting 
AC16 cells for our analysis. Furthermore, the well-defined 
cardiac signaling pathways and responsiveness to stimuli 
in AC16 cells, combined with their ease of culture, rapid 
growth, and relative cost-effectiveness compared to other 
models, justified their selection for our research, allow-
ing us to effectively investigate the effects of TZDs on 

of both inosine and hypoxanthine suggest upregulation of 
the purine salvage pathway, which is a process of synthe-
sizing purine nucleotides from nucleosides recovered from 
RNA and DNA degradation as a response to mitigate car-
diac energy failure and increase the energy supply (John-
son et al., 2019). Nevertheless, the purine catabolism end 
product, hypoxanthine, has been reported to induce reactive 
oxygen species (ROS) generation, elevate serum cholesterol 
levels and worsen the progression of cardiotoxicity (Ryu et 
al., 2016). Therefore, the unbalancing between purine sal-
vage and catabolism noted in our analysis could have cata-
strophic consequences for cardiac tissue, which necessitates 
further investigation.

Reflecting on the amino acid profile, modulation in 
branched-chain amino acids (BCAAs) represented with 
high levels of L-leucine, L-isoleucine and valine was noted 
in our analysis. Growing clinical and preclinical evidence 
has proposed elevated levels of BCAAs as a predictor of a 
wide range of cardiovascular diseases, including HF (Xiong 
et al., 2022). These findings surprisingly contradict the cru-
cial roles that BCAAs play in cardiac energy metabolism. It 
is well recognised that BCAA oxidation acts as another fuel 
supply in the heart. Therefore, the high levels of BCAAs 
noted, and through various clinical studies performed on 
patients with overt cardiovascular diseases, could poten-
tially be interpreted as a cardioprotective mechanism to 
promote cardiomyocyte survival. Nevertheless, the reported 
outcomes are inconsistent with the above-mentioned predic-
tions. High levels of BCAAs have been shown to worsen 
the progression of cardiotoxicity for the following pro-
posed reasons: (i) The contribution of BRAAs to cardiac 
ATP is marginal, accounting for approximately 2% of the 
total cardiac energetics. Therefore, elevated levels of these 
amino acids are not adequate for overcoming the shortage 
in cardiac ATP levels (Karwi & Lopaschuk, 2023). (ii) On 
account of recent in vivo cardiovascular studies, downregu-
lations in key enzymes involved in BCAA oxidation have 
been reported, resulting in impairment in energy supply, 
contractile dysfunction and further accumulation of BCAAs 
in the myocardium (Lai et al., 2014; Sun et al., 2016). (iii) 
Elevated levels of BCAAs have been reported to induce 
mitochondrial dysfunction through mechanisms involving 
interfering with the electron transport chain and hence oxi-
dative phosphorylation and altering mitochondria biogen-
esis through activating eNOS/NO/SIRT1 pathways (Ye et 
al., 2020).

4.1.2  TZDs and cardiac hypertrophy

Cardiac hypertrophy is an adaptive response prompted by 
physiological and pathological stressors. However, sustained 
hypertrophy causes a myriad of negative consequences, 
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the broad-scale metabolic perturbations of human AC16 
induced by the TZD class of medications. The comprehen-
sive toxicometabolomics approach employed herein has 
unveiled modulations in the carnitine shuttle, purine metab-
olism and amino acid fingerprint, each of which strongly 
indicate aberration in cardiac energetics associated with 
TZD usage. Our analysis has also pinpointed changes in 
polyamines and BCAA levels that are evidently associated 
with phenotypic alterations of cardiac tissues (hypertrophy), 
which indeed represents another hallmark characteristic of 
cardiotoxicity and a potential mechanism implicated in it. 
This comprehensive study also suggests the following two 
groupings – (i) valine and creatine, and (ii) L-tryptophan 
and L-methionine – which were significantly enriched in 
the above-mentioned mechanisms, as potential fingerprint 
biomarkers for PGZ and ROSI cardiotoxicity, respectively. 
Collectively, the results of this study suggest the LC–MS 
toxicometabolomics approach as a powerful platform for 
exploring chemical-induced perturbation in downstream 
molecular phenotypes, in turn pointing out a promising 
route for designing therapeutic targets capable of tackling 
these chemicals’ adverse effects.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s11306-
024-02097-z.

