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1. Introduction 
 
The Chinook helicopter is one of the longest serving military aircraft operated by the 

Royal Air Force (RAF).  A versatile, fast transport helicopter, the Chinook can lift 

over 10 tonnes of cargo.  Boeing, through its United Kingdom Through Life Customer 

Support (UKTLCS) programme, provides maintenance and technical support for the 

RAF fleet of Chinook helicopters. Part of UKTLCS’s maintenance challenge is to 

ensure that correct parts are delivered on time at the correct location. To ensure the 

success of this process, UKTLCS employs advanced inventory planning and 

forecasting systems.   

With over 13,000 spare part components in the system for the Chinooks, the 

complexity and the scale of the supply chain management operation for UKTLCS is 

vast. For Boeing, the importance of forecasting performance cannot be overstated: 

If demand for components is systematically under-estimated, then the efficiency of 

maintenance operations may drop, which may impair Boeing’s relationship with the 

RAF even if contractual obligations are not quite violated. Boeing spends hundreds 

of millions of dollars per annum maintaining the RAF fleet of Chinooks. As such, if 

demand for components is systematically over-estimated, large amounts of capital 

are unnecessarily held up in stock.    

At the time of this research project, UKTLCS exclusively used Service 

Planning and Optimization (SPO) to forecast demand for components. SPO- a 

proprietary intelligent system developed by MCA solutions- employs a variety of 

forecasting techniques including specific adapted modelling processes and variants 

of well-known time series techniques. Although SPO had proved capable of 

delivering forecast projections, this research arose as a result of senior management 

at Boeing being interested in exploring changes to SPO that could lead to enhancing 

forecasting performance and, ultimately, better control of inventory costs.  

2. The Study 
 
Substantial research has already established the need for accuracy in military 

inventory management (Michaels 1999, Tysseland 2009, Johnsen et al. 2009) and 

the role forecasting accuracy plays in this process (Ho and Ireland 1993, 
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Venkataraman and Nathan 1999, Clark 2005, Graman and Sanders 2009). Based on 

this study which advances on earlier published work by the authors (see Downing et 

al. 2011), an examination was conducted on real-life data within the supply chain 

environment of UKTLCS’s Chinook maintenance programme. Concentrating on a 

selected number Chinook components, this paper aims to evaluate and recommend 

new forecasting techniques specific to UKTLCS’s Chinook maintenance programme. 

Specifically, this paper seeks to advance an earlier outline study by the authors by 

seeking answers to three research questions not addressed in earlier studies 

(Downing et al. 2011) by the authors:  

 

 What assessment approaches exist to support the evaluation of inventory 

planning and forecasting support systems? 

 How effective is the SPO™ forecasting support system in supporting the 

Chinook spare components maintenance programme? 

 Can a more effective forecasting system be developed to support the UK 

Chinook spare components maintenance programme? 

 

The remainder of this paper is divided into four sections. Following this 

introduction, the research methodology is presented. This followed by an 

exploration of patterns in the selected component demand time series’. In section 5, 

the forecasting performance of the SPO system is evaluated prior to exploring 

enhancements to this system in section 6. In the final section of the paper, the 

research project conclusions are outlined. 

 

3. Research Methodology 

3.1. Data Collection 

 
Data for this study were obtained through Participant Observation and Action 

Research (Argyris and Schon 1991). This approach was possible as access was 

provided to the principal author by UKTLCS. The researchers were also given access 

to spread sheets containing component demand and cost data over 29 calendar 
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months. Much of the initial processing of the data involved merging the component 

demand and cost datasets. Once merged, the data were discovered to have many 

months of negative values. Such ‘negative’ values were, as was explained by the 

UKTLCS management, situations where components had been moved from one 

location to another in the event of a stock-out at the end location. Since such 

negative values did not represent actual demand at the initial location, in months 

were a location had negative demand recorded, we re-set the demand value to zero. 

The final data required for the study were earlier forecasts of component demand. 

However, as these data were not stored by UKTLCS, each of the forecasts had to be 

extracted individually for each of the selected components and analysed through a 

Visual Basic for Applications (VBA) based modelling tool. Although slightly tedious, 

the information and insight from these data was critical to the development of an 

understanding of previous forecasting performance. 

3.2. Selection of Spare Part Components for Evaluation 

 A decision was made at the outset that the study would focus on the components 

with the most influence on the maintenance expenditure of UKTLCS.  This decision 

was taken for two reasons: First it allowed us to fulfil Boeing’s required key outcome 

from the project, namely to explore ways to optimise stock holding costs by 

improving forecasting performance. Second, it provided a critical focus for our 

research, potentially leading to greater, deeper insight.  

 

Based on advice from specialists working on the UKTLCS maintenance programme 

(Karr 1958, Denicoff et al. 1960), a total of 92 components were selected from the 

initial list of 13,000 components. The 92 components can be divided into two 

classes: ‘cost drivers’ and ‘consumables’.   A cost driver can be defined as a reparable 

component with a high annual expenditure. For the purpose of this paper, annual 

expenditure per cost driver was calculated as the total yearly forecast * unit cost. In 

total over 40 types of cost drivers were identified, equating to a little over $200 

million of forecasted investment. A consumable can be defined as a component 

that, once stripped from the aircraft, cannot be repaired and as a result is scrapped. 

Controlling spending on consumables is just important as it is for the cost drivers 
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because once consumed, the amount spent on a consumable must be written off. 

For this research, the annual spend per consumable was calculated as the unit 

cost*total yearly replenishment rate. The top 15 highest consumables amounted to 

a forecast investment of over $10 million. Though only a very small proportion of 

the total number of components, the contribution to total maintenance costs of the 

92 selected components is disproportionately significant, a not unusual inequality in 

cost when considering the distribution of costs for aircraft components (e.g. 

Kennedy et al, 2002)  

4. Evaluation of Component Demand Time Series’ 
 
To explore how, for each of the 92 components, demand varies over time, we 

plotted graphs of each individual time series and conducted univariate analysis 

(Huberty and Morris 1989, Viertl 2006). The graphs revealed a broad range of 

patterns. Figure 1 shows some examples of the demand patterns. Given that 

components perform different, specialised functions in the helicopter, we should 

expect the observed deviations in demand patterns. Occasionally, spikes in demand 

are evident. It is our understanding that such spikes may be related to how the 

helicopters are employed.  

