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Abstract Anoptimisation-based calibration technique,
using the area metric, is applied to determine the input
parameters of a stochastic earthquake-waveform sim-
ulation method. The calibration algorithm updates a
model prior, specifically an estimate of a region’s seis-
mological (source, path and site) parameters, typically
developed using waveform data, or existing models,
from a wide range of sources. In the absence of cal-
ibration, this can result in overestimates of a target
region’s ground motion variability, and in some cases,
introduce biases. The proposedmethod simultaneously
attains optimum estimates of median, range and dis-
tribution (uncertainty) of these seismological parame-
ters, and resultant ground motions, for a specific target
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region, through calibration of physically constrained
parametric models to local ground motion data. We
apply the method to Italy, a region of moderate seis-
micity, using response spectra recorded in the Euro-
pean Strong Motion (ESM) dataset. As a prior, we
utilise independent seismological models developed
using strong motion data across a wider European con-
text. The calibration obtains values of each seismolog-
ical parameter considered (such as, but not limited to,
quality factor, geometrical spreading and stress drop),
to develop a suite of optimal parameters for locally
adjusted stochastic groundmotion simulation.We con-
sider both the epistemic and aleatory variability asso-
ciated with the calibration process. We were able to
reduce the area metric (misfit) value by up to 88% for
the simulations using updated parameters, compared
to the initial prior. This framework for the calibration
and updating of seismological models can help achieve
robust and transparent regionally adjusted estimates of
ground motion, and to consider epistemic uncertainty
through correlated parameters.

Keywords Stochastic modelling · Calibration · Area
metric · Epistemic uncertainty · Aleatory uncertainty

1 Introduction

The modelling of earthquake ground motion is con-
sidered a key component within the framework of
probabilistic seismic hazard analysis (PSHA). Subse-
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quent assessments, such as risk analyses, therefore also
rely strongly on the appropriate modelling of earth-
quake ground motion, both in terms of expected shak-
ing and its variability. Often, ground motion mod-
els (GMMs), developed for predicting ground motion
intensities, are derived from data recorded in seismi-
cally active regions. The resulting GMMs, often in
the form of empirical ground motion prediction equa-
tions (GMPEs), are considered robust. However, there
are many regions that have insufficient recorded data
in the magnitude-distance range required to derive
native models without extrapolation. To overcome this
lack of data requires the adaption of GMMs devel-
oped for data-rich regions (the host) to the seismolog-
ical environment of the data-poor region. Such adjust-
ments are computed using variousmethodologies, such
as simulation-based approaches (Atkinson and Boore
1995, 2006), the hybrid empirical approach (Campbell
2003; Pezeshk et al. 2011) and the referenced empirical
approach (Atkinson 2008).

Ground motion simulation-based approaches have
received particular attention in recent years due to
increases in computational power, and due to the attrac-
tiveness of physically based (thus, arguably more jus-
tified) methodologies for direct simulation or model
adjustment. Different simulation techniques have been
developed to estimate strong ground motion for seis-
mic hazard analysis and modelling future earthquakes.
These techniques include the stochastic simulation
approach (Hanks and McGuire 1981; Boore 1983,
2003; Beresenev and Atkinson 1997) which is char-
acterised by separating the ground motion model into
the source, path and site components of a band-limited
stochastic waveform; the composite source modelling
technique (Boatwright 1982; Anderson 2015; Atkin-
son et al. 2009) which uses the fact that an earth-
quake source is composed by several sub-events; the
empirical Green’s function technique (Somerville et al.
1991) and many other advanced rupture simulation
and wave-propagation techniques (Graves and Pitarka
2010; Olsen and Takedatsu 2015; Mai et al. 2010).
Stochastic simulations are widely used to obtain accel-
eration time series and for the development of ground
motion prediction equations (Boore 1983; Atkinson
and Boore 1995; Atkinson and Silva 2000; Atkinson
and Boore 2006). In applications such as PSHA, sim-
ulations from these stochastic processes are required
to be reliable and accurate for application in a given
(target) region (Atkinson and Boore, 1995), or even at

a specific site. Here we focus on the stochastic simula-
tions using SMSIM— ‘FORTRAN Programs for Sim-
ulating GroundMotions from Earthquakes’ introduced
by Boore (1983). This method is based on the work of
McGuire andHanks (1980), which explains the Fourier
amplitude spectrum (FAS) of a ground acceleration as
the combination of the source, path, and site effects
with a random phase spectrum. The physical consider-
ations within this approach are mainly defined through
the parametric spectrum for the source model, such as
the ω-square model, or various alternatives, and the
form of signal attenuation and signal dispersion with
distance (Boore 2003).