Author contributions  AS performed all cell culture experiements. AS 
and NJWR performed LCMS analysis. AS and NJWR performed bio-
informatics analysis. AS and NJWR wrote the main manuscript and 
prepared all figures. All authors conceived the project and reviewed 
the manuscript.

Data availability  All mass spectrometry metabolomics data has been 
uploaded on to the MetaboLights database and can be found under the 
MTBLS9279 Study Identifier.

Declarations

Competing interests  The authors declare no competing interests.

1 3

   24   Page 12 of 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11306-024-02097-z
https://doi.org/10.1007/s11306-024-02097-z


Toxicometabolomics-based cardiotoxicity evaluation of Thiazolidinedione exposure in human-derived…

production, and applications. Studies in Natural Products Chem-
istry, 57, 413–452.

Ryu, H. M., Kim, Y. J., Oh, E. J., Oh, S. H., Choi, J. Y., Cho, J. H., 
Kim, C. D., Park, S. H., & Kim, Y. L. (2016). Hypoxanthine 
induces cholesterol accumulation and incites atherosclerosis in 
apolipoprotein E-deficient mice and cells. Journal of Cellular and 
Molecular Medicine, 20(11), 2160–2172.

Schenkl, C., Heyne, E., Doenst, T., Schulze, P. C., & Nguyen, T. D. 
(2023). Targeting mitochondrial metabolism to save the failing 
heart. Life, 13(4), 1027.

Sun, H., Olson, K. C., Gao, C., Prosdocimo, D. A., Zhou, M., Wang, 
Z., Jeyaraj, D., Youn, J. Y., Ren, S., & Liu, Y. (2016). Catabolic 
defect of branched-chain amino acids promotes heart failure. Cir-
culation, 133(21), 2038–2049.

Wajid, S., Menaka, M., Ahmed, F., & Samreen, S. (2019). A literature 
review on oral hypoglycemic drugs–mechanistic aspects. Asian 
Journal of Pharmaceutical and Clinical Research, 12(11), 5–10.

Wei, X., Shi, X., Kim, S., Zhang, L., Patrick, J. S., Binkley, J., 
McClain, C., & Zhang, X. (2012). Data preprocessing method for 
liquid chromatography–mass spectrometry based metabolomics. 
Analytical Chemistry, 84(18), 7963–7971.

Wei, Z., Zhao, J., Niebler, J., Hao, J. J., Merrick, B. A., & Xia, M. 
(2020). Quantitative proteomic profiling of mitochondrial toxi-
cants in a human cardiomyocyte cell line. Frontiers in Genetics, 
11, 719.

Xiong, Y., Jiang, L., & Li, T. (2022). Aberrant branched-chain amino 
acid catabolism in cardiovascular diseases. Frontiers in Cardio-
vascular Medicine, 9, 965899.

Ye, Z., Wang, S., Zhang, C., & Zhao, Y. (2020). Coordinated modula-
tion of energy metabolism and inflammation by branched-chain 
amino acids and fatty acids. Frontiers in Endocrinology, 11, 617.

Yu, L., Li, H., Zhang, C., Zhang, Q., Guo, J., Li, J., Yuan, H., Li, L., 
Carmichael, P., & Peng, S. (2020). Integrating in vitro testing and 
physiologically-based pharmacokinetic (PBPK) modelling for 
chemical liver toxicity assessment—A case study of troglitazone. 
Environmental Toxicology and Pharmacology, 74, 103296.

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations. 

Karwi, Q. G., & Lopaschuk, G. D. (2023). Branched-chain amino acid 
metabolism in the failing heart. Cardiovascular Drugs and Ther-
apy, 37(2), 413–420.

Lai, L., Leone, T. C., Keller, M. P., Martin, O. J., Broman, A. T., 
Nigro, J., Kapoor, K., Koves, T. R., Stevens, R., & Ilkayeva, O. 
R. (2014). Energy metabolic reprogramming in the hypertrophied 
and early stage failing heart: A multisystems approach. Circula-
tion: Heart Failure, 7(6), 1022–1031.