 

Even at 92, the number of items to be forecast is large. In these situations, the 

literature suggests that the items should be categorised by demand based on 

factors considered important in forecasting performance. The key factors include 

the frequency of (non-zero) demand; and the level and variation of the demand 

value (Williams 1984; Syntetos et al 2005; Boylan et al 2008). With this is mind, the 

next step in the data evaluation was to explore if commonalities exist in the patterns 

of demand by examining the univariate statistics across all 92 components. The 

statistical summaries of interest are presented in table 1. Though the average 

demand across the components was low (≈ 3), the dispersion in mean demand was 

large, ranging from very low (nearly zero) to about 35.  
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Figure 1 – Sample Component Demand (Units) 

 

 

 

Table 1: Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Mean 92 .0 34.8 3.371 6.4407 

Range 92 1 157 14.25 25.584 
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Table 1: Descriptive Statistics 

Median 92 0 28 2.33 5.221 

Standard Deviation 92 .18 30.1 3.6 5.9 

Variance 92 0.034 915.7 47.5 159.3 

% Zeros 92 0% 97% 50% 28.5% 

Skewness 92 0.2 5.4 1.987 1.2 

Coefficient of Variation 92 0.6 5.4 1.7 1.06 

Square Coefficient of Variation 92 .4 29.0 4.1 6.0 

Mean Inter-Demand Interval 92 1.0 29.0 4.0 5.8 

 

All but three of the 92 components had experienced periods of no demand as shown 

in Figure 3. In fact, on average, 50% of the time, there was no demand for 

components. Despite the afore-mentioned negative demand values, demand 

cannot be less than zero. Given this clamping effect on the left-tail of the demand 

distribution, and given that zero demand was frequently observed (figure 3), it is not 

surprising that all the distributions of demand were asymmetrical, exhibiting right 

skew (all values skewness were positive). In figure 4, we have plotted skewness 

against the percentage of zeros (i.e. periods of no demand) observed for the 92 

components and labelled each data point with the mean demand value of the 

component. Roughly, the components cluster around a South-West to North-East 

diagonal: as the percentage of zeros increased, so did the skewness; and both were 

concurrent with decreasing mean demand. The majority of the distributions of 

demand values were leptokurtic, indicating fat tails. This suggests that the high 

variation in demand might be due to frequently occurring extreme values in both 

tails: on the one hand, frequently there was no demand; on the other hand, when 

demand did occur the value was, frequently, significantly dispersed from zero.  
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In table 1, it can be seen that Demand was often infrequent (as indicated by the 

mean inter-demand interval) and that when demand did occur, values varied widely 

(as indicated by the dispersion statistics). Thus, vis-à-vis the lead time, demand 

patterns could, generally, be considered non-normal. Principally, given non-normal 

demand, the forecasting literature (Syntetos and Boylan 2005; Boylan et al 2008.) 

suggests that the co-variation of the mean inter-demand interval and the square of 

the coefficient of variation (CV2) be used to categorise demand for multiple time-

series’ and to employ the forecasting techniques that have been shown to perform 

well for the category of demand so identified. It is possible however that the value of 

the coefficient of variation (CV) of a time series is affected by an underlying trend or 

seasonality pattern so that a randomised pattern of high and low demand can have 

a CV value of similar magnitude to another series that exhibits seasonal or trend 

characteristics. Wallström (2009) suggests that, as a non-scientific rule of thumb, if 

the discrepancy between the CV and then Mean Absolute Change Scaled (MACs5) is 

5 There is a confusion in Wallström (2009) in that he uses the same acronym, i.e. MACs to define both 
Mean Average Change scaled and Mean Absolute Change Rescaled. The MACs calculation we use is 
the Mean Absolute change Rescaled, Equation 2.29  on page 27 in Wallström (2009) 
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larger than 10-15%, then it can be concluded that there is some kind of non-random 

sequence in the time series or that the time is series is dominated by a small number 

of modal values. In figure 4, we plot, for each component, the mean inter-demand 

interval versus the CV2. Each data point in figure 5 is labelled by the discrepancy (as 

a percentage) between the CV value and MACs values. Following Syntetos et al 

(2005), we have also categorised each time series as ‘Erratic’, ‘Lumpy’, ‘Smooth’ or 

‘Intermittent’.   

 

Based on Syntetos et al (2005), therefore, the majority of the times series’ could be 

classified as ‘lumpy’. A fair number of them were ‘erratic’, a few were ‘smooth’ and 

none were ‘intermittent’. We can observe, in figure 5, a general pattern in the values 

of the discrepancy between the CV and MACs values: it decreased with higher values 

of both the CV and Mean Inter-demand interval. However, the majority of the 

discrepancies were at least 10% and so, under Wallström’s (2009) rule of thumb, it 

can be concluded that generally the observed CV values were due to some kind of 

pattern (such as the dominance of the time series by a few frequently occurring 

values) in the data as opposed to random variation.  
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Depending on their function in the helicopter, components can be categorised into 

six types (1 to 6). The RAF fleet of helicopters operate from four locations (A, B, C 

and D). Both the type of component and location may influence the demand 

pattern. Therefore we investigated whether visually discernable clusters of 

components by type/location existed in the univariate statistics. Generally, we were 

not able to identify clustering by type/location on the univariate statistics. There 

was one exception: We found that type 2 components generally exhibited higher 

mean demand levels than other types (figure 6).  

 10 

Advanced inventory planning and forecasting solutions: a case study of the UKTLCS Chinook maintenance programme



 

Besides exploring the variation of the univariate statistics across the 92 components 

and whether the type of component and location were influential, we also explored 

if (i) large inter-demand intervals preceded by unusually large  demand values; and 

(ii) If flying hours and average demand were concomitant. In both cases, we were 

not able to observe a clear pattern indicative of such relationships (Figures 7 and 8, 

below.)  