For reliable simulations, SMSIM, or similar sim-
ulation methods, require region-specific models of
source, path, and site parameters. These parameters
are derived from the region-specific waveform datasets
through various techniques, such as spectral decom-
position, attenuation tomography, and inversions of
Fourier spectra (Bindi and Kotha 2020; Rietbrock et al.
2013; Edwards et al. 2019). Even when considering
data-sparse regions, such approaches can be used to
develop input for simulation tools, such as SMSIM.
However, one of the biggest challenges in this case
is to justify magnitude-scaling behaviour, particularly
of the source properties: i.e. how representative are the
source parameters of small earthquakes for larger ones,
for which we have no data? A benefit of the proposed
calibration approach is that the more robust parame-
ter scaling (such as magnitude dependence) inherent in
a seismological prior developed using data from seis-
mically active regions can remain (unless data indi-
cates otherwise) in the locally re-calibrated models.
Furthermore, with the regular integration of new wave-
form data into an existing dataset, the repeated com-
putation of seismological parameters (such as stress
drop) becomes a cumbersome process. Being able to
rapidly re-calibrate seismologicalmodels (without hav-
ing to return to the analysis of individual records) for
use in simulation techniques therefore clearly provides
an advantage, particularly in dynamic systems such as
induced seismicity.

In the following, we introduce a data-driven re-
calibration algorithm to refine stochastic groundmotion
simulations, taking advantage of existing seismological
models as a prior. The algorithm is based on a valida-
tion metric known as the stochastic area metric (AM),
which happens to coincide with the Wasserstein dis-
tance in the univariate case, as elucidated in de Ange-
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lis et al. (2021). This metric was recently used by the
authors for ranking empirical ground motion models
(Sunny et al. 2021). The software to efficiently calcu-
late the metric has been made available by the authors,
see the ‘Data and resources’ section. The calibration
algorithm runs a large number of stochastic ground-
motion simulations over varying combinations of sim-
ulation parameters, computes the area metric against
the empirical data for each combination, and outputs
the combination that yields the minimum distance. As
a significant advantage over existing approaches, we
also explicitly account for the epistemic uncertainty
by generating sets of seismological parameter com-
binations, and corresponding ground motions, which
fall within a defined confidence band of the observed
data. Effectively, we, therefore, consider the inferen-
tial uncertainty in the dataset (or data subset). We con-
sider both aleatory and epistemic uncertainty involved
in the calibration process. The aleatory uncertainty
(inherent randomness) is explicitly incorporated in the
simulation model through a sigma parameter as com-
monly used in empirical ground motion models, while
the epistemic uncertainty (reducible by acquiring more
data or with better models) is accounted for by deter-
mining not only an ‘optimal’, but a suite of simu-
lation parameter combinations. Epistemic uncertainty
can arise due tomany factors. In this study, it arises from
(1) limited sample size within a specific model space
(e.g. large magnitude, short distance records), and (2)
model uncertainty because of the idealised assump-
tions made by the physics-based solver. The variabil-
ity observed between simulated and observed data is
considered aleatory uncertainty, and thus irreducible
(as defined by sigma in empirical ground motion
models).

In this study, we use 5% damped response spectral
accelerations (PSA) from Italy, along with associated
metadata, from the European Strong Motion (ESM)
database. We use the duration model of Afshari and
Stewart (2016), and the spectral decomposition results
for strong motion waveform data in Europe from Bindi
and Kotha (2020) as prior for the seismological param-
eters. The resulting simulations, using this prior, are ini-
tially analysed and compared with the observed peak
ground acceleration (PGA) data. Simulation parame-
ters are subsequently calibrated to improve the perfor-
mance of the model. We then extend the model cal-
ibration to ground motions at response spectral peri-
ods of 0.1, 0.5, 0.8, and 1s. We finally explore the

epistemic uncertainty of the calibration procedure, and
simulation-based GMMs in general. Through consid-
eration of correlated simulation parameters, we present
a period-by-period iterative approach that determines
a suite of models valid across the analysed period
range. The resulting suite of GMMs can be used to
account for epistemic uncertainty in applications such
as PSHA.

2 Data and methodology

The European StrongMotion (ESM) dataset is used for
this study. We have evaluated the flat file supplied by
them for this study (Lanzano et al. 2018). Its choice
is based on the consideration that it is the most up-
to-date dataset available for Europe. It has been devel-
oped in the framework of theEuropean projectNetwork
of European Research Infrastructures for Earthquake
Risk Assessment andMitigation (NERA) by Luzi et al.
(2016). The ESM dataset comprises data recordings
from 1077 stations, significantly expanding on its pre-
decessor, the RESORCE dataset (Akkar et al. 2014),
which included only 150 stations.We have only consid-
ered recordingswith givenVs30 values (either in situ or
estimated)— i.e. 17,218 recordings in total. Whenever
an in situ measured Vs30 was unavailable, we adopted
theVs30values from the slope proxy according toWald
and Allen (2007). The geometric mean of horizontal
PGA and PSA values are used throughout this study.
Here, we consider geopolitical boundaries as the basis
for the calibration of stochastic models, and specifi-
cally, we opted for the country Italy (country code: IT)
owing to its moderate seismicity. This offers the possi-
bility to benchmark predictions against moderate and
large events relevant to engineering applications. Our
IT region dataset consists of 11,341 recordings within
a magnitude range of 3.5 to 6.0 at epicentral distances
below 552km. The magnitude range used here is trun-
cated at Mw 6, since SMSIM relies on a point-source
assumption, with simple geometric approximations to
account for larger ruptures (Atkinson et al. 2009).How-
ever, the method can be extended for application to
larger events using a suitable finite fault stochastic
method, for instance. In a preliminary step, we simulate
the PGA values corresponding to the metadata (M, R,
depth, dip and focal mechanism) of recordings (Fig. 1)
using SMSIM and the seismological model prior, as
outlined above.
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Fig. 1 The distribution of the Italian data used in this study (before down-sampling). (a) Epicentral distance vs Mw . (b) Epicentral
distance vs PGA. (c) Mw vs PGA values