Lane, A. N., & Fan, T. W. (2015). Regulation of mammalian nucleo-
tide metabolism and biosynthesis. Nucleic Acids Research, 43(4), 
2466–2485.

Li, Y. Y., Ghanbari, R., Pathmasiri, W., McRitchie, S., Poustchi, H., 
Shayanrad, A., Roshandel, G., Etemadi, A., Pollock, J. D., & 
Malekzadeh, R. (2020). Untargeted metabolomics: Biochemical 
perturbations in Golestan Cohort Study opium users inform inter-
vention strategies. Frontiers in Nutrition, 7, 584585.

Li, Y., Ma, L., Wu, D., & Chen, G. (2021). Advances in bulk and sin-
gle-cell multi-omics approaches for systems biology and preci-
sion medicine. Briefings in Bioinformatics, 22(5), bbab024.

Lin, P. P., Hsieh, Y. M., Kuo, W. W., Lin, C. C., Tsai, F. J., Tsai, C. 
H., Huang, C. Y., & Tsai, C. C. (2012). Inhibition of cardiac 
hypertrophy by probiotic-fermented purple sweet potato yogurt 
in spontaneously hypertensive rat hearts. International Journal of 
Molecular Medicine, 30(6), 1365–1375.

McCann, M. R., De la Rosa, G., Rosania, M. V., G. R., & Stringer, 
K. A. (2021). L-carnitine and acylcarnitines: Mitochondrial bio-
markers for precision medicine. Metabolites, 11(1), 51.

Meana, C., Rubin, J. M., Bordallo, C., Suarez, L., Bordallo, J., & San-
chez, M. (2016). Correlation between endogenous polyamines 
in human cardiac tissues and clinical parameters in patients with 
heart failure. Journal of Cellular and Molecular Medicine, 20(2), 
302–312.

Nguyen, N., Jennen, D., & Kleinjans, J. (2022). Omics technologies 
to understand drug toxicity mechanisms. Drug Discovery Today, 
103348.

Olesti, E., González-Ruiz, V., Wilks, M. F., Boccard, J., & Rudaz, S. 
(2021). Approaches in metabolomics for regulatory toxicology 
applications. The Analyst, 146(6), 1820–1834.

Rashmi, D., Zanan, R., John, S., Khandagale, K., & Nadaf, A. (2018). 
γ-aminobutyric acid (GABA): Biosynthesis, role, commercial 

1 3

Page 13 of 13     24 


	﻿Toxicometabolomics-based cardiotoxicity evaluation of Thiazolidinedione exposure in human-derived cardiomyocytes
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Methods
	﻿2.1﻿ ﻿Reagents and chemicals
	﻿2.2﻿ ﻿Cells and cell culture
	﻿2.3﻿ ﻿In vitro cytotoxicity measurements
	﻿2.4﻿ ﻿Sample preparation and metabolite extraction
	﻿2.5﻿ ﻿LC-MS data acquisition and processing
	﻿2.6﻿ ﻿Bioinformatics analysis
	﻿2.6.1﻿ ﻿Univariate and multivariate data analyses
	﻿2.6.2﻿ ﻿DSPC network, MSEA and pathway analyses
	﻿2.6.3﻿ ﻿Selection of biomarker candidates


	﻿2.7﻿ ﻿Statistical analysis
	﻿3﻿ ﻿Results
	﻿3.1﻿ ﻿In vitro characterisation of TZD cytotoxicity against AC16
	﻿3.2﻿ ﻿Overview of cellular metabolome profiling under TZD treatment
	﻿3.3﻿ ﻿DSPC algorithm and correlation network construction
	﻿3.4﻿ ﻿MSEA and pathway analysis
	﻿3.5﻿ ﻿Identification and validation of biomarker candidates for TZDs’ cardiotoxicity

	﻿4﻿ ﻿Discussion
	﻿4.1﻿ ﻿Interpretation of results
	﻿4.1.1﻿ ﻿TZDs and cardiac energetics
	﻿4.1.2﻿ ﻿TZDs and cardiac hypertrophy


	﻿4.2﻿ ﻿Limitations and future directions
	﻿References