Figure 7 Demand Versus Inter Demand
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Overall, we concluded from the above evaluation of the data that the 

demand for the selected 92 will be difficult to forecast and may not be accurately 

forecasted if particular attention is not paid to the non-normality of the patterns, 

particularly the combined effects of the amount of variation in the values and inter-

demand intervals. Below we explore the performance of the SPO forecasts, keeping 

in mind these patterns in demand.   

 

5. SPO™ Forecasting Performance Evaluation 

5.1. Overview of the SPO system  

From a supply chain perspective, UKTLCS’s goal is to ensure that the right 

components are delivered to the right locations, in sufficient quantities, on time. 

Currently Boeing UKTLCS outperforms all contractual service requirements, whilst 

performing specialist over and above tasks (O & A) on the side. Given the enormous 

number of components, the diverse demand patterns, the numerous locations and 

types of components; UKTLC, necessarily, uses an expert system to successfully 

manage the supply chain operation. The system used is Service Planning & 

Optimisation (SPO) by MCA Solutions.  
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The SPO Product Suite is an advanced inventory planning and forecasting solution 

that allows UKTLCS to monitor, modify and optimise the inventory level of mission-

critical materials (MCA Solutions). Using a series of integrated graphical user 

interfaces (GUI’s), SPO provides a number of solution modules including strategy, 

ERP and CRM. Demand for contract (or non-contract) components can be 

forecasted under the strategy module. To begin forecasting, the user first selects 

the appropriate component number from the GUI. From here s/he can assess the 

component’s demand history, change the forecasting parameters and see the 

projected forecasts for the next 12 months. Table 2 below presents a summary of 

the forecasting techniques available in SPO’s strategy module.  

 

Table 2 Forecasting Techniques Available in SPO (Source: MCA Solutions) 

Forecasting 

Technique 

Description and Usage at the time of this research 

Moving 

Average  

Provides a simple way to smooth historical demand information. The 

default moving average is 6. 

Constant  A variant of the exponential smoothing method with a damped trend. 

It uses the parameter α [0 ≤α ≤ 1] to smooth historical demand. 

Currently, α = 0.1, the default level. 

MCA 

Smoothing  

A variant of the single exponential smoothing method that is tailored 

towards intermittent demand time series. It can be used for all types 

of time series, except where there is trend or seasonality. Smoothing 

is based on the parameterα . The default level of α  is 0.1, but the 

level has been changed, by management, within the last 12 months to 

0.01.  

Trend  A variant of the double exponential smoothing method which takes 

into account a trend. The parameter α  is used to smooth the time 

series, with parametersβ  and φ  to dampen the effects of the trend 

on the forecast. The default and the current level of the parameters 

are 0.1, 0.05, 0.8 forα , β  andφ , respectively. 

Seasonality  Captures observed seasonal effects within the data using the 
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Table 2 Forecasting Techniques Available in SPO (Source: MCA Solutions) 

parameter α  to smooth and γ to allow for the seasonal variation. 

The current and default values for α  and γ are 0.1 and 0.6, 

respectively. 

Trend 

Seasonality  

Incorporates both a trend and a seasonal effect in the data using the 

parametersα , β , φ andγ . The default levels of these parameters 

are 0.1, 0.05, 0.8 and 0.6, respectively.  

MCBF/MTBF  Uses Mean Causal Between Failure (MCBF) divided by Mean Time 

Between Failure (MTBF) to compute a forecast. MTBF forecast for a 

component is based on the contract population history and total 

contract demand in the historical periods used; it places a higher 

weight on the most recent demand levels. Forecasted MCBF for a 

component is based on contract causal history and the total contract 

demand in the periods of history used. The MCBF/MTBF forecast for 

each location-component combination is used to generate a causal 

forecast. 

MCA 

Composite  

Blends a time series forecast with MCBF forecast such 

that:

)/(*)1()(* stMTBFForecaMCBFForecastTimeSeries
orecastCompositeF

γγ −+
=

  

The nature of the equation means that an ever increasing emphasis is 

created as γ increases. Suggested values for γ  are between 0.25-0.5. 

Manual 

Override 

SPO allows the user to input her/his own forecasting technique 

projections. 

Replacement  Using the replacement rate forecast based on the parent 

component’s usage. If certain conditions are met, then the 

replacement forecast for the child is generated as a sum of all its 

parents local usage multiplied by the corresponding replacement 

rates . 
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5.2. Evaluation of the Existing SPO Forecasting Performance 

To explore the possibility of developing a new forecasting strategy, we 

conducted a diagnosis of UKTLCS’s existing forecasting system. Of the SPO 

forecasting techniques shown in table 2, at the time of this research, the MCA 

smoothing forecasting method was used for most of the UKTLCS components. Very 

little is known about the MCA smoothing forecasts as the equations of the 

technique have never been revealed. However, we can make assumptions about its 

likely formulation. The user guide of SPO has suggested that MCA Smoothing is a 

variant of Simple Exponential Smoothing (SES), and from investigation of the 

nature of the technique, the forecast value does not update in periods of zero 

demand. Our initial assumption wasthat MCA Smoothing was most likely to be 

using Croston’s (1972) methodology. To test this assumption we compared, for all 

the 49 series for which MCA Smoothing was used, the forecasting errors obtained 

using MCA Smoothing against those obtained using Croston’s Method based on the 

same smoothing alpha value of 0.01. Figure 9 shows a plot of the Mean (signed) 

Error obtained from each series for the two methods. It can be seen that that 

forecasting accuracy are not identical. However, the patterns of forecasting 

accuracy across the series are similar, with both methods tending to over-estimate 

demand.  Thus, while the results failed to confirm that the MCA Smoothing 

technique is indeed Croston’s, they did appear to indicate that the formulation  of 

MCA Smoothing is very similar in manner to Croston’s.  

 15 

Advanced inventory planning and forecasting solutions: a case study of the UKTLCS Chinook maintenance programme



 

 

By creating a VBA based modelling tool that allowed efficient processing of 

key parameters, we analysed the forecasting performance of the SPO system. 