2.1 Stochastic simulations using SMSIM

SMSIM (Stochastic Method Simulation) is a set of
FORTRANprogramsbasedon the stochasticmethod to
simulate groundmotions fromgiven earthquakeparam-
eters (Boore 2003). Its essence is to limit the frequency-
band of stochastic time series to match the amplitude
spectra, on average, to a target Fourier amplitude spec-
trum (FAS). In this study, we apply the random vibra-
tion theory (Vanmarcke and Lai 1980) simplification
of the method in order to rapidly determine peak oscil-
lator response values (i.e. PSA) at different periods.
The a priori source, path and site parameters used
for the stochastic modelling of this regional dataset
are adopted from Bindi and Kotha (2020). Bindi and
Kotha (2020) determined seismological parameters for
the wider European region using waveform data from
the ESM database. They proposed a suite of param-
eters that describe the FAS of these waveforms, with
three region-specific adaptations for attenuation. We
utilise the attenuation model applicable to the Italian
region for our prior.Duration parameters are taken from
Afshari and Stewart (2016), who provide values of sig-
nificant duration parameters for 5–75% (D75), 5–95%
(D95), and 20–80% (D80) of the normalised cumula-
tive Arias intensity. In the case of stochastic simula-
tions, 2(D80) is the most appropriate duration, accord-
ing to Boore and Thompson (2014); Kolli and Bora
(2021), and is therefore adopted for our simulations in
SMSIM.

Bindi and Kotha (2020) expressed Brune stress drop
(�σ ) for low and high magnitudes separately: 30 bars

for magnitudes below 5.17 and 60 bars for magnitudes
above 5.17. We considered the stress drop distribution
given by Bindi and Kotha (2020) and Razafindrakoto
et al. (2021) adopting a magnitude-dependent stress
drop (in Pa) model given by:

log10(�σ) = max[6.34, 6.02 + 0.09266Mw] ⇒ Mw < 5.17

(1)

log10(�σ) = min[6.79, 6.5+0.35(Mw −5.17)] ⇒ Mw >= 5.17

(2)

Baseline (uncalibrated) simulations, using the seis-
mological prior (Table 1), are analysed using the full
dataset (Fig. 1), and the residuals (observed–simulated,
in log10 scale) are plotted in Fig. 2. A normal distribu-
tion is used as a prior model for simplicity. Any other
bell-shaped distribution with unbounded support could
have been used for the same purpose. The residuals
from instruments at rock sites are highlighted in order to
understand the effect of site amplification, aswe did not
directly consider site amplification within the simula-
tions (Fig. 2, top). When the rock sites are analysed, the
residuals are reasonably well distributed with respect
to the zero horizontal line (i.e. are unbiased). However,
ground motions at soil sites are all under-predicted, as
expected. In order to account for site amplification in
the empirical data, we post-process computations from
SMSIM using the site amplification component of the
Boore et al. (2014) GMPE, taking a reference veloc-
ity of 760m/s and the site-specific V s30. Although the
application of the amplification model has resulted in
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Table 1 Brief summary of seismological prior model parameters (as used in SMSIM input)

Parameter Units Value Description Calibrated and prior used

rho g/cm3 2.7 Source component: Density of the medium No

beta km/s 3.2 Source component: Velocity of the medium No

prtitn − 0.707 Source component: Partition factor No

radpat − 0.55 Source component: Radiation pattern No

fs − 2 Source component: free surface factor No

Source number − 1 Source component: Single corner frequency No

r_ref km 10 Path component: Reference distance No

nsegs
rlow(i)
a_s

− 3
rlow(1) = 10
a_s(1) = -1.35
rlow(2) = 71
a_s(2) = -0.577
rlow(3) = 119
a_s(3) = -1.53

Path component: Geometrical spreading Yes
a_s(1) = N (−1.35, 0.3)
a_s(2) = N (−0.577, 0.1)
a_s(3) = N (−1.53, 0.3)

Qr1
s

− 250.4
0.29

Path component: Quality factor Yes
Qr1 = N (250.4, 50)
s = N (0.29, 0.06)

nknots
rdur(i)
dur(i)
Slope of last segment

− 3
rdur(1) = 10
dur(1) = 0.0646
rdur(2) = 50
dur(2) = 0.0865
0.0373

Path component: path duration No

kappa s 0.02 Site diminution factor Yes
N (0.02, 0.01)

Nomenclature is as used in SMSIM. The N (location, scale) provides information on the prior normal distribution of each parameter
used in this study

some improvement in residuals, there has not been a
significant change (Fig. 2, bottom). The mean value of
all residuals, which before including site effects was
0.298, reduced to 0.226 using this amplification model.

2.2 Validation and calibration of simulations using
the area metric

In order to assess the quality of simulations from
SMSIM, and as a basis for subsequent model calibra-
tion, we use the area metric. This metric can be used
for analysing the absolute shift between the observed
data and the corresponding simulations. The area met-
ric defines the area between probability distributions,
quantifying how dissimilar they are. This can be con-
sidered as a measure of misfit between the marginal
distribution of the data and the marginal distribution of
the model (Sunny et al. 2021). The AM considers the

observed data and the simulated data as two cumulative
distribution functions and computes the area between
them. The larger the AM value, the more distant the
model and data become from each other.

Due to the computational expense of SMSIM in
simulating all available recordings (11,341), we down-
sample the full dataset during model calibration. The
aimwith this is to appropriately reflect the full dataset in
terms of correspondence of intensity to the metadata,
while avoiding data redundancy and associated com-
putational expense of using the dataset in its entirety.
The data are, therefore, uniformly sampled from differ-
ent bins of the magnitude-distance distribution, which
we consider to be the primary driver of ground motion
intensity. The bins are selected in such a way that the
magnitude range (Mw < 6) is divided into 5 equally
spaced bins and uniform 50km bins are selected over
the whole distance range. 15 recordings are then ran-
domly sampled from each bin, creating the new down-
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Fig. 2 The distribution of the residuals (PGA) before (top panel) and after (bottom panel) considering the site amplification. The empty
dots denote the data recorded only from rock sites. (left panel) Epicentral distance vs residuals; (right panel) Mw vs residuals

sampled dataset for the calibration. The maximum
number of available recordings is selected from the bins
at extreme ranges ofmagnitude and distance (i.e. where
fewer than 15 recordings are present). This results in
a total of 505 recordings after down-sampling (4.7%
of the entire database). The distribution of the down-
sampled data can be inferred from Fig. 3, and can be
directly compared to the full dataset in Fig. 1. The
time difference in the simulation process reduces from
about 20min for the full dataset, to 1min for the down-
sampled dataset.

The area metric is calculated for the prior model
(Table 1), after adding the site corrections, to define the
baseline fit and understand the behaviour of subsequent
simulations. For the given data subset, AM = 0.446.
When the data- and simulation-specific cumulative dis-
tributions are compared, there is a difference in the sim-
ulations towards the tails (Fig. 4), which arises due to
the inherent randomness of the process, i.e. the aleatory

uncertainty,which is as yet not considered.The aleatory
uncertainty in our simulations is introduced by consid-
ering a sigma value (Strasser et al. 2009), which is com-
monly used to quantify the variability of groundmotion
in GMMs. The GMM output is therefore described in
terms of a median (simulated) value and a logarith-
mic standard deviation (here, base-10), sigma (σ ) (e.g.
Strasser et al. (2009)) as shown in Eq.3:

log10(Yobs) = log10(Ypred) + log10[S(V sre f

= 760m/s, VS30)] + N (0, σ ) (3)

where Yobs are the observed data, Ypred are the median
simulation values (without site amplification) of PSA,
and S are site terms from Boore et al. (2014) for a
given VS30. σ defines the aleatory variability associ-
ated with the ground motion prediction and is added
onto the simulated values. We use a value of σ = 0.34,
which is inside the common range of sigma used
in ground-motion models. The performance of sim-
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Fig. 3 The distribution of the Italian data after down-sampling. (a) Epicentral distance vs Mw . (b) Epicentral distance vs PGA. (c) Mw

vs PGA values

ulations towards the tail of the distributions signifi-
cantly increased after introducing the sigma compo-
nent (Fig. 4). The area metric also increased slightly
from 0.446 to 0.447. The final setup for the cali-
bration process (Eq.3) therefore considers the prior
model to include: the attenuation model of Bindi
and Kotha (2020), a magnitude-dependent stress drop
model (Eqs. 1 and 2), site amplification from Boore
et al. (2014), and a generic sigma component. The
naive implementation of the models directly from the
literature results in a 0.226 shift in the mean value of
residuals, as shown in Fig. 2, which corresponds to a
reasonable level of under-prediction. One source of
difference, for instance, could be an incompatibility
between the various model components, such as the

spectral model and RVT duration as they have been
derived independently.

We analyse the performance of SMSIM simula-
tions using random perturbations of the prior. For each
model perturbation, we determine the AM (e.g. Fig. 4)
and check whether a minimum AM value has been
obtained. The calibration process starts by generat-
ing independent and identically random samples (iid)
of the major parameters in SMSIM with the median
value taken from the prior — here, parameters for
Italy. The data-generating mechanism is a normal dis-
tribution (with location and scale defined in Table 1 as
N (location, scale)) and produces variables with high
probability density around the prior values. In other
applications, the user should consider the most appro-

Fig. 4 The area metric plot
before (a) and after (b)
considering aleatory
variability (the sigma
component)
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priate sampling mechanism. The calibration process
accounts for the epistemic uncertainty which can arise
due to many factors such as selection of models, trade-
off between parameters, significant digits, missing data
or sparse data. In this study,we, therefore, consider both
epistemic and aleatory uncertainty as twodifferent enti-
ties (recall that the aleatory component was introduced
through considering sigma, σ ). Aleatory uncertainty
here comes from the observed dataset values such as
magnitude and epicentral distance and also from the
randomness of the model, while epistemic uncertainty
comes from the seismological parameters given as the
input to the model.