There exist a large number of accuracy measures for assessing forecasting 

techniques in literature. Not all are appropriate for assessing forecasts in 

intermittent demand situations (Syntetos and Boylan 2005). We based our selection 

of accuracy measures on two criteria: (i) simple and intuitive so that it can be easily 

communicated to non-experts in forecasting such as the majority of the decision-

taking senior managers at Boeing; and (ii) appropriate for use with intermittent 

data. To assess the accuracy of forecasts for each individual time-series, we adopted 

the use of the Mean Square Error (MSE), the calculation of which simultaneously 

prevents cancellation of over-estimation and under-estimation errors and imposes 

larger penalties on large errors. MSE, while not the most straightforward in its 

interpretation, is the most closely related to the variance, which is important for 

stock control purposes. To compare forecasting performance across groups (by 
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forecasting method/strategy) of time series’, we elected to use the Mean (signed) 

Error (ME) which has been shown not to be strongly scale dependent (Syntetos and 

Boylan 2005). Both the MSE and ME satisfy our twin criteria for choice of accuracy 

measures. The results were as follows:  

Table 3 SPO Performance Mean Errors by Forecasting Method 

Accuracy Measure Mean Error (ME) Mean Square Error (MSE) 

Descriptive Statistics FH/MCBF   
MCA 
Smoothing 

FH/MCBF   
MCA 
Smoothing 

Number of  Time Series'6 40 49 40 49 

Mean -1.8 -0.6 101.2 39.1 

5% Trimmed Mean -0.9 -0.5 37.3 10.2 

Median -0.4 -0.3 4.7 1.0 

Variance 28.2 6.6 112950.7 30493.9 

Std. Deviation 5.3 2.6 336.1 174.6 

Minimum -32.0 -10.3 0.0 0.0 

Maximum 0.7 11.1 1794.9 1205.4 

Range 32.8 21.4 1794.8 1205.4 

Interquartile Range 1.1 0.7 13.8 5.1 

Skewness -5.1 0.4 4.1 6.5 

Kurtosis 28.4 12.9 17.8 43.8 

 

Table 3 presents summary statistics for the ME and MSE values of the 

component time series by SPO forecasting method. By inspection of the ME 

summaries, it can be seen that, overall, the MCA smoothing method performed 

better than other forecasting techniques7 such as the Mean Causal Between Failure 

and Mean Time Between Failure (MCBF & MTBF) methods. The performance of the 

MCA smoothing forecasts was also more consistent, less variable. Both methods 

tended to over-estimate demand. Indeed, inspection of individual time series’ errors 

shows that often demand was over-estimated by as much as 100%, sometimes 

hundreds of percentages over. Croston’s (1972) has been shown to be biased so that 

it tends to over-estimate demand (Syntetos and Boylan 2001). Therefore, the 

pervasiveness of over-estimation in the MCA smoothing based forecasts lends 

6Items 69, 79 and 83 were excluded as we were not able to establish with exactitude the forecasting 
method that been used  
7 Based on MCBF and flying hours 
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support to our supposition that the MCA smoothing method is based on Croston’s 

original formulation.  

Next, to gain deeper insight into when the MCA smoothing method 

performs very well or very badly, we inspected its performance on individual time 

series’. We took samples of the worst and best performing items (tables 4 and 5).  

Noteworthy among the worst performing items is item 88, which showed 

substantial inaccuracy. This is likely to be due to the lumpy nature of the demand 

pattern. A series of zero demand months were followed by a month of 157 

demanded units, followed again by zero demand. Although not many forecasting 

techniques will be able to deal with this type of time series, the underlying method 

of MCA Smoothing performs particularly poorly. This suggests the model is not able 

to react to changing time series patterns. At the other end of the scale, the items 

where the MCA smoothing method performed better were either the patterns with 

one dominating value of a very low value or time series with low intermittence 

(mean inter-demand interval below 1.5). Generally, the results from the best 

performing items showed no anomalies at the magnitude exhibited by the poor 

performing items. Overall, the inspection of individual time series’ suggests that the 

magnitude of the average inter-demand interval and the presence of outliers could 

both be influential on forecasting performance.  

Table 4 A selection of worst performing items 

Item Location Mean High Standard. 

Deviation 

Zero 

Frequency 

Skewness Average Inter-

Demand Interval 

88 A 11.41 157 29.70 17 4.52 2.42 

29 B 0.72 3 1.03 17 1.23 2.42 

45 B 1.07 7 1.60 14 2.29 1.93 

57 B 1.79 11 2.30 10 2.47 1.53 

63 B 1.14 4 1.13 10 0.84 1.53 

13 C 0.45 3 0.83 21 1.80 3.63 

54 C 3.76 16 3.99 7 1.33 1.32 

62 C 6.93 22 5.22 2 0.91 1.07 

66 C 0.45 2 0.69 19 1.27 2.90 

 

Table 5. A selection of best performing items 
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Item Location Mean High Standard. 

Deviation 

Zero 

Frequency 

Skewness Average Inter-

Demand Interval 

10 B 1.00 3 1.04 11 0.83 1.61 

49 B 0.35 2 0.65 17 1.73 3.83 

72 B 1.79 6 1.72 9 0.93 1.45 

89 B 18.03 40 12.79 2 0.34 1.07 

24 C 0.59 3 0.95 19 1.50 2.90 

44 C 0.31 3 0.66 22 2.77 4.14 

67 C 7.93 27 7.22 1 1.35 1.04 

 

5.3. Impact of MCA smoothing alpha parameter on performance 

A decision was made by UKTLCS management to reduce the value of alpha in MCA 

smoothing from the recommended 0.1 value to 0.01. This, they reasoned, would 

calm down fluctuations in the forecasted values and in return lower the effect on the 

spiking target stock level (TSL). A comparison between the forecast values of 0.1 

and 0.01 was undertaken to investigate any detriment on performance as a result of 

the change in parameter value.  