Initially, 1000uncorrelated sets of simulationparam-
eters are randomly generated. In this first instance, each
variable in a given parameter combination is indepen-
dently sampled from its normal distribution (Table 1).
All corresponding simulations are then analysed using
each combination of seismological input parameters
and the AM values are calculated. Path- and site-
specific parameters are considered for calibration in
this study, as these are most sensitive to regional vari-
ability. Specifically, we aim to refine the frequency-
dependent quality factor, geometrical spreading model
and site damping (κ0). We also calibrate the aleatory
ground-motion variability (sigma) along with the other
parameters. The combinations of parameters provid-
ing minimum AM, with some tolerance around this
minimum, provide statistically improved simulations
compared to those determined using median parame-
ters prior. If we are not able to obtain a reduction in AM
from the first suite of simulations, the trial distribution
is widened and the process is repeated. In this instance,
we began with a standard deviation of approximately
20% on each parameter (Table 1), which proved suffi-
cient. If calibration cannot be achieved at this range, it
would be possible to increase the standard deviation to
widen the search.

Due to the high number of trial parameter combina-
tions, all simulations performed during the calibration
stage are calculated for and compared to, the down-
sampled dataset. This significantly increases the speed
of the execution of the process (∼ 20 times faster). This
is discussed in theData andMethodology section.Once
the process is completed using the down-sampled data
and the final parameters are determined, we use this
combination of parameters to simulate ground motion
for the complete dataset and validate our results.Nodif-
ferences in the residual trends were observed between

the down-sampled and full datasets. The algorithm is
given in the flowchart provided in Fig. 5. Because of
the randomness involved in the process (random selec-
tion of input seismological parameters), the algorithm
does not provide a unique solution after the comple-
tion of the calibration processes. In the following, we,
therefore, extend the approach to explore the epistemic
uncertainty of the resulting GMM.

Rather than simply obtain the minimum misfit (or
optimum)model the approach outlined above allows us
to explore the epistemic uncertainty of our model. To
further understand the interaction of various parame-
ter combinations and uncertainties, we, therefore, build
a confidence band around the observed data (Fig. 6),
with the aim to attain simulations that fit into this
confidence band, along with their corresponding input
parameters. In order to build confidence bands, we cal-
culate the empirical cumulative distribution function
(ECDF) of the data, i.e. the distribution function asso-
ciated with the empirical measure of a sample. We then
consider all the simulations that fit into the banded
ECDF, rather than aiming for the single ECDF that
uniquely explains the dataset. While the target is no
longer the minimal AM, these simulations are never-
theless those that provide minimum AM values from
all trials. We calculated the confidence band of the
ECDF using the Dvoretzky-Kiefer-Wolfowitz-Massart
(DKW) inequality. The DKW inequality bounds how
close an empirically determined distribution function
will be to the distribution function from which the
empirical samples are drawn. This can be used as a
method for generating cumulative distribution function
(CDF)-based confidence bands. The interval that con-
tains the true CDF of n values, F(x), with probability
1-α is specified using DKW inequality as

Fn(x) − ε ≤ F(x) ≤ Fn(x) + ε where ε =
√
ln 2

α

2n
(4)

A suite of parameters is therefore determined, which
provides simulations that fit within the ECDF confi-
dence band. This provides uswith a quantitative assess-
ment of how the seismological parameters vary within
the confidence band of the data. In this way, we account
for epistemic uncertainty related to data confidence
(and availability). We have defined models to fit within
the confidence band where a maximum of 10% of
recordings lie outside the defined bands (i.e. 10% tol-
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Fig. 5 Flowchart describing the algorithm for calibration of SMSIM parameters
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Fig. 6 The confidence band using DKW inequality. Blue region
represents the 99% confidence band of the given data (black
curve)

erance). This is chosen because it is difficult to obtain
the parameter combinations which provide simulations
that are 100% inside the chosen bands.

Several ECDF confidence bands are created. The
confidence band will be wider at high confidence levels
and narrower at lower confidence levels. The simula-
tion models that are compatible with each confidence
interval are then determined. The number of parameter
combinations consistent with wider confidence bands
is larger, reflecting our increasing inability to define
model parameters at higher levels of data confidence.
An example of the 99% confidence band created using
DKW inequality is shown in Fig. 6. The blue region

in the figure represents the target confidence band for
which we aim to define the combination of seismolog-
ical parameters. We also analysed the optimum param-
eter combination for periods of 0.1, 0.5, 0.8, and 1s.

3 Results of model calibration

The calibration procedure leads to modest changes
to the prior (Table 2). After calibration, all simula-
tions perform better than those using the initial (uncal-
ibrated) combination of parameters. We first analysed
the residual plots (observed value–simulated value, in
log10) before and after the re-calibration of SMSIM
parameters to obtain an understanding of how the
simulations changed with the minimum AM set of
simulation parameters. The residual plots are com-
puted and plotted with respect to epicentral distance
(Repi ) and moment magnitude (Mw). We initially per-
formed residual analysis for the down-sampled data
(Figs. 7 and 8) and then moved to the complete dataset
(Fig. 9) to confirm whether the calibrated combination
of parameters is valid.

The residual distribution before re-calibration show-
ed significant under-prediction (Fig. 7). Most of the
residuals are distributed well above the zero horizontal
line and the mean value of residuals before optimis-
ing the parameters is 0.446. The residual distribution
after re-calibration is more symmetrically distributed
around the zero horizontal line and the under-prediction
is less significant. Themean value of residuals changed
to −0.01 after the calibration procedure. The stan-
dard deviation of residuals, after considering the sigma
component, changed slightly from 0.49 to 0.42 after
implementing the algorithmon the down-sampled data.

Table 2 The initial parameters and the updated (minimum AM) parameters with the difference in each parameter

Parameter SMSIM parameter Initial Calibrated Difference Location Scale

Q0 Qr1 250.40 249.36 1.04 261.93 26.13

alpha s 0.29 0.33 0.04 0.31 0.07

gamma a_s(1) −1.35 −0.84 0.51 −0.89 0.15

gamma1 a_s(2) −0.57 −0.40 −0.17 −0.51 0.14

gamma2 a_s(3) −1.53 −1.52 0.01 −1.32 0.32

kappa kappa 0.02 0.01 −0.01 0.018 0.008

sigma − 0.33 0.33 0.00 0.33 0.01

Note that at this point the calibration is performed only on (and therefore valid for) PGA. The last two columns provide the location
and scale of the distribution of each parameter
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Fig. 7 The distribution of the residuals (down-sampled data)
before (top) and after (bottom) optimising the parameters. The
top panel shows the plots before calibration and the bottom panel

indicates the plots after calibration. (Left) Epicentral distance vs
residuals; (right) Mw vs residuals

While the algorithm attempts to reduce the area in
between the data and the simulation CDFs, the dis-
tribution of the residuals will also converge, becoming
more symmetrical to the zero horizontal, as the area
metric is minimised. The change in AM values before
and after calibration is shown in Fig. 8. The newly cal-
ibrated parameters, the old parameters and their dif-
ference are given in Table 2. The mean and standard
deviation of residuals within separate bins of distance
and magnitude are shown in Fig. 7. The standard devi-
ation values clearly decrease within each bin analysed
and the mean value of each bin shifts towards the zero
line, consistent with the average shift over the entire
dataset. TheAMplots are generated before and after the
re-calibration of the down-sampled data (Fig. 8). After
the re-calibration process, the simulated PGA values

moved closer to the empirical (target) dataset. Specifi-
cally, the AM value decreased from 0.447 to 0.0674.

Once we have the updated seismological model
parameters, developed using the down-sampled data,
we simulate ground motion records for the complete
ESM dataset in order to validate our results. As noted
earlier, sigma is also optimised in this study along-
side the seismological model. The simulation residu-
als, using the updated model and complete dataset, are
symmetrically distributed around the zero horizontal
line as shown in Fig. 9. The sample mean and sam-
ple standard deviation of residuals in different bins are
also analysed and plotted, most of the bins have sam-
ple mean values near zero and have reduced sample
standard deviations. The AM value is calculated and it
is reduced to 0.0516 from 0.226 after and before the
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Fig. 8 The area metric plot (a) before and (b) after calibration of the SMSIM parameters with the down-sampled data

re-calibration. We were therefore able to obtain a good
fit for the complete ESM dataset for Italy by optimis-
ing the SMSIM parameters using only 4%-5% of the
original dataset.

Figure10 shows the differences in the AM values
before (0.447) and after (0.0674) updating the parame-
ters using both the down-sampled dataset (Fig. 10a) and
the complete dataset (0.0516 from 0.226) (Fig. 10b).
When the changes in the input parameters are com-
pared before and after re-calibration, the maximum
change is seen in the parameters related to the geomet-
rical spreading, i.e. the slopes of each distance segment

(gamma and gamma1) compared to the other param-
eters considered in this study.

As we have seen, the changes in the various seis-
mological parameters are variable (both in amplitude
and direction), and hence, it is important to understand
quantitatively how each of the model parameters varies
in different confidence levels of the data. By creating
confidence bands and determining the parameters pro-
viding simulations that are consistent with each band,
we can obtain an idea about the behaviour of indi-
vidual parameters, as the calibration migrates towards
unbiased simulations. The range of parameters at each

Fig. 9 The distribution of the PGA residuals (complete data) after optimising the parameters. (Left) Epicentral distance vs residuals;
(right) Mw vs residuals
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Fig. 10 The area metric plot of (a) down-sampled and (b)
complete dataset before and after updating the parameters. The
dashed green line represents the empirical distribution of data

before updating and the solid line represents the simulation dis-
tribution with the updated parameters

confidence level then indicates the degree of epistemic
uncertainty that can affect the simulations.