 

Using another VBA based modelling tool, performance of the MCA smoothing 

method with the two separate alpha values was compared against the performance 

of a simple forecasting technique (in this case Simple Exponential Smoothing). The 

choice to adopt this approach was based on earlier work by Markland (1970), which 

suggests that forecasting the demand for military helicopter spare components is 

best conducted using exponential smoothing models. The VBA tool would then 

compare the MSE of each to look at the change in performance depending on the 

value of alpha. The results (Table 6) provided a strong indication that increasing the 

alpha value back towards the recommended 0.1 will increase the performance and 

in turn could generate a reduction in inventory held by UKTLCS. Theoretically, the 

lower the alpha value the more akin a total average the forecast values become, 

with older demand values having a larger bearing on the forecasts. The poorer 

forecasting accuracy (at the very low alpha value of 0.01) suggested, however, that, 

in fact, a larger smoothing constant was required to give larger importance to recent 

changes in the demand patterns.   
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Table 6.  Number of items falling into parameter categories 
Alpha Parameter Value  MSE(In) MSE(Out) 
0.1 69 56 
0.01 23 36 

 
5.4. Impact of flying hours (and other factors) on demand  

At location D, as part of the MCBF/MTBF forecasting technique, a causal linear 

relationship is assumed between flying hours and demand. In theory, increase in 

flying hours should increase the service requirements of the Chinooks, thus 

increasing the demand for spare parts. To determine if a significant relationship 

does exist between flying hours, operational temperature8 and demand, we 

examined the correlation coefficients among the variables and conducted a linear 

regression analysis where the dependent variable was demand; and flying hours and 

operational temperature were the predictors. We found that neither flying hours nor 

operational temperature was significantly related to demand. It is questionable, 

then, that causal forecasts are applied in these circumstances.  

5.5. Cluster analysis of choosing forecasting method based on location 

When choosing the appropriate SPO forecasting method, the location of the 

Chinooks is thought important so that, for example, at location D, MCBF/MTBF 

techniques are used because they are considered most appropriate for that location. 

In principle, this rationale is sound. The location determines the usage pattern of the 

Chinooks, which can be expected to impact on service requirements and demand for 

components. However, the evidence from the field appears to suggest forecasting 

performance is poor as a result of this choice, with asset managers frequently 

reporting ‘over-buying’. To explore if demand patterns for the spare components 

are similar based on location so that it is justifiable to select forecasting techniques 

based on location, we conducted cluster analysis of components based on demand 

in the statistical package PASW17 (formerly SPSS) as follows:  

 

8 Maintenance experts believe temperature changes affect the service needs of the Chinook 
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• Step 1- We calculated the proximities between all 13, 000 components using 

‘seuclid’9 as the distance metric in the proximities syntax. The proximities 

values were then summed for each component to give a total square 

Euclidean distance- an overall measure of how dissimilar each component is 

from all the other UKTLCS components.  

• Step 2 –We then ranked the components at each location by (ascending) size 

of the total square Euclidean distance. From the ranked-component lists, we 

selected the first 400 at location D and 200 from each of other three 

locations, giving a total of 1000 components for analysis. 1000 is the 

maximum number of cases the cluster algorithm in PASW17 can process. 

• Step 3 – Using the proximities matrix for the 1000 selected components as 

input, we conducted hierarchical cluster analysis, starting with the simplest 

two cluster solution and successively incrementing the number of clusters to 

10.  

The cluster analysis results were inconclusive: The primitive, two cluster, 

solution showed that the majority of components from location D form one cluster. 

Unfortunately, however, many of the components from location C also appeared in 

the same cluster as location D. When we increased the number of clusters, we were 

still not able to see a clear separation of the clusters for components from locations 

C and D. Overall, therefore, these results suggest that the demand patterns from 

both locations are too similar (or not dissimilar enough) to be separated, so that 

rather than location, per se, the commonalities may be due to other factors. This in 

turn suggests that it may be erroneous to place too much weight on the location 

criterion when choosing forecasting methods.  

5.6. A Monte Carlo simulation approach to parameter estimation 

To study how, for each of the 92 time series’, forecasting performance may vary 

with the parameters used in the forecasting method, we simulated the demand for 

each of the time series based on its historical demand probability distribution. For 

each component, we simulated the demand for 18 periods, and then calculated the 

9 This calculated the square of the Euclidean distance between any two component demand values as 
the as the measure of proximity between them. The reason we squared the Euclidean distance was to 
magnify the dissimilarities between components, giving us the best chance to extract clear clusters 
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mean square error for forecast of the simulated demand values based on (i) 

Croston’s (Croston 1972)10 and (ii) Simple Exponential Smoothing (SES) (Gardner 

2006, Billah et al. 2006). Each simulation was then replicated 10, 000 times and the 

average MSE for both forecasting methods calculated for each component. This 

process was then repeated for different parameter values in both forecasting 

methods. 

 

The simulation results were insightful. When the SES forecasting method was used, 

the variation in the average MSE values suggests that the optimal alpha value is in 

the range 0.1-0.3, and close to a value of 0.2. Given that this optimal alpha range is 

fairly narrow, using SES with a selected alpha setting within the optimal range, say 

alpha =0.2, could therefore lead to sufficient forecasting performance.  

 

10 For the purpose of this study the two parameters for demand size and demand interval will be treated 
as the same. 
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Figure 10 MSE Curves of Monte Carlo Results for Croston’s Method 
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However, as suggested before, the MCA smoothing method is most likely a variant 

of Croston's intermittent demand method, making the exploration of the 

performance of Croston’s method more important. Figure 10 shows the average 

MSE results obtained using Croston’s method with different alpha values. The 

optimal range (0-0.3) of parameter values for Croston’s was wider than it was for 

SES. However, the turning point in the curve is around the same value, i.e. 0.2. 

Outside of the suggested optimal range, MSE values often increased substantially, 

showing a need to set alpha values within the optimum range. Exploring the 

distribution of the univariate statistics of interest with the MSE values based on 

Croston’s revealed that when the skewness was large, the results tended to suggest 

that the parameter should be set as low as possible, even at a 0-0.1 level.  
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Overall, the differences in performance between Croston’s and SES were marginal. 

SES performed better with very slow moving items, whilst Croston’s performed 

better with faster moving items with some intermittence. 

5.7. Evaluation of SPO Forecasting performance- Summary 

In summary the results in this section provided an insight into the performance of 

the existing forecasting techniques, and suggested ways in which SPO performance 

could be enhanced. First, the evidence suggests that setting the MCA smoothing 

parameter at 0.01 lessens forecasting performance. Second, while using a single 

parameter value may be sufficient to obtain good forecasting performance, 

forecasting may be improved by dynamically fine tuning the parameters for each 

component around the indicated optimum. Third and fourth, there appears no 

justification to base forecasting technique entirely on the location of the 

components, nor is there significant statistical evidence to support causal 

forecasting based on flying hours or other presumed important factors such as 

operational temperature.  

6. Development of Enhanced Forecasting Models 
 
Having explored the limitations of existing forecasts, the next stage of the study was 

to explore possible enhancements to the SPO forecasting. VBA was used to create a 

fully dynamic model that can compare forecasting techniques. Using the imbedded 

excel solver, the tool can also attempt to find the optimum parameters for each 

forecasting method for each time series based on the MSE. By inputting demand 

data, month and flight hours, the user can then change the settings (apart from the 

number of months) to suit their requirements. From here the tool does the rest. The 

time series data are put through each of the forecasting techniques, located in the 

relevant tabs; and the model fit statistics and all the forecasted projections are 

displayed back onto the front screen11. The multiple model button is an add-on, for 

the purpose of creating forecasts on the large scale for a large number of 

components. Using multiple models however has its drawbacks in that the user may 

11 The Holt Winters Multiplicative Method will only work with non-zero data. The system will 
recognise this fact and produce no forecast statistic results.  
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not be able to assess the individual time series autocorrelations and graphical 

patterns very easily. Figure 11demonstrates the sample VBA coding, showing how 

the forecast dates12 can be incremented. 

 

Figure 11 Example VBA Coding Dynamic Forecasting Model 

 

 

In section 5.6, it was suggested that when it comes to selecting the 

forecasting parameters, two strategies could be adopted: (i) to use a generic fixed 

(non-optimised) parameter value in all forecasts or (ii) to use optimised parameter 

 

'Increments Forecast Date into Cells 
 

With Sheets("LES") 
 

Range("K9").Value = DateAdd("m", 1, .Range("A" & _ 
Sheets("Data_Series_Input").Range("Num_Months").Value + 8).Value) 

 
For count = 1 To Sheets("Data_Series_Input").Range("Forecast_Period").Value 

 
.Range("L" & count + 8).Value = count 

 
If count = Sheets("Data_Series_Input").Range("Forecast_Period").Value Then 

 
Else 

 
.Range("K" & count + 9).Value = DateAdd("m", 1, .Range("K" & count + 8).Value) 

 
End If 

 
Next count 

 
'********************************************************** 

‘Sets the Range of the Holdout and Test Sets 
 

Set Rnge = .Range("H" & Sheets("Data_Series_Input").Range("Num_Months").Value + 9 _ 
- Sheets("Data_Series_Input").Range("Hold").Value, "H" & _ 

Sheets("Data_Series_Input").Range("Num_Months").Value + 8) 
 

Rnge.Name = "HoldOut" 
 

Set Rnge = .Range("H9", "H" & Sheets("Data_Series_Input").Range("Num_Months").Value + 
9 -  Sheets("Data_Series_Input").Range("Hold").Value - 1) 

 
Rnge.Name = "Test" 

 
.Range("MSE").Formula = "=AVERAGE(HoldOut)" 

Range("MSE IN") Formula = "=AVERAGE(Test)" 
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values. Using the VBA tool both strategies were explored. Although it has been 

claimed that adaptive models can learn and can therefore forecast more accurately, 

this claim is not supported by empirical evidence (Makridakis et al. 1982, Carmo et 

al. 2004). The non-optimised models were run with all parameter values set at a 

default level of 0.1, normally the recommended level in this type of demand. All 

models were run with a hold out period of 20 months and nine months of 

initialisation, with the residuals of each forecast being examined (Figure 12). 

 

Figure 12 An example plot of residual for a selected forecasting technique 
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6.1. Results: Optimised parameter Models 
The optimised parameter estimation models gave an indication of the best fitting 

model for each time series, based on minimising the MSE (Out). The results were as 

shown in Table 6, indicating the number of components for which each forecasting 

method was indicated as the best fitting.  

Table 7 Results of the optimised parameter estimations 

Forecast Type Number of 
Time Series’ 

Av. Demand Av. Theil Av. MAPE Av. Zero 

Naïve 5 7.20 - 3.49% 24.80 
SES 4 22.25 0.858 3.63% 15.50 
LES 1 12.00 0.791 2.98% 19.00 
MA(3) 1 29.00 0.661 3.86% 14.00 
MA(6) 2 11.00 0.887 5.94% 20.50 
MA(9) 3 154.33 0.849 3.95% 4.33 
MA(12) 29 30.24 0.950 7.33% 13.55 
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Croston's 8 144.88 0.650 3.41% 10.25 
SBA Croston's 35 126.23 0.815 4.43% 15.06 
Modified Croston's 4 39.50 0.815 3.88% 12.00 
HW Additive 0 - - - - 
HW Multiplicative 0 - - - - 

 

On the whole, the results tended to go along with expectations. Often, an 

underlying Croston (1972) method came out on top as the best fitting model. 

However, it was not Croston's method itself but the bias reduction method of Syntetos 

and Boylan (2005, 2006), denoted SBA in table 7, which produced the better results. 

This suggests that the overestimation problems, outlined by Syntetos and Boylan 

(2005, 2006), were overcome for the components for which SBA is indicated as the 

best fitting model. Components which suggested the use of a Naive forecast were 

often those with early demand followed by an extended period of no demand. When 

using the Croston’s (1972) method with this type of data, another update of the 

demand was not realised over the observed life of the component. This generally 

meant an overestimation of the overall demand later on. In contrast, using a Naive 

forecast, an update in the forecasted demand was created straight after the 

demand realisation of the previous demand magnitude.  

 

Expectations of good results for SES were slightly dampened; however, in general, it 

did perform well in each of the time series. Its versatility therefore represents its key 

benefit, but with an abundance of dedicated tools, it should only be considered 

when the number of series is large and time is short.   