As discussed in Sect. 2.2, confidence levels for the
empirical ground motion data are created using the
DKW inequality. 99.9% and 95% confidence bands on
the empirical data are analysed here and, subsequently,
we identify the distribution of simulation parameters
that are consistent with each confidence level. The sim-
ulations are considered to agree with the defined data
confidence band once 90% of the simulated recordings
fall within the band.We allowed a small fraction of tol-
erance (10%) since the number of models with 100%
simulations inside the band is very few andmay be lim-
ited by simplifications of the model form, as defined
in SMSIM. 87 parameter combinations lie within the
99.9% confidence band of the data, i.e. around 10%
of all trial parameter combinations. The number of
alternative parameter combinations is reduced when
decreasing the confidence level required (and subse-
quently decreasing the uncertainty around the ECDF).
Specifically, the number of candidate parameter combi-

nations drops from 87 when fitting a 99.9% confidence
band around the ECDF, to 41 at 95%.

After obtaining candidate parameter combinations
within each confidence band, we analysed their cor-
relation plots using the Pearson correlation coefficient
technique. The parameter correlation was low for high
confidence bands (e.g. 99.9%) but increased as the con-
fidence level decreased (e.g. 95%). When the correla-
tion is plotted with simulations consistent with the 95%
confidence band, we observe a correlation between dif-
ferent parameters used in our study (Fig. 11). The max-
imum correlation we observe is between gamma and
gamma2 and also between alpha and gamma. Both
these values exhibit a negative correlation,which shows
that gamma and gamma2, and alpha and gamma, are
inversely dependent to each other. All of these parame-
ter combinations provide us with improved simulations
compared to the original simulations, since the AM
values of the 41 models (for the 95% data confidence)
are lower than the AM value obtained using the initial
combination of parameters. We observe a wide range
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Fig. 11 (a) Suit of simulations that fit into the 95% confidence
band of the data. Green distributions are the selected models that
fit in the confidence band (allowing up to 10% of the simulated

intensities to be outside the bands). (b) correlation plot of the
input parameters by using simulations that fit into the 90% con-
fidence band

of possible values for individual parameters, which is
to be expected given the numerous possible parame-
ter combinations and strong covariance in such models
(Cotton et al. 2013).

Extending the validity of the calibrated model to
different periods, we test all parameter combinations
falling within the 95% confidence band of the PGA
ECDF on PSA data at 0.1 s. We repeated this process
iteratively for periods 0.1, 0.5, 0.8 and 1s and ended up
with only two of the initial 41 models that fall within
the 95% confidence band of all periods. As a result of
the iterative process, our model now provides updated
parameters for PGA, and PSA at 0.1s, 0.5s, 0.8s, and
1s. The corresponding calibrated model parameter val-
ues (with minimum average AM over all periods) are
Q0 = 241.36, alpha =0.26, gamma =−0.58, gamma1
= −0.48, gamma2 = −1.61, kappa = 0.03. The simu-
lations with the updated model provide a better fit for
all these periods compared with the initial simulations.

3.1 Epistemic uncertainty

Given the suite of candidate simulation parameter com-
binations determined for any given period, we can

resample numerous alternative parameter configura-
tions by using their correlation (or covariance) matrix.
Specifically, we use a resampling technique that, based
on a random sample of a base parameter, uses the
Cholesky decomposition of the covariance matrix to
successively build correlated parameter combinations
(Rietbrock et al. 2013). In following this approach, the
resampled parameter combinations will preserve the
statistical properties of the original set of simulation
parameters, while the number of parameter combina-
tions falling inside the confidence band will increase.
Note, however, that despite ensuring statistical consis-
tency of the simulation parameters, this does not ensure
that all the resultant simulations fall within the confi-
dence bands of the data (ECDF), as shown in Figure S1
in the supplementary material. The red scatters are the
parameters that fall inside the confidence band. Never-
theless, these new parameter combinations can be used
in a manner similar to the use of the optimum param-
eter combination, where the resultant CDF can subse-
quently checked against the ECDF’s confidence band.

The Cholesky decomposition (L) of the covariance
matrix (A) of our retained simulation parameters (i.e.
those producing simulations falling within the defined
confidence limit) is given by A = LLT , where L is
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a real lower triangular matrix with positive diagonal
entries.We start by generating n random (uncorrelated)
variables (here we simulate n = 1000) for each simu-
lation parameter, similar to the initial stage of the cali-
bration algorithmdescribed earlier. To create correlated
simulation parameters, these independent random vari-
ables are multiplied by the lower triangular matrix L .
As a result, the use of Cholesky decomposition has
generated sample sets of variables that have consistent
covariance with our previous optimisation. This should
lead to far more simulation parameter sets that subse-
quently fall within the confidence limits at each given
step in the calibration.