 

The surprising results of the optimised parameter models came from the number of 

series for which the best fitting model was a 12-month Moving Average of [MA (12)]. 

However, with the highest average Mean Percentage Error (MAPE), this, in fact, 

suggests difficulties in trying to fit forecasts to that type of series. Many of the 

components which suggest the use of MA (12) have very similar time series 

characteristics. Figure 13 gives an indication of the type of time series. 

 

Figure 13 Typical time series fit with MA(12) 
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Many of the patterns show higher demand values in earlier months (12-18 old). This 

suggests that intermittent modelling was not necessarily the best method when 

demand values have decreased. We observed that outliers (and the length of the 

series) may have a significant effect on the results produced. To test this proposition 

four items which produced a MA(12) forecasting method were selected and 

processed in finer detail. Using a judgement approach on the series length and 

windsorisation to detect outliers, the new and old methods were compared13. The 

results (Table 8) give an indication that being dynamic with the forecasts will 

increase performance and often decrease holding costs. All the MSE (Out) values 

decreased significantly and dedicated intermittent modelling techniques proved 

very good candidates for forecasting the time series’. As such, the use of an outlier 

detection method can be a big factor in increasing the accuracy of the results. 

 

Table 8 Comparison of items, Pre & Post Manipulation 

 Item 18 Item 54 Item 60 Item 61 
Time Series Length 15 19 17 19 
Outlier Detection Yes No Yes No 
Original Method MA(12) MA(12) MA(12) MA(12) 
MSE (Out) Original 3.38 13.33 16.44 44.00 
Forecast 1.67 3.33 4.08 4.00 
New Method MA(12) Croston's SES SBA 
MSE (Out) New 1.58 12.09 9.56 6.54 
Forecast 1.58 3.06 3.16 4.02 
Difference -0.09 -0.27 -0.92 +0.02 
Percent Difference -5.4% -8.0% -22.5% +0.5% 

 

13 Due to the inevitable decrease in time series size, seasonality methods were not compared as the 
best fitting modelling methodologies.  
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It is interesting to note that the parameters were often set, by excel solver, at 

very conflicting values. In the case of second parameter estimations which fit trends 

in the data, we mostly saw beta values close to zero. This means that, based on the 

best MSE (Out), excel solver was trying to suggest there were limited cyclical trends. 

This suggestion is backed up by the fact that very few models were fit with a beta 

trend factor. 

6.2. Results: Non-optimised parameter Models 
 
Table 9 shows the summary of the results when the models were run with a generic 

non-optimised parameter value of 0.1. Compared to the results of the optimised 

parameter models (table 8), it can be seen that a shift from intermittent and 

exponential smoothing methods has occurred, with many of the time series’ fitting 

a moving average model. However, we also observe that the average MAPE is far 

higher in the moving average models, suggesting lower accuracy when the demand 

data are fit with these models. 

 

Table 9. Results of the non-optimised parameter estimations 

Forecast Type Number of 
Time Series 

Av. Demand Av. Theil Av. MAPE Av. Zero 

Naïve 0 - - - - 
SES 1 12.00 0.831 3.45% 19.00 
LES 12 238.50 0.855 3.57% 11.08 
MA(3) 2 123.00 0.763 2.91% 6.50 
MA(6) 6 12.00 0.861 5.04% 20.17 
MA(9) 4 117.50 0.866 4.49% 8.75 
MA(12) 42 26.78 1.008 8.84% 14.17 
Croston's 0 - - - - 
SBA Croston's 0 - - - - 
Modified Croston's 3 119.33 0.660 3.40% 8.00 
HW Additive 14 113.64 0.751 4.25% 14.07 
HW Multiplicative 8 67.88 0.841 4.97% 15.13 

 

6.3. Overview: Optimised Versus Non-Optimised Models and Original SPO Forecasts 
 

In general, the intermittent demand models worked well when parameters 

are both optimised and non-optimised. Instead of the Croston’s method however, it 

is the revised version of this, the SBA model, which performed best overall. With 
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non-optimised parameters, for the majority of the time series’, the best fitting 

models were moving average forecasting techniques, but with less accuracy.  

 

Next we compared how well the optimised models perform with respect to the 

forecasts based on the existing SPO system. Table 10 shows the summary statistics 

of the ME values across the 89 time series that we were able to compare.  

 

Table 10 A comparison of Enhanced (Optimised parameters) models with Original 

SPO Forecasts 

Location Summary Statistic Enhanced (optimised 
parameters) 

Existing SPO 
Forecasts 

All locations (N = 89*) Mean -0.25 -1.12 
Std. Deviation 1.03 4.06 

A (N = 8) Mean 0.44 0.09 
Std. Deviation 1.89 5.76 

B (N = 2) Mean -1.00 -0.65 
Std. Deviation 1.41 0.50 

C (N = 39) Mean -0.39 -0.70 
Std. Deviation 1.00 1.45 

D (N = 40) Mean -0.21 -1.80 
Std. Deviation 0.76 5.31 

* As before three time series' were not included due to inability to establish the exact SPO method 
used. 

 

It can be seen in table 10 that, overall, the optimised parameter models performed 

better than the original SPO models and also exhibited less variance in accuracy 

across all time series’. Series by series, the optimised parameter models were better 

72% of the time based on ME values and 65% better based on MSE values. It is 

noteworthy that the biggest improvement in forecasting performance occurred at 

location D, the location where previously forecasts had been chosen based on 

location. As the components in the analysis were not randomly selected, we did not 

test whether the perceived superiority of the optimised parameter models over SPO 

models is statistically significant. Therefore, these results cannot be generalised to 

other situations. 

 

Overall, therefore, this comparative study suggests that minimising with respect to 

MSE can increase the ‘fit’ towards the demand pattern and it was recommended 
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that the method of optimisation be used to determine the best model in the analysis 

tool provided, which can be used as enhancement to the SPO system.  

7. Conclusions 
 
The aim of this project was to explore and recommend any enhancements to the 

SPO system that Boeing UKTLCS utilises to forecast demand for components used 

in the maintenance of Chinook helicopters on behalf of the RAF. Focussing mainly 

on the 92 components that Boeing consider most influential on maintenance cost, 

we conducted research in three parts. 