Using this approach, it is possible to not only gen-
erate additional models that fit within the confidence
band of the empirical cumulative distribution function
(ECDF), but also to reduce the width, or standard devi-
ation, of the parameters used, as compared to the initial
trials. For instance, by utilising correlated samples, the
number of parameter combinations that fit within the
ECDF’s confidence band over all periods, from PGA
to 1s increased from 2 to 14. Figure12 shows a scatter
pair plot for 1 s, which highlights the interdependence
of each simulation parameter within the suite of param-
eter combinations examined in this study. The parame-
ter combinations that fit within the ECDF’s confidence
band increased seven-fold, compared to the initial set
of samples that were determined without correlation
(2 uncorrelated samples). There are variations in the
values while exploring the aspect of epistemic uncer-
tainty. This variability may arise due to the extensive
scope of analysis, especially in a larger region such
as Italy, leading to significant fluctuations in param-
eters during the exploration of epistemic uncertainty.
The range of kappa from 0.012 to 0.031 is significant,
but certainly less than the range of site-specific values
thatwould be determined regionally.Consider, also that
the method inherently explores the trade-off between
parameters — while there is significant variation of
gamma2 (which only affects decay at distances above
119km), this trades off with Q — such that the com-
bined attenuation models will be similar. While it may
be considered that in Italy there are abundant data to
constrain values of attenuation, this is in terms of the
bulk effect and not the individual components. This is
well-demonstrated by Shible et al. (2022), who used
several approaches to define seismological (Fourier-
based) model, including the stress drop, Q and gamma.
They showed significant ranges of parameters, depend-

ing on the method chosen and assumptions used. The
complete set of final models, valid over the range PGA
to 1s can be found in Table S1 of the supplementary
material, and a scatter plot displaying the correlated ini-
tial samples and the correlated samples that fit within
the 95% confidence band of PGA is also provided in
Figure S1.

4 Conclusion

This paper discussed the importance of regionally
adjusted ground-motion models for robust and pre-
cise ground-motion predictions for engineering appli-
cations. The sparse data problem and the need for
regionally adjusted ground-motion models are consid-
ered, and an algorithm has been developed based on the
concept of Area Metric for the validation and calibra-
tion of ground-motion models. The calibration is based
on a stochastic simulation approach, which was per-
formed using the SMSIM programs. The approach was
tested using the groundmotion recordings of Italy from
the ESM dataset. We have analysed ground motion
simulation results by taking advantage of the avail-
able information and the properties of recorded sig-
nals from ESM data, along with the duration parame-
ters and the spectral decomposition results for strong
motion data in Europe, which form our prior. Initial
simulation results, using the prior simulation parame-
ters of Bindi and Kotha (2020), have been analysed and
showed the predictions appear broadly consistent, but
under-predicting on average,when using the site effects
model fromBoore et al. (2014). In the first instance, this
study, therefore, validates the use of the spectral decom-
position results of Bindi and Kotha (2020), paired with
the site amplification model of Boore et al. (2014), for
simulation of PGA. Importantly, the model of Bindi
and Kotha (2020) uses a magnitude-dependent stress
drop, without which, PGA would have been underes-
timated for the larger events. Of particular note when
comparing CDFs of observed and simulated data, our
simulationCDF takes into account aleatoryuncertainty,
inherent in empirical data, by adding a sigma compo-
nent, as commonly used in the empirical groundmotion
models.

The initial fit of the simulation model based on the
spectral decomposition byBindi andKotha (2020),was
further refined using a calibration technique, that builds
on the Area Metric (Sunny et al. 2021). The calibra-
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Fig. 12 Pair-wise comparison showing the dependencies
between calibrating parameters. The parameters being examined
here are Q0, gamma, gamma1, gamma2, alpha, and kappa0.
Within the plot, green circles indicate the number of corre-

lated parameters that fall within the confidence band of the 1 s
data, while grey squares represent the initial correlated parame-
ters (correlation obtained from the uncorrelated samples that fit
within the 95% confidence band of the PGA data)

tion is an iterative approach that, based on an initial
prior (with wide parameter variability), refines the cor-
related simulation parameters on a period-by-period
basis. This results in a decreasing width (and epistemic
uncertainty) of the individual simulation parameter dis-

tributions. Residuals and AM plots, analysed after all
these considerations, show that the calibrated simula-
tions improve the fit to the empirical data.We have also
used correlation plots to show the behaviour of various
input parameters used in this study. In order to under-
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stand the interdependence among various parameters in
more detail, further research in this area is necessary,
and this will be the main focus of subsequent studies.

Our approach uses a uniformly down-sampled dataset
from the full Italian ESM dataset, considering the com-
putationally expensive stochastic process, for faster
execution. This was found to be a successful way of
improving the speed and efficiency of simulation-based
calibration approaches.

Importantly, the presented optimisation approach
does not provide a unique solution but rather a suite
of simulation parameters, each of which performs bet-
ter than the initial prior. This allows us to account for
the inherent parameter covariance matrix and the asso-
ciated epistemic uncertainty.We have analysed this suit
of parameter combinations by considering a confidence
band around the data using DKW inequality and then
selecting the simulations and the corresponding param-
eters that fall in the particular confidence level of the
data. The calibrated simulations using this optimisation
are designed to give a minimum area metric value for
the given region and this framework for the calibration
and updating of parameters can help achieve robust and
transparent regionally adjusted stochastic models.
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