 

First, we explored the time series’ of the 92 components, individually and 

simultaneously. We uncovered diverse demand patterns. The diversity was evident 

in how intermittent demand is, in the number demanded when demand does occur 

and in the distribution of non-demand and demand periods. It is clear, as a result, 

that for Boeing, forecasting demand for components is an onerous task as the 

likelihood of misclassification when identifying classes of demand patterns is 

considerable. 

 

Second, we examined how well the extant SPO system performs. We examined, in 

particular, the relative merits of the criteria used to select forecasting methods, the 

forecasting methods chosen and how, when forecasting methods are chosen, the 

forecasting parameters are selected. Using cluster analysis, we looked at the use of 

location as a selection criterion. We were unable to achieve clear clusters between 

one location where location is used to select forecasting methods and another 

location where forecasting techniques are chosen independently of the location. 

While we note that this does not preclude the existence of considerable differences 

in other inventory characteristics between the two locations, the lack of cluster 

separation along with reports of 'over-buying' from asset managers about the 

former location leads to the suggestion that the location criterion ought to weigh 

less in selecting forecasting methods. Another criterion used to select forecasting 

methods is the assumption of causality of component demand by the number of 

flying hours of the Chinooks and other operational environment variables such as 
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temperature. We were not able to find a strong or even weak relationship between 

flying hours and demand. Nor did we find correlation between operational 

temperature and demand. Therefore we did not find any evidence to vindicate the 

decision to use causal forecasting for some components. Comparing the methods 

used to forecasting demand, we found that, overall, the MCA smoothing method 

which is used for most of the SPO forecasting was more accurate than other 

methods used. When we turned our attention to the selection of parameter values 

for forecasting, we were able to demonstrate that a decision taken to calm down 

forecast values by reducing the alpha value could have been inadvertently reducing 

forecasting accuracy. 

 

Beyond revealing the listed deficiencies, the evaluation of SPO also suggested ways 

in which SPO enhancements could be achieved in the third and final part of the 

project. Notably, Monte Carlo simulation indicated that the trough of the MSE 

curves using Croston’s and SES techniques, for all 92 series, occurred for a 

reasonably invariant range of forecasting parameter values. As such, it may be 

sufficient to pick a single fixed value within this optimal range of parameter values, 

as was the practice at the time of this research. Concurrently, the simulation results 

indicated that while the optimal range of parameter values was similar for all 92 

series, the actual optimal point did vary across time series. Therefore a second way 

to choose parameter values could be by working out optimal parameter values for 

each individual time series, i.e. dynamic forecasting. We created a VBA tool to 

investigate not only the relative merits of each of these approaches but also allowed 

us to indicate which, among all (both for non-intermittent and intermittent data 

situations) commonly used forecasting techniques was the best fit for each time 

series. Overall, dynamic forecasting was superior. When we inspected the best 

fitting method for each time series, the results were at once expected and 

surprising. For most time series, the best fitting method was either Croston’s itself 

or a variant of it, in particular SBA. This is as was expected given that intermittence 

was observed in the data. But in a surprising number of time series’, the less 

sophisticated SMA was a better fit. We investigated this in finer detail and came to 

the conclusion that SMA was a better fit when a time series suffered from skewness. 
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Generally, such time series’ were more difficult to forecast accurately, although in 

some of them accuracy could be increased by using outlier detection.  

 

Overall, based on averaged ME values across the time series’, it was shown that 

forecasts based on the VBA tool that aids the selection of forecasting method and 

finds the optimal parameter values for the selected method would lead to more 

accurate forecasts than those generated by the existing the SPO system. When 

‘what if analysis’ (not presented in this paper) incorporating the VBA tool results in 

the MCA system was conducted, it was shown that the overall savings in inventory 

costs of adopting the tool would run into millions of dollars. Boeing adopted the 

VBA tool as an enhancement to the SPO system.  

 

In terms of originality, this study is an enhancement to earlier outline studies 

undertaken by the authors (see Downing et al. 2011). In the first place, in this study, 

an evaluation of the component demand time series’ is undertaken. Secondly, the 

authors assessed the accuracy of forecasts for each individual time-series adopted in 

addition to conducting an inspection of the performance of individual time series’. 

The authors also as an original contribution, conducted a robust evaluation of the 

performance of the SPO forecasting system by rigorously interrogating data to 

examine (i) the performance of the SPO forecasting system beyond a proposition 

stage (ii) the impact of MCA smoothing alpha parameter on performance, (iii) how 

flying hour’s impacts on demand, and (iv) how forecasting methods could be chosen 

based on location. 

 

This project, thus, demonstrates the value of examining the demand pattern of each 

component in detail in a case such as Boeing’s UKTLCS maintenance where the 

contribution to the overall maintenance cost of components is so unequal that a 

very small proportion of components contribute the most. We envisage two ways in 

which this research can be built upon in future: one extension would be to 

investigate how based on the forecasting methods found to be best fitting for the 

92 selected components, the VBA tool can be used to set forecasting methods for 

the remainder of the 12, 000+ components in the Boeing portfolio. The second 
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would be to investigate how the results reported here can be integrated into a 

maintenance model, combining the analysis of demand for components with 

maintenance decisions both strategic and operational about buying/leasing, 

reliability, usage, repair/replacement, etc., of components. 
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Appendix A Abbreviations 

 

ARIMA Autoregressive Integrated Moving Average 

COV Covariance 

HW Holt Winter’s 

HYD/DYN Hydraulic Dynamic 

ID Inter Demand Interval 

LES Linear Exponential Smoothing 

MA Moving Average 

MK2 Mark 2  

MODCR Modified Croston’s Method 

MPE Mean Percentage Error 

MSE Mean Squared Error 

NF1 Naïve Forecast 

OBS Observations 

PB Percentage Best 

SES Simple Exponential Smoothing 
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SYNBOS Syntetos & Boylan Approximation Method 

TSL Target Stock Level 

VBA Visual Basic for Applications 
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